E.G.S. PILLAY ENGINEERING COLLEGE (AUTONOMOUS)

Approved by AICTE, New Delhi
(Affiliated to Anna University, Chennai | Re-accredited by NAAC with 'A++ 'Grade)
Accredited by NBA (B.Tech - IT, B.E-CSE and ECE)(Tier-1)
NAGAPATTINAM - 611002

B.TECH - INFORMATION TECHNOLOGY (R-2023)

CURRICULUM AND SYLLABUS FOR SECOND YEAR

	SEMESTER IV					
Course Code	Course Name	L	T	P	C	Category
2302IT401	Java Programming	2	0	4	4	PCC
2302IT402	Operating Systems	3	0	0	3	PCC
2302IT403	Software Engineering and Project Management	3	0	0	3	PCC
2302IT404	Data Warehousing and Data Mining	3	0	4	4	PCC
2302IT405	Computer Networks	3	0	0	3	PCC
2302IT451	Operating Systems Laboratory	0	0	2	1	PCC
2302IT452	Computer Networks Laboratory	0	0	2	1	PCC
2301GEX07	Environmental Sciences and Sustainability	2	0	0	2	BSC
2304GE401	Professional Development Course II	0	0	2	1	EEC
2301MC40X	Mandatory Course I	3	0	0	0	MC
2301LS401	Life skill IV	0	0	0	0	MC
	Total	19	2	10	22	

 $L-Lecture | T-Tutorial | P-Practical | C-Credit | CA-Continuous \ Assessment \ | ES-End \ Semester$

2302IT401 JAV								GRAM	MING	j		I		T	P	С
												2	2	0	4	4
AIM: The maprogramming						s used	to de	velop	object	orient	ted pro	ogramn	ning	g, ev	ent d	riven,
PREREQUIS						nd Prol	blem S	olving	, Data	Struct	ures ai	nd Algo	orith	ıms.		
COURSE OB	JEC	TIVE														
								va prog	gramm	ing usi	ing Ob	ject Or	ient	ed		
				gramn						ъ.		<u> </u>				
											n and	Strings	.			
				Familia				_				1	1			
			4. J	Learn to	o think	. Java p	orograi	n usınş	g real t	ime co	oncept	s and pa	arad	ligm	<u>s. </u>	
COURSE OU	TCC	MES	<u>.</u>													
0001132 00	100			of this	course	. stude	nts wil	l able	to.							
						, 			,							
		CO	l: Un	derstan	d the b	oasic c	oncept	s of Ja	va Pro	gramn	ning .					
		CO2										psulatio	n.			
		CO3	3: De	sign In	heritan	ice and	Interf	ace usi	ing Jav	a.						
		CO ⁴								eption	Handl	ing con	псер	ts us	ing Ja	ıva.
		COS	: Cre	eate rea	l time	applica	ation u	sing Ja	ava.							
COs Vs POs	MA	PPIN	G:													
	00	DO1	DOA	DO2	DO 4	DO.	DO.	DOF.	DOO	DOO	DO16	DO11	DO.	10		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POI	PO11	PO	12		
l ——	CO1	2	3	-	-	-	-	-	-	-	-	3	-			
L L	CO2	3	3	3	3	2	-	-	-	-	-	3	-			
l —	CO4	3	3	3	3	3	-	-	-	-	-	3	-			
	CO5	3	3	3	3	3	_	-	_	-	-	3	-			
	CO6	2	2	_	_	_		_			_	2	_			
	COU			_		_			_							
COs Vs PSO	s M	APPI	VG:													
000 10100			101													
					C	Os PS	O1 PS	O2 PS	O3							
					C	O1 3	3	3	3							
						O2 3		3	3							
					C	O3 3		3	3							
						O4 3										
						O5 3	3	3	3							
MODULE I				SAND										7 Ho		
Object orien	ted I	Progra	mming	g – Oł	ojects	- Clas	sses –	Encap	sulatio	on – N	Method	ds – C	ons	truct	or –	Java
Documents MODULE II		A D I	AVC	CTDI	NICC I	INITITE	DITLAN	JOE						8 Ho		
O operations -				Inher					ornhier	n				<u> </u>	urs	
MODULE II				RIVE					orpinsi	11			4	5 Ho	nirs	
Packages - Eve														J 110	- CII	
MODULE IV				TIVIT		-6~							4	5 Ho	urs	
ODBC-JDBC						lling										
MODULE-V		APP	LICA	TION	PRO (GRAM								5 Ho	urs	
Scripting – JS	SP-S	ervlet	- Sess	sion Ma	anagen	nent –	Full St	ack De	evelop	ment	-					

LIST OF EXPERIMENTS:

PHASE-I:

- 1. Study of key features of the Java language, intro to the Java Development Kit (JDK) and Java Virtual Machine
- 2. Play with Data types, keywords, encapsulation, conditional and control statements, looping, branching
- 3. Implement Java programming concepts using Classes and Objects
- 4. Implement Java programming concepts using Arrays, Inheritance and Interfaces
- 5. Perform event handlers program using Java

PHASE-II:

- 1. Design a class for Complex numbers in Java. In addition to methods for basic operations on complex numbers, provide a method to return the number of active objects created.
- 2. Develop a simple paint-like program that can draw basic graphical primitives in different dimensions and colors. Use appropriate menu and buttons.
- 3. Develop a scientific calculator using even-driven programming paradigm of Java.
- 4. Write a multi-threaded Java program to print all numbers below 100,000 that are both prime and Fibonacci number
- 5. Develop Mini-Project for various real applications using Events, JDBC and Exception Handling

FURTHER READING / SEMINAR

J2EE, J2ME, Mobile Application Development, Software Development

TOTAL: 30 HOURS

REFERENCES:

1.Herbert Schidt, "The Complete Reference of Java", Ninth Edition, Oracle Press, 2023

2.Cay S. Horstmann and Gary Cornell, "Core Java: Volume I – Fundamentals", Eighth Edition, Sun Microsystems Press, 2021.

3.K. Arnold and J. Gosling, "The JAVA programming language", Pearson Education, 2020.

4. Timothy Budd, "Understanding Object-oriented programming with Java", Updated Edition, Pearson Education, 2021.

5.C. Thomas Wu, "An introduction to Object-oriented programming with Java", Fourth Edition, Tata McGraw-Hill Publishing company Ltd., 2019.

6. https://ilearning.oracle.com/

7. http://nptel.ac.in/

2302IT402					OPEI	RATIN	IG SY	STEM	IS			I	\mathbf{T}	P	C
												3	3 0	0	3
PREREQU Organizatio				ng and	Proble	em Sol	ving, I	Data St	ructure	es and	Algori	thms, C	Comput	er	1
COURSE (
		1.Stuc	ly the b	oasic c	oncept	s and f	unctio	ns of c	peratir	ıg syste	ems.				
									uling a						
		3.Und	erstand	d the p	rincipl	es of c	oncuri	ency a	nd Dea	dlocks	S.				
			rn vario												
		5.Lea	rn the l	oasics (of Linu	ıx syst	em an	d perfo	rm adr	ninistr	ative ta	asks on	Linux	Serve	rs.
a a tip a p	~ T T T C C	22.550													
COURSE (.1	.1.4:	- £ (1		4 1	4 :	11 11	-1- 4-				
	On	the suc	ccessiu	ıı comj	oletion	or the	cours	e, stua	ents wi	II be ai	ole to,				
	CO1:	Under	stand t	he kes	COnce	ents of	Operat	ing sw	stem n	rocess	and pr	ocess 1	nanage	ment	
	CO2:	Imple	ment	various	Sche	duline	g algo	rithms	and a	leadlo	ck pr	eventic	n and	avoic	lanc
	CO2.	algori		variou	, bein	Zaami	, uigo	11(11111)	ana (icacio	ck, pr	Cventic	n and	avoic	ıuııc
	CO3:			techni	ques	for sy	nchro	nizatio	n of	concu	rrent	process	ses an	d me	mor
			gement			J						•			
	CO4:	Demo	nstrate	the fu	nction	ality of	f file s	ystems	and m	ass sto	rage s	tructure	e		
	CO5 :			featu	es of	virtua	l mac	hine a	and Co	mpare	iOS	and A	android	Oper	atin
		Syster	ns.												
COs Vs P	O2 MA	DDIN	<u> </u>												
COS VS P	OS MA	PPIN	G:												
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	CO1		3	1	2	-	-	-	-	-	-	-	-		
	CO ₂	3	3	1	3	-	-	-	_	-	-	-	-		
	CO ₃	3	3	1	3	-	-	-	-	-	-	-	-		
	CO4		3	1	1	-	-	-	-	-	-	-	-		
	CO ₅	2	3	1	1	1	-	-	-	-	-	-	-		
GO TI D	GO 3.5	4 DD71	10												
COs Vs P	SUs M	APPI	NG:												
						Os PS	01 DC	(A) DC	102						
						$\frac{\text{Os PS}}{\text{O1}}$		_	2						
						O1 3			3						
						O2 3			3						
						O3 3			3						
						O5 3			3						

COURSE CONTENTS:

MODULE I INTRODUCTION AND PROCESS MANAGEMENT

10 Hours

Computer-System Organization- Computer-System Architecture- Operating-System Operations- Resource Management- Operating-System Services- System Calls- Operating-System Structure- Process management: Process Concept- Process Scheduling- Threads- Multithreading models.

MODULE II | CPU SCHEDULING AND DEADLOCK

8 Hours

Levels of scheduling, comparative study of scheduling algorithms – Dead Lock: Characterization, Prevention Detection, Avoidance and Recovery.

MODULE III | CONCURRENT PROCESSES AND MEMORY MANAGEMENT

10 Hours

Critical section problem: Semaphores, monitors, Inter-process communication, message passing – Memory management: introduction- paging- segmentation- virtual memory concept- demand paging, page

replacement algorithms-thrashing.

MODULE IV FILE SYSTEMS AND MASS STORAGE STRUCTURE

10 Hours

File system: File concept- access methods-directory structure, file system implementation: File system structure- Directory Implementation-Allocation methods, Overview of Mass-Storage Structure, HDD Scheduling- Storage Device Management.

MODULE V VIRTUAL MACHINES AND MOBILE OS

7 Hours

Virtual Machines – History, Benefits and Features, Building Blocks, Types of Virtual Machines and their Implementations, Virtualization and Operating-System Components; Mobile OS - iOS and Android.

TOTAL: 45 HOURS

REFERENCES:

1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, Operating System Concepts, John Wiley & Sons (Asia) Pvt. Ltd, Tenth Edition, 2018

2. Gary Nutt, —Operating Systems- A Modern Perspectivell, Pearson Education Pvt. Ltd, Second Edition, 2013.

3. Andrew S. Tanenbaum, —Modern Operating Systems, 3rd edition Prentice Hall of India Pvt. Ltd, 2015.

4. Harvey M. Deitel, Operating Systems, Pearson Education Pvt. Ltd, Third Edition, 2013.

5. William Stallings, Operating System\\, Pearson Education, Sixth edition, 2015.

6.http://nptel.ac.in/

2302IT403			RE EI EMEN		EERI	NG AN	ND PR	OJEC	T			L	Т	P	C
												3	0	0	3
PREREQUIS	SITE:	Progra	ımminį	g and I	Probler	n Solvi	ing, Er	ngineer	ring Ex	plorat	ion.			•	
COURSE OF															
									es, eme				ocess	es, to	the
									ole soft						
								quiren	nents th	nrough	a prod	luctiv	ve wo	rkıng	
	rela	tionshi	ip with	projec	t stake	nolder	S.	ال سد د	4	40010	40 1:1.	ما مداء	4	£4	
										toois	to build	ı rob	ust sc	onwar	e product
			Aspec							and to	Contr	o1 C		<u>+0</u>	
	5.10) Outili	ne the i	need 10	or Som	ware P	roject .	Manag	gement	and to	Contr	01 C	опсер	ts.	
COURSE OU															
On th	ne succ	essful	compl	etion o	of the c	ourse,	studen	ts will	be abl	e to,					
CO1	: Und	lerstan	d the s	<u>oftwar</u>	e deve	lopmer	nt proc	ess mo	odels.						
CO2	: Dete	<u>ermine</u>	the re	<u>quiren</u>	ents to	devel	op sof	ware.	1	C.	-				
								ild a ro	bust so	ottwar	e produ	ıct.			
			d the b					. 1	41						
CO5	: Mar	nage S	oftware	e Proje	ects and	to un	derstar	id cont	trol cor	ncepts.					
COs Vs PO	s MAF	PING													
ı			T =							1					
			PO2						PO8						
	CO1		3	2	2	2	-	-	-	-	-	2	-		
	CO ₂	2	3	3	2	2	-	-	-	-	-	2	-		
	CO4		3	2	2	2	-		 -		-	3			
	CO5		3	3	2	2	_	_	<u> </u>	-	-	3	+-		
	<u> </u>		3	3		2						3			
COs Vs PSO	Os MA	PPIN	G:												
						O DG	01 DG	O A DC	102						
					<u> </u>			O2 PS							
						O1 3 O2 3									
						O4 2									
					C	O5 3	2	2 2	2						
COURSE CO	NTE	NTS:													
e e e e e e e e e e e e e e e e e e e	<u> </u>	. 1151													
MODULE I	PHASI DEVE			E CY	CLE N	MODE	LS OI	FSOF	TWAI	RE				9 Hot	irs
Software Eng				ance -	Fmer	gence	- Pha	ses of	softw	are de	velonm	nent	- Fee	sihili	ty study
Requirement															
Models - Clas															ic Cycle
			IENTS						511C - C	ompai	C LIIC	Cycle		9 Hot	ırs
II	EQU.	TT/T/1/1		ANA	11010	AND	וטינע	011						> 11Ul	## IJ

Requirement Analysis – Analysis process, Requirement specification, Desirable characteristics of an SRS, structure of an SRS document, Data Flow Diagrams - Planning for a Software Project Software Design -Software design concepts. MODULE SOFTWARE IMPLEMENTATION AND TESTING 9 Hours Software Coding - Programming principles and coding guidelines - Levels of testing: Unit Testing, Integration Testing, System Testing, Acceptance testing - Debugging-Regression Testing- Black-box testing -White box testing. MODULE ASPECT ORIENTED SOFTWARE DEVELOPMENT 9 Hours AO Design Principles -Separations of Concerns, Subject Oriented Decomposition, Traits, Aspect Oriented Decomposition, Theme Approach, Designing Base and Crosscutting Themes, Aspect-Oriented Programming using Aspect-J. MODULE SOFTWARE PROJECT MANAGEMENT AND CONTROL 9 Hours Estimation – FP Based, LOC Based, COCOMO Models - Project Plan, Planning Process, RFP Risk Management – Identification, Projection, RMMM - Scheduling and Tracking –Process and Project Metrics Document Preparation and Production- Cost monitoring – Earned Value Analysis – Change control- Software Configuration Management – Managing contracts – Contract Management-Managing people. **TOTAL: 45 HOURS REFERENCES:** 1.Roger S. Pressman, "Software Engineering – A Practitioner's Approach", Seventh Edition, Mc Graw-Hill International Edition, 2017. 2. Software Engineering, A Precise Approach: Pankaj Jalote, Wiley India-2010 3. Software Project Management: Saikat Dutt /S. Chandramouli, Pearson-Second Edition 4. Software Engineering: Ian Sommerville, Pearson, Nineth Edition 5. Software Engineering a practitioner's approach – Roger S Pressman, Seventh Edition 6.Project Management Absolute Beginner's Guide: Greg Horine, Pearson, Second Edition

7. http://nptel.ac.in/.

2302IT404		DA	ΓA W	AREH	OUSI	NG A	ND DA	TA M	IININ	G	I		P	C
											3	3 0	0	3
PREREQUISITE	:													
		atabase			ıt Syste	ems								
		va Pro												
	3.Py	ython F	' rograr	nming										
COURSE OR IEC	TIXE	·C.												
COURSE OBJEC	HIVE	<u>s:</u>												
	1 1 4	aarn ah	out the	a cafa (etoraga	of dat	a and a	rchita	etura o	f data	wareho	NICA		
		earn ab								1 uata	wareno	use.		
										nt to tl	he orga	nizatio	n.	
	4.St	udv th	e extra	ction o	of impl	icit, pı	evious	lv unk	nown.	and po	otential	lv usef	ul	
	info	rmatio	n from	ı data.		, F		-,	,	г		-5		
	5.To	o help i	in the g	generat	tion of	report	s for th	e man	ageme	nt.				
COURSE OUTCO														
On the suc	cessful	comp	letion of	of the o	course,	, stude	nts will	l be ab	le to,					
001	1 -	1 ·	41		- C D	- 117	.1	A 1	-14 - 1	1	T 1			
CO1	1.E	xpiain i	ine cor	togges	oi Data	a Ware	enousin	ig Arcl	intectui	re and	Implen	nentati	ons.	
CO2	2.A	pply di	nigh d	imensi	nauon 1	ata an	o soive	Variot	is uatas m. ilein	set.	sificati	on and	nrad	iction
COS		nniques		111101151	onai u	iaia ai	iarytics	Syster	ii usiii	ig Clas	Sincan	on and	preu	CHOII
CO4		nalyse		dataset	using	cluste	ing and	d assoc	ciation	techni	aues.			
											t using	advan	ced m	ining
		nniques				,								
COs Vs POs MA	<u>PPIN</u>	<u>G:</u>												
COa	PO1	PO2	DO2	PO4	PO5	DO4	PO7	DO	DOO	DO10	PO11	DO12		
COI		3	3	-	3	-	-	-	-	-	3	-		
CO2	_	2	2		2	_	_	-	-	_	2	_		
CO3		3	3	_	3	_	_	_	_	_	3	_		
CO4	3	3	3	-	3	_	-	-	-	-	3	_		
CO5		2	2	-	2	-	-	-	-	-	2	-		
•							•	•	•					
COs Vs PSOs M	APPI	NG:												
				_										
							O2 PS							
					O1 3		3 2							
					O2 3		2 2							
					O3 3		3 2							
					O4 3		3 2							
				C	205 3) [2 2	2						
COUDER CONT	NTC.													
COURSE CONTI	71119:													
MODULE I IN	TRAI	DUCTI	ON T	'V D V	TA W	ARFL	MIST	NG					6 Ho	ıırs
Data warehouse a									ultidin	nensio	nal dat	a mod		
warehouse archited									arti u ill	.0110101	an ual	a 1110u	~ı ı	Juli
		AININ!							FCCD	IDTIC	<u> </u>		6 Ho	
Introduction to Dat												ec D		
query language - D								313 - D	ata IIII	mng p	1111111111	.s – Di	ua IIII	mig
MODULE III CI	ASST	FICA	rion a	AND	PRED	ICTIC)N						6 Hot	ırç
		- IUA				(, i 1						A 110f	*1 D

Introduction – Decision Tree Induction – Bayesian Classification – Back propagation – Laz Prediction – Evaluating the accuracy.	y Learners –
MODULE IV CLUSTERING AND ASSOCIATION	6 Hours
Similarity and Distance Measures – Hierarchical Algorithms – Partition Algorithms – Outlier	r Analysis –
Mining Frequent Patterns, Associations, and Correlations.	,
MODULE V ADVANCED TOPICS	6 Hours
Web Mining – Web Content Mining – Structure and Usage Mining – Spatial Mining – Time	e Series and
Sequence Mining – Graph Mining.	
TOTAL:	30 HOURS
LIST OF EXPERIMENTS:	
1.Installation of WEKA Tool	3 Hours
2.Implementation for Creating new ARFF File	3 Hours
3.Implementation of Data Processing Techniques on Data set	4 Hours
4.Implementation of Data cube construction – OLAP operations	4 Hours
5.Implementation of Apriori algorithm	4 Hours
6.Implementation of FP- Growth algorithm	4 Hours
7.Implementation of Decision Tree Induction	4 Hours
8.Implementation of Classification of data using Bayesian approach	4 Hours
TOTAL	: 30 HOURS
REFERENCES:	
I.Jiawei. Han, Design high dimensional data analytics system using classification and prediction	
techniques. Micheline Kamber, "Data Mining: Concepts and Techniques", Second Edition, Elsevier,	New Delhi,
2017	
2. Vipin Kumar, Michael Steinbach," Introduction to Data Mining", Second Edition, Addison Wesley	v, 2015
3.Dunham M, —Data Mining: Introductory and Advanced Topics, Prentice Hall, New Delhi, 2013.	
4.http://nptel.ac.in/	

2302IT405			C	OMP	UTER	NETV	VORE	KS			I	T	P	C
				01.12	0 1 2 2 1	,	7 0 2 1 2				3		0	3
PREREQUISITE	: Digit	al prin	ciples	and Sv	stem Γ	Design.	Progr	ammin	g and	Proble	m Solv	ing.		_1
COURSE OBJEC			-ipies	<u> </u>		7 7 5 7 5 7 7	11081	**********	8 4114	110010		81		
COURSE OBSEC			and th	e conc	ept of 1	laverin	g in ne	tworks	s and i	dentify	the co	mpone	ents rec	uire
l		ld diffe					8					F		1
		earn th					ver.							
								the va	rious 1	outing	protoc	ols.		
		familia												
	5.To 1	know t	he fund	ctions o	of prote	ocols i	n appli	cation	layer.	· · · · · ·				
					•		• • •		•					
	•													
COURSE OUTCO														
On the succ	essful	compl	etion o	of the c	ourse,	studen	ts will	be abl	e to,					
	1													
CO1:										structu	ire and	l selec	t the	mos
G0.4		priate i												
CO2:											control		anısm.	
CO3:											service		•	
CO4: CO5:		ze the									control	mecna	anism.	
COS	Allary	ze me	WOIKII	ig or v	arrous	аррис	auon i	ayer pr	otocor	S.				
COs Vs POs MA	PPIN	G.												
COS VSI OS MI	11 11 11 1	<u>. </u>												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	-	-	-	-	-	-	-	-	-	2		
CO ₂	3	3	2	2	-	-	-	-	-	-	-	2		
CO ₃	3	2	1	-	-	-	-	-	-	-	-	1		
CO4	3	2	2	1	2	-	-	-	-	2	2	3		
CO5	3	2	2	1	2	-	-	-	-	2	2	3		
COs Vs PSOs M	APPI	NG:												
					0	<u> </u>	00	0.0						
						O1 PS								
					O1 3		. 1							
1				C	O2 3	3 1	. 1							

CC	URSE	CON	TEN	TC.
	1015512		רועיו ווי	

MODULE I INTRODUCTION AND PHYSICAL LAYER

9 Hours

Computer Network – OSI Model – Communication Systems – Protocol and Standards – Wired vs Wireless Physical Layer: Data and Signals – Performance – Transmission media- Switching – Circuit Switching.

3

3

1

CO₃

CO₄

CO₅

3

MODULE II DATA LINK LAYER

9 Hours

Data Link Layer: Framing – Flow control – Error control – Data-Link Layer Protocols – HDLC -PPP – Media Access Control – Ethernet Basics – Case study: CSMA/CD &CA – Token Bus, Token Ring, Hub, Bridges.

MODULE III NETWORK LAYER

9 Hours

Internetworking – Virtual and Datagram - IP Address: IPv4, IPv6 – Routing: Link state, Distance vector – Inter domain Routing – RIP – OSPF – BGP – ICMP – ARP – DHCP – Multicast routing –Case study:

MODULE IV TRANSPORT LAYER

9 Hours

UDP – TCP– Connection Management – Flow control – Congestion Control- QoS - Case study: Switch.

MODULE V APPLICATION LAYER 9 Hours HTTP – FTP – Web Services - Email protocols ((SMTP – POP3 – IMAP – MIME) – HTTP – DNS – DNS – SNMP - Blue tooth – Wi-Fi – Case study: Gateway. **TOTAL: 45 HOURS REFERENCES:** 1.Behrouz A. Forouzan, Data Communications and Networking with TCP/IP Protocol Suite, Sixth Edition TMH, 2022 2. James F. Kurose, Keith W. Ross, Computer Networking, A Top-Down Approach Featuring the Internet, Eighth Edition, Pearson Education, 2021. 3. Larry L. Peterson, Bruce S. Davie, Computer Networks: A Systems Approach, Fifth Edition, Morgan Kaufmann Publishers Inc., 2012. 4. William Stallings, Data and Computer Communications, Tenth Edition, Pearson Education, 2013. 5.Nader F. Mir, Computer and Communication Networks, Second Edition, Prentice Hall, 2014 6.Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", McGraw Hill, 2012.

2302IT451	OPERATING SYSTEMS LAB	L	T	P	C
		0	0	2	1
PREREQUISI'	TE: Programming in C & C++, Database Management Systems, Compu	uter A	rchite	cture.	,
COURSE OBJ	ECTIVES:				
	1.To understand the concept of layering in networks and identify the	e com	onen	ts req	uired
	to build different types of networks.	•			
	2.To learn the functions of data link layer.				
	3. To learn the functions of network layer and the various routing pro	otocol	s.		
	4.To familiarize the functions and protocols of the Transport layer.				
	5.To know the functions of protocols in application layer.				
	A				
COURSE OUT	COMES:				
	At the end of this course, students will be able to,				
CO	: Demonstrate proficiency in using essential UNIX commands				
	(POs: 1, 2 & 3 PSOs : 1 & 2)				
CO	Letilize system calls effectively for process creation, process many	ageme	nt, ir	iter-p	roces
	communication, file system operations, and I/O operations				
	(POs: 1, 2, 3 & 4 PSOs : 1, 2 & 3)				
CO		l inter	actin	g witl	h the
	operating system (POs: 1, 2 & 3 PSOs : 1 & 2)				
CO		ition r	necha	nisms	š
	(POs: 1, 2, 3 & 4 PSOs : 1, 2 & 3)				
CO			n me	thods	and
	memory management techniques (POs: 1, 2, 3, 4 & 5 PSOs: 1, 2 &	z 3)			

COs Vs POs MAPPING:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1	-	-	1	-	-	-	-	-	-
CO2	3	3	1	1	-	-	-	-	-	-	-	-
CO ₃	3	3	1	-	-	-	-	-	-	-	-	-
CO4	2	3	1	-	-	-	-	-	-	-	-	-
CO5	2	3	1	1	1	1	-	-	-	-	-	-

COs Vs PSOs MAPPING:

COs	PSO1	PSO ₂	PSO3
CO1	3	2	-
CO2	3	3	3
CO3	3	3	-
CO4	3	3	3
CO5	3	3	3

COURSE CONTENTS:

List of Experiments

- 1. Study of basic Commands in Unix Operating System
- 2. Shell Programming: Creating a script, making a script executable, shell syntax (variables, conditions, control structures, functions, commands).
- 3. Implementation of CPU Scheduling Algorithms (FCFS, SJF, RR, Priority).
- 4. Simulation of Process synchronization using semaphores
- 5. Simulate Bankers Algorithm for Dead Lock Avoidance

B.Tech. Information Technology | E.G.S. Pillay Engineering College (Autonomous) Regulations 2023 | Approved in 11th Academic Council Meeting held on 12.03.2024

- 6. Simulation of inter process communication using Shared Memory Concept
- 7. Simulate all file allocation strategies
- 8. Simulation of Page Replacement Algorithms (LRU, OPT, FIFO).
- 9. Install and Simulate Mobile OS, Virtual OS

TOTAL: 30 HOURS

Requirements

Software: Operating System: Windows /Linux operating system

Tool: JDK 1.6 (or above) IDE: Net beans or Eclipse

REFERENCES:

1.Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, Operating System Concepts||, John Wiley & Sons (Asia) Pvt. Ltd, Ninth Edition, 2017

- 2. Gary Nutt, —Operating Systems- A Modern Perspective, Pearson Education Pvt. Ltd, Second Edition, 2013
- 3. Andrew S. Tanenbaum, —Modern Operating SystemsI, 3rd edition Prentice Hall of India Pvt. Ltd, 2015
- 4. Harvey M. Deitel, Operating Systems, Pearson Education Pvt. Ltd, Third Edition, 2013.
- 5. William Stallings, Operating Systeml, Pearson Education, Sixth edition, 2015.
- 6. http://nptel.ac.in/

2302IT452	COMPUTER NETWORKS LAB	L	T	P	C
		0	0	2	1
PREREQUISIT	E: Digital principles and System Design, Programming and Problem S	olvin	g		
COURSE OBJE	CTIVES:	·			-
	1.To understand the concept of layering in networks and identify the	com	oner	its req	uired
	to build different types of networks				
	2.To learn the functions of data link layer				
	3.To learn the functions of network layer and the various routing pro	tocol	S		
	4.To familiarize the functions and protocols of the Transport layer				
	5.To know the functions of protocols in application layer				
	produce the second of the seco				
COURSE OUT	COMES:				
	On the successful completion of the course, students will be able to				
	•				
CO1:	Analyze the requirements for a given organizational structure	and s	select	the	most
	appropriate networking architecture and components				
CO2:	J		necha	nism	
CO3:	j j				
CO4:		rol m	echar	nism	
CO5:	Analyze the working of various application layer protocols				

COs Vs POs MAPPING:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	-	-	-	-	-	-	-	2
CO2	3	3	2	2	-	-	-	-	-	-	-	2
CO3	3	2	1	-	-	-	-	-	-	-	-	1
CO4	3	2	2	1	2	-	-	-	-	2	2	3
CO5	3	2	2	1	2	-	-	-	-	2	2	3

COs Vs PSOs MAPPING:

COs	PSO1	PSO2	PSO3
CO1	3	-	1
CO ₂	3	1	1
CO3	3	2	1
CO4	3	3	1
CO5	3	3	1

COURSE CONTENTS:

List of Experiments

- 1. Learn to use commands like tcpdump, netstat, ifconfig, nslookup and traceroute. Capture ping and trace route PDUs using a network protocol analyzer and examine.
- 2. Simple Chat Program using TCP Sockets
- 3. Write a HTTP web client program to download a web page using TCP sockets.
- 4. Simulation of DNS using UDP sockets.
- 5. Simulation of Sliding Window Protocol using TCP Sockets
- 6. Performance comparison of MAC protocols using simulation tool
- 7. Performance comparison of Routing protocols using simulation tool
- 8. Use a tool like Wireshark to capture packets and examine the packets
- 9. Write a code simulating ARP /RARP protocols

10. Simulate networks using network simulators like NS-2

11. Case Study: Firewall Configuration, IDS, VPN and SAN

TOTAL: 30 HOURS

REFERENCES:

- 1. Behrouz A. Forouzan, Data Communications and Networking with TCP/IP Protocol Suite, Sixth Edition TMH, 2022
- 2. James F. Kurose, Keith W. Ross, Computer Networking, A Top-Down Approach Featuring the Internet, Eighth Edition, Pearson Education, 2021.
- 3.Larry L. Peterson, Bruce S. Davie, Computer Networks: A Systems Approach, Fifth Edition, Morgan Kaufmann Publishers Inc., 2012.
- 4. William Stallings, Data and Computer Communications, Tenth Edition, Pearson Education, 2013.
- 5.Nader F. Mir, Computer and Communication Networks, Second Edition, Prentice Hall, 2014
- 6. Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source.
- 7. Approach", McGraw Hill, 2012.

2301GEX07	ENV	IRONN	MENT	'AL SO	CIENC	CES A	ND ST	STAT	NABII	LITY	I		P
301GL2107	121111	110111	VILITI	TIL D			TID DC	<i>,</i>	1 1/1 1/1		1		2
PREREQUISIT	F. Roci	. Vnov	lodgo	o h out :	tha val	uoblo c	nviror	mont					
KEKEQUISIT			-										
		ic Knov	wledge	to cor	nserve	the pre	ecious	enviro	nment				
COURSE OBJE													
		ze the i											
							enviro	nment	affect	the qua	ality of	life and	d stim
	the qu	est for	sustai	nable c	levelop	oment.							
COLIDEE OUT	COME	1.											
COURSE OUT			41	ام مداد	1 4	11 1 1	1.4.						
Att	he end o	i the co	ourse u	ne stuc	ient wi	ii be ai	bie to,						
CO1	Descr	ihe the	impor	tance (of ecos	vetem							
CO2		Describe the importance of ecosystem. Describe the various environmental issues and its prevention.											
CO3		nize var									nserve	it	
CO4		t the va								1 10 001	inserve	10.	
CO5		tigate tl											
		8			7 1								
COs Vs POs M	APPIN	G:											
		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CC		1	-	-	-	-	3	-	-	-	-	-	
CC		1	-	-	-	-	3	-	-	-	-	-	
CC		2	1	1	1	1	3	2	2	2	3	2	
CC		2	1	1	1	l 1	3	2	2	2	3	2	
		· ')		1	1	1	1 3	1 7	2.	')	- 3	')	

COs	PSO1	PSO ₂	PSO3
CO1	-	ı	ı
CO2	-	-	-
CO3	-	-	-
CO4	-	-	-
CO5	-	-	-

COURSE CONTENTS:

ECOSYSTEM MODULE I

8 Hours

Concept of an ecosystem - structure and function of an ecosystem - producers, consumers and decomposers. Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, rivers, oceans)

MODULE II ENVIRONMENT AL ISSUES AND SOLUTIONS

7 Hours

Current Environmental Issues: Acid rain, Ozone layer depletion, Global warming, Green house effect. **Solutions:** 12 principles of green chemistry-Rain water harvesting.

Mini Project Modules

MODULE III | BIODIVERSITY

10 Hours

Introduction to biodiversity -genetic, species and ecosystem diversity - value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity.

MODULE IV NATURAL RESOURCES

Forest resources: Use and over-exploitation, deforestation- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and overutilization of surface and ground water, damsbenefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity— Energy resources: Growing energy needs, renewable and nonrenewable energy sources, use of alternate energy sources. Energy Conversion processes Biogas – production and uses, anaerobic digestion – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles.

MODULE V ENVIRONMENTAL POLLUTION

10 Hours

Definition – Source, causes, effects and control measures of: (a) Air pollution (b) Water pollution(c) Soil pollution - soil waste management: causes, effects and control measures of municipal solid wastes – (d) Marine pollution (e) Noise pollution –(f) Nuclear pollution (g) Thermal pollution role of an individual in prevention of pollution.

TOTAL: 45 HOURS

MINI PROJECT ADDITIONAL TOPICS

Soil Science

- 1. Effects of climate change on soil erosion.
- 2. The role of land management in maintaining soil health.
- 3. Effects of salinity in coastal region Agricultural activity.
- 4. The effects of climate change on agriculture.

Urban Ecology

- 1. How road construction impacts biodiversity and ecosystems.
- 2. The effects of urbanization and city planning on water cycles.
- 3. Impacts of noise pollution on human health.

Pollution and Bio-remediation

- 1. The role of bio-remediation in removing "forever" chemicals from the environment.
- 2. Impacts of air pollution on human health.
- 3. How to improve plastic recycling processes.
- 4. Individual measures to reduce consumption and creation of microplastics.

General Topics

- 1. Impact of Urbanization on Local Biodiversity
- 2. Renewable Energy Options for Sustainable Living.
- 3. Waste Management Strategies in Urban Areas
- 4. Climate Change and Its Effects on Local Ecosystems
- 5. Air Quality Monitoring in Urban centers
- 6. Water Quality Assessment in Local Water Bodies
- 7. Green Roof Technology and Its Environmental Benefits
- 8. Impact of Plastic Pollution on Marine Life.
- 9. Eco-friendly Practices in Agriculture:
- 10. The Role of Community Gardens in Urban Sustainability
- 11. Alternate energy sources for community Development.
- 12. E-Waste Management.
- 13. Energy Audit of a building.
- 14. Rainwater harvesting system.
- 15. Population growth variation among nations.
- 16. Population explosion.
- 17. Family welfare programme.
- 18. Women welfare programme.
- 19. Child welfare programme.
- 20. Environmental impact analysis.
- 21. Role of information technology in environmental protection and human health.

REFERENCES:

- 1. Trivedi.R.K., "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards", Vol. 1 and II, Enviro Media, 3rd edition, BPB publications, 2010.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, "Environmental Encyclopedia", Jaico Publication House, Mumbai, 2001.

3.Dharmendra S. Sengar, "Environmental law", Prentice hall of India Pvt Ltd, New Delhi, 2007. 4.Rajagopalan, R, "Environmental Studies-From Crisis to Cure", Oxford University Press, 2005.