B.E. Electrical and Electronics Engineering | E.G.S. Pillay Engineering College (Autonomous) Regulations2023 Approved in 11th Academic Council Meeting Held on09.01.2024

E.G.S. PILLAY ENGINEERING COLLEGE

(Autonomous)

Approved by AICTE, New Delhi | Affiliated to Anna University, Chennai Accredited by NAAC with 'A++' Grade | Accredited by NBA (BE- CIVIL, CSE, ECE, EEE, MECH & IT)

NAGAPATTINAM - 611 002

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING

Full Time Curriculum and Syllabus

Second Year – Fourth Semester

	Course Code	Course Name	L	Т	Р	Н	С			aximum Marks
	Coue							CA	ES	Total
The	ory Course		•	•						
1	2302EE401	Generation, Transmission and Distribution	3	2	0	5	4	40	60	100
2	2302EE402	Electrical Machines -II	3	2	0	5	4	40	60	100
3	2302EE403	Power Electronics	3	0	0	3	3	40	60	100
4	2302EE404	Linear Control Systems	3	2	0	5	4	40	60	100
5	2301MC40X	Mandatory course-I	2	0	0	2	0	100	-	100
The	ory Cum Labo	ratory Course								
6	2302EE405	Linear Integrated Circuits	3	0	2	5	4	50	50	100
7	2301HSX01	Universal Human Values and Ethics	1	0	2	3	2	50	50	100
Prac	ctical Course			-						
8	2302EE451	Electrical Machines –II Laboratory	0	0	2	2	1	60	40	100
9	2302EE452	Power Electronics Laboratory		0	2	2	1	60	40	100
10	2304GE401	Professional Development Course – II	0	0	2	2	1	100	-	100
11	2301LS401	0	0	0	0	0	-	-	-	
		Total	18	06	10	34	24	580	420	1000

L – Lecture | T – Tutorial | P – Practical | C – Credit | CA – Continuous Assessment | ES – End Semester

	E 401	G	ENE	RATIO	N, TRA	NSMISS	ON ANI) DIST	RIBUT	ION	L 3			P 0	C 4
PRERE	OUIS	SITE•												v	-
		JII 2.													
	1	Electric	Circu	it Analy	sis										
		L													
COURS	SE OI	BJECTIV	ES:												
					1 0										
	$\frac{1}{2}$					peration of	-			n and di	stributic	on sys	ten	1.	
	2					tors and u	-			••••••					
	3	-				nd interfe					niccion	linas			
	4	10 under	stanc	i the me	chamcai	design an	d perform	lance ar	larysis c	or transi	IIISSIOII	imes.			
COURS	SE OI	UTCOME	S.												
			10.												
On the s	ucces	sful comp	letior	n of the o	course, s	tudents w	ill be able	e to							
	01:	-				system, r			n from	renewa	ble and	non-	rer	newa	ble
		energy s			1	J / 1	8								
С	02:				tension	of overhea	d lines an	nd string	g efficie	ncy of i	nsulator	s			
С	03:			_		transmiss				-					
С	04:	Calculat	e the	e transm	ission e	fficiency	and volta	an roau	lation (of a tra	nsmissio	on lin	ρ		
						•	inu voita	ige regu	iacion (L.		
C	05:	Explain				ns, substat								butic	on
		systems.	he di			-								butio	on
			he di			-								butio	on
COs Vs	POs	systems. MAPPIN	he di G	istributic	on syster	ns, substat	ion and n	nodern t	rends ir	n transm	nission a	nd di	stri	butio	on
COs Vs COs	POs PO	systems. MAPPIN D1 PO	he di G	O3 P	on syster	ns, substat	ion and n			n transm P10	nission a	nd dis P12	stri	butio	on
COs Vs COs COs CO1	POs PC	systems. MAPPIN D1 PO 2 1	he di G	ostributic	on syster	ns, substat	ion and n	nodern t	rends ir	n transm	nission a	nd di	stri	butic	on
COs Vs COs CO1 CO2	POs PC	systems. MAPPIN D1 PO 2 1 3 2	he di G	O3 P0 1	DA PO	D5 PO6 	ion and n	nodern t	rends ir	n transm P10	nission a	nd dis P12	stri	butio	on
COs Vs COs CO1 CO2 CO3	POs PC 2 3 3	systems. MAPPIN D1 PO 2 1 3 2 3 2 3 2	he di G	O3 PO 1 1 1 1	OA PO	D5 PO6 	PO7 - - -	PO8	PO9	P10 - - -	P11 - - -	P12 - - -	stri	butio)n
COs Vs COs CO1 CO2 CO3 CO4	POs PC 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	systems. MAPPIN D1 PO 2 1 3 2 3 2 3 2 3 2 3 2	he di G	O3 P0 1 1 1 1 1 1 1 1	DA P(D5 PO6 	PO7 - - - - -	PO8	PO9	P10 - - - -	P11 - - - -	P12	stri	butic	on
COs Vs COs CO1 CO2 CO3	POs PC 2 3 3	systems. MAPPIN D1 PO 2 1 3 2 3 2 3 2 3 2 3 2	he di G	O3 P 1 1 1 1 1	DA P(D5 PO6 	PO7 - - -	PO8	PO9	P10 - - -	P11 - - -	P12 - - -	stri	butio	on
COs Vs COs CO1 CO2 CO3 CO4 CO5	POs PC 2 3 3 2 2 2 2 2 2 2 2 2 2	systems. MAPPIN D1 PO 2 1 3 2 3 2 3 2 2 1	he di G 2 P	O3 P0 1 1 1 1 1 1 1 1	DA P(D5 PO6 	PO7 - - - - -	PO8	PO9	P10 - - - -	P11 - - - -	P12	stri	butic	on
COs Vs COs CO1 CO2 CO3 CO4 CO5	POs PC 2 3 3 2 2 2 2 2 2 2 2 2 2	systems. MAPPIN D1 PO 2 1 3 2 3 2 3 2 3 2 3 2	he di G 2 P	O3 P0 1 1 1 1 1 1 1 1	04 P(D5 PO6 	PO7	PO8	PO9	P10 - - - -	P11 - - - -	P12	stri	butio	on
COs Vs COs CO1 CO2 CO3 CO4 CO5	POs PC 2 3 3 2 2 2 2 2 2 2 2 2 2	systems. MAPPIN D1 PO 2 1 3 2 3 2 3 2 2 1	he di G 2 P	O3 P0 1 1 1 1 1 1 1 1	DA P(D5 PO6 	PO7 - - - - -	PO8	PO9	P10 - - - -	P11 - - - -	P12	stri	butic	on
COs Vs COs CO1 CO2 CO3 CO4 CO5	POs PC 2 3 3 2 2 2 2 2 2 2 2 2 2	systems. MAPPIN D1 PO 2 1 3 2 3 2 3 2 2 1	he di G 2 P	O3 P 1 1 1 1 1 1 COs	04 P(D5 PO6 	PO7	PO8	PO9	P10 - - - -	P11 - - - -	P12	stri	butic	on
COs Vs COs CO1 CO2 CO3 CO4 CO5	POs PC 2 3 3 2 2 2 2 2 2 2 2 2 2	systems. MAPPIN D1 PO 2 1 3 2 3 2 3 2 2 1	he di G 2 P	O3 P0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O4 P0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 3	D5 PO6 	PO7	PO8	PO9	P10 - - - -	P11 - - - -	P12	stri	butio	on
COs Vs COs CO1 CO2 CO3 CO4 CO5	POs PC 2 3 3 2 2 2 2 2 2 2 2 2 2	systems. MAPPIN D1 PO 2 1 3 2 3 2 3 2 2 1	he di G 2 P	O3 P0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O4 P0 - - - - - - - - - - - - - - - - - - - - 3 3	D5 PO6 -	PO7 - - - - - - - - - - - - - - - - - - -	PO8	PO9	P10 - - - -	P11 - - - -	P12	stri	butic	on
COs Vs COs CO1 CO2 CO3 CO4 CO5	POs PC 2 3 3 2 2 2 2 2 2 2 2 2 2	systems. MAPPIN D1 PO 2 1 3 2 3 2 3 2 2 1	he di G 2 P	O3 P0 1 1 <td< td=""><td>O4 P0 - - - - - - - - - - - - - - - - 3 3 3 3</td><td>D5 PO6 -</td><td>PO7 - - - - - - - - - - - - - - - - - - -</td><td>PO8</td><td>PO9</td><td>P10 - - - -</td><td>P11 - - - -</td><td>P12</td><td>stri</td><td>butic</td><td>on</td></td<>	O4 P0 - - - - - - - - - - - - - - - - 3 3 3 3	D5 PO6 -	PO7 - - - - - - - - - - - - - - - - - - -	PO8	PO9	P10 - - - -	P11 - - - -	P12	stri	butic	on
COs Vs COs CO1 CO2 CO3 CO4 CO5	POs PC 2 3 3 2 2 2 2 2 2 2 2 2 2	systems. MAPPIN D1 PO 2 1 3 2 3 2 3 2 2 1	he di G 2 P	O3 P0 1 1 <td< td=""><td>O4 P(- - - - - - - - - - - - - - - - - - - - - - 3 3 3 3 3 3</td><td>D5 PO6 -</td><td>PO7 - - - - - - - - - - - - - - - - - - -</td><td>PO8</td><td>PO9</td><td>P10 - - - -</td><td>P11 - - - -</td><td>P12</td><td>stri</td><td>butio</td><td>on</td></td<>	O4 P(- - - - - - - - - - - - - - - - - - - - - - 3 3 3 3 3 3	D5 PO6 -	PO7 - - - - - - - - - - - - - - - - - - -	PO8	PO9	P10 - - - -	P11 - - - -	P12	stri	butio	on
COs Vs COs CO1 CO2 CO3 CO4 CO5 COs Vs	POs PC 2 3 3 PSO	systems. MAPPIN D1 PO 2 1 3 2 3 2 3 2 2 1	he di G 2 P	O3 P0 1 1 <td< td=""><td>O4 P(- - - - - - - - - - - - - - - - - - - - 3 3 3 3 3 3</td><td>D5 PO6 -</td><td>PO7 - - - - - - - - - - - - - - - - - - -</td><td>PO8</td><td>PO9</td><td>P10 - - - -</td><td>P11 - - - -</td><td>P12</td><td>stri</td><td>butic</td><td>on</td></td<>	O4 P(- - - - - - - - - - - - - - - - - - - - 3 3 3 3 3 3	D5 PO6 -	PO7 - - - - - - - - - - - - - - - - - - -	PO8	PO9	P10 - - - -	P11 - - - -	P12	stri	butic	on

MODULE	ELECTRICAL POWER GENERATION	12 Hours							
1	(Block diagram/Qualitative approach only)								
Structure of	electric power system: Single line diagram- different operating voltages of g	generation,							
transmission	and distribution- transmission line route survey (Marking diagrams in India map).							
	rgy and classification of power plants; Present power position in India, future pl	anning for							
power genera									
0	ation from Non-Renewable energy sources: Thermal and Nuclear based power	0							
-	ation from Renewable energy sources: Solar, Wind, Hydro, Tidal, Geothermal, Fu ed power generation.	iei cen and							
MODULE		12							
II	MECHANICAL DESIGN OF LINES, AND INSULATORS	Hours							
Mechanical d	lesign of OH lines: Line supports -types of towers - tension and sag calculation - tow	ers at equal							
	al heights- effects of wind and ice loading- stringing chart; Methods of grounding.								
Insulators : T insulators.	ypes - voltage distribution in insulator string - improvement of string efficiency -	- testing of							
MODULE	PARAMETERS OF TRANSMISSION LINES, AND UNDERGROUND	12							
III	CABLES	Hours							
Parameters o	f single and three phase transmission lines: Resistance, inductance of transmission lines	ines-							
inductance of	a single phase two wire line, inductance of three phase lines with symmetrical and unsy	ymmetrical							
spacing; Capa	citance of a single phase two wire line, capacitance of a three phase line with symmetri	ical and							
unsymmetrica	l spacing, transposed, solid, stranded and bundled conductors; selfand mutual GMI	D.							
Underground	l cables: Constructional features of LT and HT cables; Capacitance of single-core	cable,							
capacitance of	f 3-core belted cable; Insulation resistance; potential gradient - grading of cables; po	wer factor							
and heating;	DC cables- Cable standards and procedures-Cable faults and testing.								
MODULE		12							
IV	PERFORMANCE OF TRANSMISSION LINES	Hours							
Performance	of Transmission lines - short line, medium line and long line, equivalent circuit	its- Phasor							
diagram- att	enuation constant- phase constant-surge impedance; Calculation of transmission	efficiency							
and voltage	regulation; Real and reactive power flow in lines; Surge impedance loading; Po	ower circle							
diagrams; Sl	kin and proximity effects, Ferranti effect; Interference with neighboring comm	nunication							
circuits; Core	ona discharge characteristics - Critical voltage and corona loss								
MODULE		12							
V	DISTRIBUTION SYSTEMS AND SUBSTATION	Hours							
Distribution	systems: General Aspects-AC and DC distribution; Radial and ring main systems	;							
Calculation o	f voltage in distributors with concentrated and distributed loads, Kelvin's law; Te	echniques							
of voltage con	ntrol and power factor improvement.								
Substation: Types- typical key diagram of an 11kV / 400V substation; Grounding; Recent trends in									
transmission	and distribution: EHVAC, HVDC, GIS and FACTS (Qualitative treatment only).								
TOTAL: 60 HOURS									
REFERENC	ES:								

Delhi, Third Edition, 2019

- 2. C.L.Wadhwa, 'Electrical Power Systems', New Age International Ltd, seventh edition 2022
- 3. S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of India Pvt. Ltd, New Delhi, Second Edition, 2008
- 4. B.R.Gupta, 'Power System Analysis and Design' S. Chand, New Delhi, Sixth Edition, 2011
- 5. Hadi Saadat, 'Power System Analysis', McGraw Hill Education Pvt. Ltd., New Delhi, 3rd Edition, 23rd reprint, 2015
- 6. R.K.Rajput, 'A Text Book of Power System Engineering' 2nd edition, Laxmi Publications (P) Ltd, New Delhi, 2016
- 7. V.K.Mehta, Rohit Mehta, 'Principles of power system', S. Chand & Company Ltd, New Delhi, 2013.

8. https://nptel.ac.in/courses/108102047

9. https://nptel.ac.in/courses/108108099

2302EE4	402				ELEC	TRICAI	MACHIN	ES - II			L	T	P	C
											3	2	0	4
PRERE(2018.	ITE:												
		1. El	ectric Ci	rcuit A	nalysis	5								
		2.Ele	ectrical N	Iachin	es -I									
COLIDO														
COURSI	E OB			ha has	ic oper	ation and	constructio	n of vario		achinas				
			_				/nchronous							
				-			acteristics a		•			nes.		
				-										
COURSI	E OU	TCON	MES:											
	2 1		6 1	1	6.1		. 1 .							
	On the D1 :			1			, students w n of three-p			using va	rious re	milation	meth	ode
)1.)2:		-	-	-	•	tics of three		-	-		-		
		test	r					1 ······			J	0		
C	D3:	Ident	ify the p	erform	ance cl	haracteris	tics of three	e-phase in	duction r	notor by	conduct	ing OC	and S	SC
	24	test	17 1	1 1	1		<u> </u>	0 1	. 1	.1 1				
	04: 05:			-			of starters				ction m	tor and	snec	ial
	JS .	mach		cilarac	unsue:	s ochavio		types of a	singic-pii				spee	141
COs Vs	POs	MA	PPING											
COs	P	01	PO2	PO3	B PC	PC	PO6	PO7	PO8	PO9	P10	P11	P	12
CO1		3	2	2	1									
CO2		3	2	2	1									
CO3		3	2	2	1	1								
CO4		2	1			1								
CO5		2	1			1								
a a a														
COs V	s PS	Os M	IAPPIN	_	60	DCOA	DGOO	DCOO	-					
						PSO1	PSO2	PSO3						
					CO1	3		1	_					
					$\frac{\text{CO2}}{\text{CO2}}$	3			_					
					CO3			1						
					CO4	3		1						
					CO5	3		1						
COURSI	E CO	NTEN	TS:											
		_ ,												
MODUL	ΕI	SYN	CHRON	OUS	GENE	RATOR						12	Hour	rs
Construct	ional	detail	s-types o	f rotor	s; EMF	equation	; Armature	reaction-p	hasor dia	igram; Pi	redetern	ination	of vo	ltag
						-	reaction th	-		-				-
to infinite		bar; A	pplication	on.										
MODUL	E	SVN	CUDON	IOUG								12	Hour	ſS
I		911	CHKUP	1005	мото	DR						12		

	eration, torque equation, power input and power developed equations; V and Inverted	
•	ing load and Excitation; Load test and characteristics; Starting methods; Huntin	•••
-	chronous induction motor, Applications. Simple simulation studies on synchronous r	
MODULE III	THREE PHASE INDUCTION MOTOR	12 Hours
Constructional	details- types- principle of operation- rotating magnetic field- slip; Equivalent	circuit; Torqu
equation- Torc	ue-Slip characteristics; No load & Blocked rotor test -Circle diagram, separation of	losses; Coggin
-	Induction generator; Double cage deep bar induction motor. Introduction to AC dr ion studies of induction motor.	ives in industry
MODULE IV	STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION MOTOR	12 Hours
Need for starte	r - Types of starters – star delta starter, auto transformer starter, DOL starter- Compa	rison of starter
Speed control	- voltage control, frequency control, pole changing, cascaded connection, v/f cor	ntrol, slip powe
recovery scher	ne; Braking methods; Speed control applications in industries; Study on PLC based st	ar delta starter.
MODULE V	SINGLE PHASE INDUCTION MOTOR & SPECIAL MOTOR	12 Hours
Principle of sin	gle-phase induction motor- Double field revolving theory- Equivalent circuit- Startin	g methods.
Fractional HP	motors- Hysteresis motor, Stepper motor; Universal motor; Linear induction motor, D	O.C. servo moto
PMSM motor	, PMDC motor, BLDC motor; Study on PLC based special machines drive.	
	TOTAL	: 60 HOURS
REFERENCI	ES:	
	ri and I. J. Nagrath, Electric Machines, Tata McGraw Hill Publishing Company Ltd, 2	.010.
	thes, Electrical and Electronic Technology, 12th edition, Pearson, 2016.	
3. P. S. Bimbh	ra, Electrical Machinery, Khanna Publishers, 7th edition, 2011.	
4. B. L. Theraj	a and A. K. Theraja, —Text Book of Electrical Technology: AC & DC Machines (Vo	olume- 2),
5. M.N.Bandy	ppadhyay, Electrical Machines Theory and practice, PHI Learning Pvt. Ltd, New Dell	ni 2007.
6. Fitzgerald A	.E, CharlesKingsley, Stephen. D.Umans, "Electric Machinery", Tata McGraw-Hill	
7 http://nptel a	c in/courses/117106086/	

7.http://nptel.ac.in/courses/117106086/

		L	Τ	Р						
302EE403	POWER ELECTRONICS	3	0	0						
PREREQUI	SITE:									
	1. Electron Devices and Circuits									
	2. Linear Integrated Circuits									
COURSE O	BJECTIVES:									
	1. To understand the characteristics of power semiconductor devic	es								
	 To understand the operation of AC-DC, DC-DC, DC-AC and AC-AC power 									
	Converters									
COURSE O	UTCOMES:									
On t	he successful completion of the course, students will be able to									
C01:	Describe the structure and characteristics of power semiconductor d	evice	s.							
CO2:	Analyze the operation and performance of phase controlled converte									
CO3:										
CO4:										
CO4.	Explain the operation and characteristics of AC - AC converters.									

COs Vs POs MAPPING

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	2	1	-	-	-	-	-	-	-	-	-	-
CO2	3	2	1	-	-	-	-	-	-	-	-	-
CO3	3	2	1	-	-	-	-	-	-	-	-	-
CO4	3	2	1	-	-	-	-	-	-	-	-	-
CO5	2	1	-	-	-	-	-	-	-	-	-	-

COs Vs PSOs MAPPING

COs	PSO1	PSO2	PSO3
CO1	-	3	-
CO2	-	3	-
CO3	-	3	-
CO4	-	3	-
CO5	-	3	-

COURSE CO	DNTENTS:	
MODULE I	POWER SEMICONDUCTOR DEVICES	9 Hours
•	ching devices - Power transistors, Power MOSFETs, IGBTs, SCRs, Triacs, characteristics; Thermal characteristics; losses in the devices.	GTOs; Static
	ransistor analogy; Snubber circuits; Series and parallel operation of SCRs of commercially available SCRs	; Data sheet
MODULE II	PHASE CONTROLLED CONVERTERS	9 Hours
and RLE load	hase control; Single phase and three phase half wave and full wave converter ls; Estimation of average and RMS values of load voltage, load current; r converters; Effect of freewheeling diodes; Effect of source inductance; Dua	Performance
MODULE III	DC TO DC CONVERTERS	9 Hours
choppers- Sin	: Principle of step-up and step-down choppers, control strategies; Class gle quadrant, two quadrant and four quadrant DC choppers, Buck, Boost and MPS; LUO converter; SEPIC converter; Applications.	
MODULE IV	INVERTERS	9 Hours
Inverter outpu	erters; Operation of single phase VSI, three phase VSI (120 and180-deg t voltage control; CSIs- Auto sequential CSI; Pulse width modulation technic soidal modulation; Harmonic elimination techniques - SHEPWM; Introduct	ques- Single
MODULE V	AC TO AC CONVERTERS	9 Hours
U	ontrollers-Single phase and three phase controllers with R and RL loads; Seq regulators –Two stage sequence control - Multistage sequential control.	uence
Cycloconverte Applications.	ers: Step-down and step-up cyclo converters; Introduction to matrix converte	ers;
	TOTAL: 4	5 HOURS
REFERENC	ES:	
New Dell	H, "Power Electronics- Circuits, Devices and Applications", Prentice Hall	of India,
	hra, "Power Electronics", Khanna Publishers, New Delhi, 2006. ubramanyam, "Power Electronics", New Age International, New Delhi, 199	6
J. VEUalli S		
	gh and K.B. Khanchandani, "Power Electronics". 2 nd Edition. Tata McGraw	Hill. New
4. M.D. Sin	gh and K.B. Khanchandani, "Power Electronics", 2 nd Edition, Tata McGraw an, Tore.M.Undeland, William.P.Robbins, "Power Electronics: Converters,	Hill, New

2302EE404	LINEAR CONTROL SYSTEM	L	Т	Р	C						
2302EE404	LINEAR CONTROL STSTEM	3	2	0	4						
PREREQUIS	ите:										
	1. Electric circuit analysis										
	Engineering Mathematics										
	3. Engineering Physics										
COURSE OB	BJECTIVES:										
	1. To understand the basic components of control systems.										
	2. To gain the knowledge in time and frequency domain tools for the	e desig	n and	analy	/sis						
	f Feedback control systems.										
	3. To make the students to analyze the stability of linear system	ns in t	he fr	equei	ncy						
	domain.										
	4. To understand the design of compensator and concepts of state va	ariable	analy	vsis.							
COURSE OU	JTCOMES:										
On th	e successful completion of the course, students will be able to										
CO1:	Calculate transfer function of various systems using block diagram	reducti	on, si	gnal							
	flow graphtechnique.										
CO2:	Investigate the time response behavior of first and second order syst	tem usi	ng tii	ne							
	domainspecification.										
CO3:	Analyze the frequency response of open loop transfer function using	g bode	plot a	and							
	polar plot.										
CO4: CO5:	Make use of stability concepts to obtain the desired characteristics Determine the solution for complex control problem.										

COs Vs POs MAPPING

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	3	2	1	-	2	-	-	-	-	-	-	-
CO2	3	2	1	-	2	-	-	-	-	-	-	-
CO3	3	2	1	-	2	-	-	-	-	-	-	-
CO4	3	2	1	-	2	-	-	-	-	-	-	-
CO5	3	2	1	-	2	-	-	-	-	-	-	-

COs Vs PSOs MAPPING

COs	PSO1	PSO2	PSO3
CO1	3	-	2
CO2	3	-	2
CO3	3	-	2
CO4	3	-	2
CO5	3	-	2

	NTENTS:					
MODULE I	SYSTEMS AND THEIR REPRESENTATION	12 Hours				
mechanical tra	s in control systems; Open and closed loop systems; Transfer function sfer function models; electrical analogy of mechanical systems, block d gnal flow graphs; Simple determination of closed loop transfer function u	liagram reductio				
MODULE II	ODULE TIME RESPONSE ANALYSIS					
	-Time domain specifications, types of test inputs, first and second order s ror; type number; Simple time response analysis using MATLAB.	system responses				
MODULE III	FREQUENCY RESPONSE ANALYSIS					
loop response	ponse –Frequency domain specifications, Bode plot, polar plot, determ from open loop response; Correlation between frequency domain a Simple frequency response analysis using MATLAB.					
MODULE	12 Hours					
•	STABILITY ANALYSIS cept, relative stability, characteristics equation, Routh Hurwitz criterion,					
Stability- Conc criterion. Introduction MATLAB.		Nyquist stabilit				
Stability- Con- criterion. Introduction	cept, relative stability, characteristics equation, Routh Hurwitz criterion,	Nyquist stabilit				
Stability- Conc criterion. Introduction MATLAB. MODULE V Controllers - P	cept, relative stability, characteristics equation, Routh Hurwitz criterion, to compensators-Lag, Lead and Lag-lead compensators; simple Nyc	Nyquist stabilit quist plots usin 12 Hours				
Stability- Conc criterion. Introduction MATLAB. MODULE V Controllers - P	cept, relative stability, characteristics equation, Routh Hurwitz criterion, to compensators-Lag, Lead and Lag-lead compensators; simple Nyc DESIGN OF CONTROLLERS AND SYSTEM ANALYSIS P, PI and PID controllers, design procedure, tuning of controllers - Root I astruction; Simple root locus curves in MATLAB.	Nyquist stabilit quist plots usin 12 Hours				
Stability- Conc criterion. Introduction MATLAB. MODULE V Controllers - P	cept, relative stability, characteristics equation, Routh Hurwitz criterion, to compensators-Lag, Lead and Lag-lead compensators; simple Nyc DESIGN OF CONTROLLERS AND SYSTEM ANALYSIS P, PI and PID controllers, design procedure, tuning of controllers - Root I astruction; Simple root locus curves in MATLAB.	Nyquist stabilit quist plots usin 12 Hours ocus concept,				
Stability- Conc criterion. Introduction MATLAB. MODULE V Controllers - P Root locus cor REFERENCI	cept, relative stability, characteristics equation, Routh Hurwitz criterion, to compensators-Lag, Lead and Lag-lead compensators; simple Nyc DESIGN OF CONTROLLERS AND SYSTEM ANALYSIS P, PI and PID controllers, design procedure, tuning of controllers - Root I astruction; Simple root locus curves in MATLAB.	Nyquist stabilit quist plots usin 12 Hours ocus concept, L: 60 HOURS				
Stability- Conc criterion. Introduction MATLAB. MODULE V Controllers - P Root locus cor REFERENCI 1. Nagarath, 1 2017.	cept, relative stability, characteristics equation, Routh Hurwitz criterion, to compensators-Lag, Lead and Lag-lead compensators; simple Nyc DESIGN OF CONTROLLERS AND SYSTEM ANALYSIS P, PI and PID controllers, design procedure, tuning of controllers - Root I astruction; Simple root locus curves in MATLAB. TOTA	Nyquist stabilit quist plots usin 12 Hours ocus concept, L: 60 HOURS				
Stability- Conc criterion. Introduction MATLAB. MODULE V Controllers - P Root locus cor REFERENCI 1. Nagarath, 1 2017. 2. S.K.Bhatta 2013. 3. K.Ogata, "	cept, relative stability, characteristics equation, Routh Hurwitz criterion, to compensators-Lag, Lead and Lag-lead compensators; simple Nyo DESIGN OF CONTROLLERS AND SYSTEM ANALYSIS P, PI and PID controllers, design procedure, tuning of controllers - Root I astruction; Simple root locus curves in MATLAB. TOTA ES: I.J. and Gopal, M., "Control Systems Engineering", New Age Internation charya, "Control System Engineering", 3rd Edition, Pearson Publication Modern Control Engineering", 5th Edition, Pearson Prentice Hall, New	Nyquist stabilit quist plots usin 12 Hours ocus concept, L: 60 HOURS nalPublishers, ns, New Delhi Delhi, 2012.				
Stability- Conc criterion. Introduction MATLAB. MODULE V Controllers - P Root locus cor REFERENCI 1. Nagarath, 1 2017. 2. S.K.Bhatta 2013. 3. K.Ogata, " 4. Richard C.	cept, relative stability, characteristics equation, Routh Hurwitz criterion, to compensators-Lag, Lead and Lag-lead compensators; simple Nyo DESIGN OF CONTROLLERS AND SYSTEM ANALYSIS P, PI and PID controllers, design procedure, tuning of controllers - Root I astruction; Simple root locus curves in MATLAB. TOTA ES: I.J. and Gopal, M., "Control Systems Engineering", New Age Internation charya, "Control System Engineering", 3rd Edition, Pearson Publication	Nyquist stabilit quist plots usin 12 Hours ocus concept, L: 60 HOURS nalPublishers, ns, New Delhi Delhi, 2012.				
Stability- Conc criterion. Introduction MATLAB. MODULE V Controllers - P Root locus cor REFERENCI 1. Nagarath, 1 2017. 2. S.K.Bhatta 2013. 3. K.Ogata, " 4. Richard C. Hall, 2012	cept, relative stability, characteristics equation, Routh Hurwitz criterion, to compensators-Lag, Lead and Lag-lead compensators; simple Nyc DESIGN OF CONTROLLERS AND SYSTEM ANALYSIS P, PI and PID controllers, design procedure, tuning of controllers - Root I astruction; Simple root locus curves in MATLAB. TOTA ES: LJ. and Gopal, M., "Control Systems Engineering", New Age Internation charya, "Control System Engineering", 3rd Edition, Pearson Publication Modern Control Engineering", 5th Edition, Pearson Prentice Hall, New Dorf and Robert H. Bishop, "Modern Control Systems", 12th Edition, P	Nyquist stabilit quist plots usin 12 Hours ocus concept, L: 60 HOURS nalPublishers, ns, New Delhi Delhi, 2012.				
Stability- Conc criterion. Introduction MATLAB. MODULE V Controllers - P Root locus cor REFERENCI 1. Nagarath, 1 2017. 2. S.K.Bhatta 2013. 3. K.Ogata, " 4. Richard C. Hall, 2012 5. Benjamin (6. https://npte	cept, relative stability, characteristics equation, Routh Hurwitz criterion, to compensators-Lag, Lead and Lag-lead compensators; simple Nyd DESIGN OF CONTROLLERS AND SYSTEM ANALYSIS 7, PI and PID controllers, design procedure, tuning of controllers - Root I astruction; Simple root locus curves in MATLAB. TOTA ES: I.J. and Gopal, M., "Control Systems Engineering", New Age Internation charya, "Control System Engineering", 3rd Edition, Pearson Publication Modern Control Engineering", 5th Edition, Pearson Prentice Hall, New Dorf and Robert H. Bishop, "Modern Control Systems", 12th Edition, P Benjamin C. Kuo, "Automatic Control Systems", Wiley, 2014. C. Kuo, "Automatic Control Systems", Wiley, 2014. El.ac.in/courses/107106081	Nyquist stabilit quist plots usin 12 Hours ocus concept, L: 60 HOURS nalPublishers, ns, New Delhi Delhi, 2012.				
Stability- Conc criterion. Introduction MATLAB. MODULE V Controllers - P Root locus cor REFERENCI 1. Nagarath, 1 2017. 2. S.K.Bhatta 2013. 3. K.Ogata, " 4. Richard C. Hall, 2012 5. Benjamin (6. https://npte	cept, relative stability, characteristics equation, Routh Hurwitz criterion, to compensators-Lag, Lead and Lag-lead compensators; simple Nyd DESIGN OF CONTROLLERS AND SYSTEM ANALYSIS P. PI and PID controllers, design procedure, tuning of controllers - Root I astruction; Simple root locus curves in MATLAB. TOTA ES: LJ. and Gopal, M., "Control Systems Engineering", New Age Internation charya, "Control System Engineering", 3rd Edition, Pearson Publication Modern Control Engineering", 5th Edition, Pearson Prentice Hall, New Dorf and Robert H. Bishop, "Modern Control Systems", 12th Edition, P Benjamin C. Kuo, "Automatic Control Systems", Wiley, 2014.	Nyquist stabilit quist plots usin 12 Hours ocus concept, L: 60 HOURS nalPublishers, ns, New Delhi Delhi, 2012.				

2302EI	E 405			L	INE	AR INT	EGRATI	ED CIRO	CUITS			L 3	T 0	P 2
PRERE	QUIS	ITE:											Ū	-
		1 1			4 1	-1								
		1. Ele 2. An		g Electi										
		2. All	alo	g Elecu	omes	b								
COURS	SE OB	JECTI	VES	S:										
	1						ls and fab							
	2						acteristics							
	3	To des	crit	be opera	ation	of signa	l converte	ers, speci	al functi	ion ICs	and vol	tage reg	gulate	ors
COUD		TCOM	TC											
LUUK	SE UU	ТСОМ	E93											
	On th		eful	compl	etion	of the c	course, stu	dents wi	ll be abl	e to				
(CO1:			-			C technolo				edure fo	or diode	2	
· · ·	.01.	-					nd typical		aoncan			JI UIUU	-,	
(CO2:						diagram, j		nce par	ameters	and fre	auency	,	
							perational		-		una no	queney		
(CO3:	_					g operatio	_		linear a	and non-	-linear		
		applica		-				1						
(C O 4:	Build s	sign	al conv	versio	n circui	ts and filte	ers using	operatio	onal am	plifier.			
(C O 5:	Design	n sir	nple an	alog	circuits	for the give	ven appli	cation u	sing tin	ner, VC	O, PLL	and	
		voltage	e reg	gulator	ICs									
COs V	's POs	MAPP	INC	J										
CO	DO	1 D(DO1	DO			DOT	DOO	DOO	D10	D11	D1	
COs CO1	PO 2	1 PC		PO3	PO	4 PC	05 PO6	PO7	PO8	PO9	P10	P11	P1	2
CO1 CO2	2			- 1	-			-	-		-		-	
CO2 CO3	3	2		1	-	-	-	-	-	-	-	-	-	
CO3	3			1	_	-		-	_	-	-	-	-	
CO5	3	2		1	-	-	_	-	-	-	-	-	-	
	1	I		I		I	I	1	1	1	1	I		
COs V	's PSO	s MAP	PIN	G										
						DCO1	DEO1		٦					
					Os 01	PSO1	PSO2 3	PSO3	-					
					$\frac{01}{02}$		3	_	-					

CO1	-	3	-
CO2	-	3	-
CO3	-	3	-
CO4	-	3	-
CO5	-	3	-

MODULE I	FABRICATION OF INTEGRATED CIRCUITS	9 Hours
IC classificati	on; Fundamental of monolithic IC technology; Epitaxial growth- masking ar	nd etching
	npurities; realization of monolithic ICs and packaging; Fabrication of diodes, c	-
resistance and	FET.	
MODULE	OPERATIONAL AMPLIFIER	9 Hours
II	OFERATIONAL AMFLIFIER	
Op-Amp- fur	ctional block diagram, ideal and practical op-amp; IC741- Pin diagram-	- Features
	of IC 741 datasheet; Characteristics- CMRR, open loop gain, slew rat	
-	, input bias and output offset voltage, offset compensation techniques; frequence	
	n, frequency compensation.	5
MODULE		9
	APPLICATIONS OF OPERATIONAL AMPLIFIERS	-
III		Hours
Inverting and	non-inverting amplifiers- voltage follower- summing amplifier- differential	amplifier
	n amplifier; Comparators; Integrator and differentiator; Precision rectifier; Logar	
anti logarithm	ic amplifiers. Sinusoidal oscillators - phase shift, Wein bridge & Hartley; sampl	le and hole
circuit; clipper	and clamper; Schmitt trigger.	
MODULE	SIGNAL CONVERSION CIRCUITS	9
IV		Hours
V/F and F/V c	onverters; V/I and I/V converter; D/A converter - weighted resistor type, R-2R 1	adder type
	• • • • • • • • • • • • • • • • • • • •	
	, comparison: A/D converters- flash type, successive approximation type, single	slope type
	, comparison; A/D converters- flash type, successive approximation type, single e, A/D converter using voltage-to-time conversion, comparison.	slope type
dual slope type	, comparison; A/D converters- flash type, successive approximation type, single e, A/D converter using voltage-to-time conversion, comparison.	
dual slope type		9
dual slope type MODULE V	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS	9 Hours
dual slope type MODULE V 555 Timer - 1	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS Functional block diagram and description- astable, monostable and bistable oper	9 Hours ations; 560
dual slope type MODULE V 555 Timer - f voltage contro	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS Functional block diagram and description- astable, monostable and bistable oper lled oscillator; 565 PLL - functional block diagram, principle of operation, charact	9 Hours ations; 560
dual slope type MODULE V 555 Timer - f voltage contro voltage regula	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS Functional block diagram and description- astable, monostable and bistable oper Iled oscillator; 565 PLL - functional block diagram, principle of operation, charact fors – regulation, need for voltage regulation; LM78XX, 79XX fixed voltage regu	9 Hours ations; 560
dual slope type MODULE V 555 Timer - f voltage contro voltage regula	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS Functional block diagram and description- astable, monostable and bistable oper lled oscillator; 565 PLL - functional block diagram, principle of operation, charact	9 Hours ations; 560
dual slope type MODULE V 555 Timer - f voltage contro voltage regula	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS Functional block diagram and description- astable, monostable and bistable oper Iled oscillator; 565 PLL - functional block diagram, principle of operation, charact fors – regulation, need for voltage regulation; LM78XX, 79XX fixed voltage regu	9 Hours ations; 560 teristics; IO ilators; LN
dual slope type MODULE V 555 Timer - f voltage contro voltage regular 317 & LM723	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS Functional block diagram and description- astable, monostable and bistable oper lled oscillator; 565 PLL - functional block diagram, principle of operation, character fors – regulation, need for voltage regulation; LM78XX, 79XX fixed voltage regulation; interpretation of IC data sheets.	9 Hours ations; 560 teristics; IO ilators; LN
dual slope type MODULE V 555 Timer - f voltage contro voltage regular 317 & LM723 LIST OF EXI	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS Functional block diagram and description- astable, monostable and bistable oper lled oscillator; 565 PLL - functional block diagram, principle of operation, charact cors – regulation, need for voltage regulation; LM78XX, 79XX fixed voltage regulation; Interpretation of IC data sheets. TOTAL: 45	9 Hours ations; 56 teristics; IO ilators; LN
dual slope type MODULE V 555 Timer - 1 voltage contro voltage regular 317 & LM723 LIST OF EXI 1. Inverti	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS Functional block diagram and description- astable, monostable and bistable oper lled oscillator; 565 PLL - functional block diagram, principle of operation, charact cors – regulation, need for voltage regulation; LM78XX, 79XX fixed voltage regu ; Interpretation of IC data sheets. TOTAL: 45 PERIMENTS:	9 Hours ations; 56 teristics; IO ilators; LM
dual slope type MODULE V 555 Timer - f voltage contro voltage regular 317 & LM723 LIST OF EXI 1. Inverti 2. Adder,	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS Functional block diagram and description- astable, monostable and bistable oper lled oscillator; 565 PLL - functional block diagram, principle of operation, charact cors – regulation, need for voltage regulation; LM78XX, 79XX fixed voltage regu ; Interpretation of IC data sheets. TOTAL: 45 PERIMENTS: ng and non-inverting amplifiers using op-amp.	9 Hours ations; 56 teristics; IO ilators; LN
dual slope type MODULE V 555 Timer - 1 voltage contro voltage regular 317 & LM723 LIST OF EXI 1. Inverti 2. Adder, 3. Weight	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS Functional block diagram and description- astable, monostable and bistable oper filed oscillator; 565 PLL - functional block diagram, principle of operation, charact fors – regulation, need for voltage regulation; LM78XX, 79XX fixed voltage regu ; Interpretation of IC data sheets. TOTAL: 45 PERIMENTS: ng and non-inverting amplifiers using op-amp. subtractor and comparators using op-amp.	9 Hours ations; 56 teristics; IO ilators; LM
dual slope type MODULE V 555 Timer - f voltage contro voltage regular 317 & LM723 LIST OF EXI 1. Inverti 2. Adder, 3. Weight 4. Sinuso	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS Functional block diagram and description- astable, monostable and bistable oper lled oscillator; 565 PLL - functional block diagram, principle of operation, charact cors – regulation, need for voltage regulation; LM78XX, 79XX fixed voltage regu ; Interpretation of IC data sheets. TOTAL: 45 PERIMENTS: ng and non-inverting amplifiers using op-amp. subtractor and comparators using op-amp. subtractor type DAC and R-2R ladder type DAC idal oscillators using op-amps.	9 Hours ations; 56 teristics; IO ilators; LN
dual slope type MODULE V 555 Timer - f voltage contro voltage regular 317 & LM723 LIST OF EXI 1. Inverti 2. Adder, 3. Weight 4. Sinuso	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS Functional block diagram and description- astable, monostable and bistable oper lled oscillator; 565 PLL - functional block diagram, principle of operation, charact cors – regulation, need for voltage regulation; LM78XX, 79XX fixed voltage regu ; Interpretation of IC data sheets. TOTAL: 45 PERIMENTS: ng and non-inverting amplifiers using op-amp. subtractor and comparators using op-amp. ed resistor type DAC and R-2R ladder type DAC	9 Hours ations; 56 teristics; IC ilators; LN HOURS
dual slope type MODULE V 555 Timer - f voltage contro voltage regular 317 & LM723 LIST OF EXI 1. Inverti 2. Adder, 3. Weight 4. Sinuso	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS Functional block diagram and description- astable, monostable and bistable oper filed oscillator; 565 PLL - functional block diagram, principle of operation, charact fors – regulation, need for voltage regulation; LM78XX, 79XX fixed voltage regu ; Interpretation of IC data sheets. TOTAL: 45 PERIMENTS: ng and non-inverting amplifiers using op-amp. subtractor and comparators using op-amp. ed resistor type DAC and R-2R ladder type DAC idal oscillators using op-amps. e and monostable multivibrators using NE555 timer. TOTAL: 15	9 Hours ations; 56 teristics; IC alators; LM HOURS HOURS
dual slope type MODULE V 555 Timer - f voltage contro voltage regular 317 & LM723 LIST OF EXI 1. Inverti 2. Adder, 3. Weight 4. Sinuso 5. Astable	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS functional block diagram and description- astable, monostable and bistable oper lled oscillator; 565 PLL - functional block diagram, principle of operation, character icors – regulation, need for voltage regulation; LM78XX, 79XX fixed voltage regu- ; Interpretation of IC data sheets. TOTAL: 45 PERIMENTS: ng and non-inverting amplifiers using op-amp. subtractor and comparators using op-amp. ed resistor type DAC and R-2R ladder type DAC idal oscillators using op-amps. e and monostable multivibrators using NE555 timer. TOTAL: 15 TOTAL: 15 TOTAL: (45+15) 60	9 Hours ations; 56 teristics; IC alators; LM HOURS HOURS
dual slope type MODULE V 555 Timer - f voltage contro voltage regular 317 & LM723 LIST OF EXI 1. Inverti 2. Adder, 3. Weight 4. Sinuso	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS functional block diagram and description- astable, monostable and bistable oper lled oscillator; 565 PLL - functional block diagram, principle of operation, character icors – regulation, need for voltage regulation; LM78XX, 79XX fixed voltage regu- ; Interpretation of IC data sheets. TOTAL: 45 PERIMENTS: ng and non-inverting amplifiers using op-amp. subtractor and comparators using op-amp. ed resistor type DAC and R-2R ladder type DAC idal oscillators using op-amps. e and monostable multivibrators using NE555 timer. TOTAL: 15 TOTAL: 15 TOTAL: (45+15) 60	9 Hours ations; 560 teristics; IC ilators; LN HOURS HOURS
dual slope type MODULE V 555 Timer - f voltage contro voltage regular 317 & LM723 LIST OF EXI 1. Inverti 2. Adder, 3. Weight 4. Sinuso 5. Astable REFERENCI	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS functional block diagram and description- astable, monostable and bistable oper lied oscillator; 565 PLL - functional block diagram, principle of operation, character fors – regulation, need for voltage regulation; LM78XX, 79XX fixed voltage regulation; Interpretation of IC data sheets. TOTAL: 45 PERIMENTS: ng and non-inverting amplifiers using op-amp. subtractor and comparators using op-amp. ed resistor type DAC and R-2R ladder type DAC idal oscillators using op-amps. e and monostable multivibrators using NE555 timer. TOTAL: 15 TOTAL: 15 CS:	9 Hours ations; 560 teristics; IC ilators; LM HOURS HOURS
dual slope type MODULE V 555 Timer - f voltage contro voltage regular 317 & LM723 LIST OF EXI 1. Inverti 2. Adder, 3. Weight 4. Sinuso 5. Astable REFERENCI	e, A/D converter using voltage-to-time conversion, comparison. SPECIAL FUNCTION INTEGRATED CIRCUITS functional block diagram and description- astable, monostable and bistable oper lied oscillator; 565 PLL - functional block diagram, principle of operation, character cors – regulation, need for voltage regulation; LM78XX, 79XX fixed voltage regu ; Interpretation of IC data sheets. TOTAL: 45 PERIMENTS: ng and non-inverting amplifiers using op-amp. subtractor and comparators using op-amp. ed resistor type DAC and R-2R ladder type DAC idal oscillators using op-amps. e and monostable multivibrators using NE555 timer. TOTAL: 15 COTAL: 15 COTAL: 15 Dudhury and SheilB.Jani, "Linear Integrated Circuits" 4th Edition, New Age In	9 Hours ations; 560 teristics; IO alators; LM HOURS HOURS

- 2. S Salivahanan and V S KanchanaBhaaskaran, "Linear Integrated Circuits", 2nd Edition, McGraw-Hill Education, 2014.
- 3. RamakantA.Gayakward, "Op-amps and Linear Integrated Circuits", 4thEdition, PHI Learnings, 2003.

4. B Somanathan Nair, "Linear Integrated Circuits: Analysis, Design and Applications", Wiley, 2009.

5. Floyd and Buchla, "Fundamentals of Analog Circuits", Pearson, 2013.

 James M. Fiore, "Operational Amplifiers & Linear Integrated Circuits: Theory and Application / 3E", 2018.

7. Microelectronic circuits-by A.S.Sedra and K.C.Smith

8. http://nptel.ac.in/courses/117107094/

2302EE451	ELECTRICAL MACHINES – II LABORATORY	L 0	T 0	P 2	C 1				
PREREQUIS	ITE:								
	1. Electrical Machines –I Laboratory								
COURSE OB	JECTIVES								
	 To know the performance characteristics of induction motors. To compare various regulation methods of Synchronous mach 	ines.							
	3. To study the characteristics of brushless DC motor.								
COURSE OU	TCOMES:								
On th	e successful completion of the course, students will be able to								
CO1:	Investigate various regulation methods of synchronous machines and SC test	by co	onduc	ting (C				
CO2:	Compute the performance characteristics of single phase / three-phase induction motor by conducting Load, no load and blocked rotor test								
CO3:									
CO4:	Compute the load sharing of synchronous machines with bus bar								
CO5:	Analyze the behavior of special machine Drives using PLC								

COs Vs POs MAPPING

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	3	3	3	3	-	-	-	-	2	2	2	-
CO2	3	3	3	3	-	-	-	-	2	2	2	-
CO3	3	3	3	3	-	-	-	-	2	2	2	-
CO4	3	3	3	3	-	-	-	-	2	2	2	-
CO5	3	3	3	3	2	-	-	-	2	2	2	

COs Vs PSOs MAPPING

COs	PSO1	PSO2	PSO3
CO1	3	-	-
CO2	3	-	-
CO3	3	-	-
CO4	3	-	-
CO5	3	-	2

COURSE CONTENTS:

1.	Voltage regulation of an alternator by EMF and MMF method.
2.	Voltage regulation of an alternator by ZPF and ASA method.
3.	Determination of Xd, Xq and regulation of a salient pole alternator.
4.	Parallel operation of alternators/ synchronization of alternator with infinite bus bar.

5.	No load, blocked rotor test on three phase induction motor
	a) Circle Diagram.
	b) Equivalent Circuit.
6.	Load Test on three-phase induction motor.
7.	Separation of no load losses of three-phase induction motor.
8.	No load, blocked rotor test on single phase induction motor – Equivalent Circuit.
9.	Load Test on single-phase induction motor.
10.	PLC based Special Machine Drive (BLDC).
11.	Demonstration on PLC based Star – Delta starter.
	TOTAL: 30 HOURS

REFERENCES: 1. Kothari.D.P&Umre.B.S "Laboratory manual for electrical machines", I.K international Publishing House (P)Ltd. 2nd Edition, 2017

2302EE452	POWER ELECTRONICS AND DRIVES	L	Τ	P	С					
2302EE452	LABORATORY 0 0									
PREREQUISITE:										
	1. Power Electronics									
	2. Electrical Machinery – I &II									
COURSE OB										
	1. To determine the characteristics of power electronic device	es.								
	2. To design a power converter for electrical drives.									
	3. To analyze the performance of power converter fed drives.									
COURSE OU	TCOMES:									
	After completion of the course, Student will be able to									
CO1	Construct experiments on power electronic component for obta	ining	char	actei	ristics					
	curve									
CO2	Design and test AC-DC and AC-AC converters									
CO3	Design and test chopper and inverter circuits									
CO4										
CO5	Evaluate the performance of power converters through simulation									
COs Vs POs	COs Vs POs MAPPING									

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	3	3	3	3	-	-	-	-	2	2	2	-
CO2	3	3	3	3	-	-	-	-	2	2	2	-
CO3	3	3	3	3	-	-	-	-	2	2	2	-
CO4	3	3	3	3	-	-	-	-	2	2	2	-
CO5	3	3	3	3	3	-	-	-	2	2	2	-

COs Vs PSOs MAPPING

COs	PSO1	PSO2	PSO3
CO1	-	3	-
CO2	-	3	-
CO3	-	3	-
CO4	-	3	-
CO5	-	3	3

LIST OF EXPERIMENTS

- 1. Switching characteristics of SCR, Triac and IGBT.
- 2. Performance evaluation of single phase half wave and full wave AC DC controlled converter drive application.
- 3. Performance evaluation of three phase half wave and full wave AC DC controlled converter drive application.
- 4. Step down, step up and Multi-quadrant MOSFET-based choppers.
- 5. IGBT-based single phase PWM inverter.

- 6. IGBT-based three-phase PWM inverter fed three phase AC Motor.
- 7. Gate Pulse Generation using digital programming circuits for DC DC converter & single-phase inverter.
- 8. Performance evaluation of single phase AC voltage controller.
- 9. V/F control of induction motor drive.
- 10. Simulation of PE circuits ($1\Phi \& 3\Phi$ semi converter, full converters, DC-DC converters and

inverter).

REFERENCES:

TOTAL: 30 Hours

1. K.Nandakumar, R.Anandaraj, "Power Electronics and Drives Laboratory Manual", 2018

2. Krishnan.R, "Electric Motor and Drives Modeling, Analysis and Control", Prentice Hall of India, 2001.

3. Pillai, S.K., "A First Course on Electrical Drives", Wiley Eastern Limited, 1993.