E.G.S. PILLAY ENGINEERING COLLEGE (Autonomous)

Approved by AICTE, New Delhi

Affiliated to Anna University, Chennai | Accredited by | NAAC with 'A++' Grade

Accredited by | NBA T1 (B.E. – CIVIL, CSE, ECE, EEE, MECH & B. Tech – IT) NAGAPATTINAM – 611002

B.E. ELECTRONICS AND COMMUNICATION ENGINEERING

R2023 - SECOND YEAR CURRICULUM

SEMESTER IV

COURSE	COURSE NAME	CATECODY	L	Т	Р	С	MA	X. MAR	RKS
CODE	COURSE NAME	CATEGORY	L	I	r		CA	ES	TOTAL
	THE	ORY COURS	SES						
2302EC401	Analog Integrated Circuits	PCC	3	0	0	3	40	60	100
2302EC402	Analog Communication	PCC	3	0	0	3	40	60	100
2302EC403	Control systems	PCC	3	1	0	4	40	60	100
2302EC404	Digital Signal Processing	PCC	3	1	0	4	40	60	100
2302EC405	Electronic Circuits (Oscillator, Amplifiers, Multi vibrator)	PCC	3	1	0	4	40	60	100
2301HSX01	Universal Human Values and Ethics	HSMC	1	0	2	2	100	-	100
2301MC40X	Mandatory Course - I	MC	3	0	0	-	-	-	-
	PRAC	FICAL COU	RSES						
2302EC451	Analog Integrated Circuits	DCC	0	0	2	1.5	(0)	40	100
	Laboratory	PCC	0	0	3	1.5	60	40	100
2302EC452	Digital Signal Processing Laboratory	PCC	0	0	2	1	60	40	100
2302EC453	Electronic Circuits Lab	PCC	0	0	3	1.5	60	40	100
2304GE401	Professional Development - II	EEC	0	0	2	1	100	-	100
2301LS401	Life Skills - IV	LS	-	-	-	-	-	-	-
	TOTAL					25	580	420	1000

2302EC401				AN	ALO	G INT	EGRA	TED	CIRC	UITS			L	T	P	C
													3	0	0	3
PREREQUI	ISITE :															
	1.	Flec	tron D	evices												
	1.			evices												
COURSE O	BJEC	TIVE	S:													
	1	Τ	4 1 41	C 1	.	.1	4	60	41		<u>c</u>					
	1. 2.						cepts of ear app					mnlif	iers	1		
	3.						plicati			-		-			d Loo	p.
	4.	To d	lescrib	e abou	t the th	eory o	f ADC	and D	AC.							1
	5.	To s	tudy tł	ne perf	orman	ce meti	rics of	wavefo	orm ge	nerato	r.					
COURSE O	UTCO	OMES	:													
On t CO1:	the suc	cessfu ment f	ll comp he basi	oletion	of the	course	e, stude -amp u	nts wil sing IC	1 be al	ole to						
CO1:	•					•	or analc	•		circuit	S.					
CO3:							tiplier a			encult						
CO4:	Desig	n AD	C and I	DAC u	sing O	p-Amp	os.									
CO5:	Descr	ibe the	e work	ing of	wavefo	orm ge	nerator	and sp	pecial	ICs cit	cuit fu	inctic	n.			
COs Vs PC		DDIN	<u>.</u>													
	JS MIA	FFIIN	G:													
	COs		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 P	O12		
·	CO1 CO2	2 2	$\frac{1}{3}$	- 3	- 2	-	-	-	-	-	-	-		-		
	CO3		-	-	2	-	-	-	-	-	_	-		-		
	CO4	1	-	2	1	-	-	-	-	-	-	-		-		
l	CO5	1	2	3	2	-	-	-	-	-	-	-		-		
~~ ~																
COs Vs PS	Os M.	APPI	NG:													
					(COs	PSO1	PSO	2							
					(C O1	2	1								
						CO2	1	1								
						CO3 CO4	2	1								
						CO4	1	1								
	-							•								
COURSE C	ONTE	ENTS:														
MODULE I	DI	FFER	ENTI	AL AN	APLIF	TIERS									9 Hoi	irs
Operational								amps -	– Idea	al Op	eratior	nal A	mp			
operational a	.		-				•			• •	-	-				
gain, Finite b				-						-		, Pow	ver s	supply	reject	tion
atio, Slew ra						-	nd clos		•	-	ons.				9 Hoi	irs
Applications											Volta	ge Fo	ollo			
o-V conver																

amplifier, Anti-logarithmic amplifier, Comparators, Schmitt trigger, Precision rectifiers, Clipper and Clamper Active filters: Low pass, High pass, band pass filters.

MODULE III PHASE LOCKED LOOP AND TIMER

9 Hours PLL-Basic block diagram and operation, Phase detector, VCO, Monolithic PLL IC 565, Applications of PLL: Frequency synthesizers, AM detection, FM detection and FSK demodulation, Timer IC 555 and Monostable and Astable multivibrator using 555 timer.

MODULE IV ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERS

Analog and Digital Data Conversions, D/A converter – specifications - weighted resistor type, R-2R Ladder type, Voltage Mode and Current Mode - R-2R Ladder types - switches for D/A converters, high speed sample-and-hold circuits, A/D Converters – specifications - Flash type – Successive Approximation type Single Slope type – Dual Slope type - A/D Converter using Voltage-to-Time Conversion.

MODULE V WAVEFORM GENERATORS AND SPECIAL FUNCTION ICS

Sine-wave generators, Multi vibrators and Triangular wave generator, Saw-tooth wave generator, ICL8038 function generator - IC 723 general purpose regulator - Monolithic switching regulator, Frequency to Voltage and Voltage to Frequency converters, Audio Power amplifier, Video Amplifier, Isolation Amplifier, Optocouplers and fibre optic IC.

TOTAL: 45 HOURS

9 Hours

- Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", 4th Edition, Tata 1. McGraw - Hill. 2016.
- D.Roy Choudhry, Shail Jain, "Linear Integrated Circuits", New Age International Pvt. Ltd., 2018, 5th 2. Edition.
- 3. S.Salivahanan & V.S. Kanchana Bhaskaran, "Linear Integrated Circuits", TMH, 2nd Edition, 4th Reprint, 2016.
- Sedra and Smith, "Microelectronics Circuits", 1st Edition, Oxford Univ. Press, 2004. 4.
- Robert F. Coughlin, Frederick F.Driscoll, "Operational Amplifiers and Linear Integrated Circuits", 6th 5. Edition, PHI, 2001.
- John D Ryder, "Electronic fundamentals and Applications: Integrated and Discrete systems", 5th Edition, 6. PHI, 2003.
- Donald .A. Neamen, "Electronic Circuit Analysis and Design", Second edition, Tata McGraw Hill, 2009. 7.

2302EC402				ANA	LOG (COM	MUNI	CATIC	DN			Ι	T	P	(
												3	3 0	0	
REREQUI	SITE:														
		1	Basic I	Electro	nic Cir	cuits									
						cuito									
OURSE O	BJEC	ΓIVE	S:												
	1. 7	To im	part st	udents	the n	need, d	lesign,	analy	sis an	d appl	ication	s of I	inear	modul	atio
	S	ystem	ıs												
		°o intr mpha		angle	Modul	ation,	Demo	dulatio	on and	the co	ncepts	of Pre	e-empha	isis an	ld I
				the typ	bes of	noise.	Figure	of me	erit of	AM.D	SB-SC	.SSB-	SC, FM	Rece	eive
			lse mo				8			;		,	,		
OURSE O	UTCC	MES	:												
0.1	1	C	1	1	C (1		. 1	1	11 1	1 4					
CO1:							e, stude ilators								
CO1:							M gen								
CO3:											M Dem	nodulat	tion.		
CO4:			lio Tra												
CO5:								gnal. (Compre	ehend	and Co	mpare	Pulse I	Modul	ati
	Syste			1	····I	-8		8	r -			r			
COs Vs PO	s MA	PPIN	G:												
Γ	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	CO1	3	2	1	-	-	-	-	-	-	-	-	-		
	CO2	3	2	1	-	-	-	-	-	-	-	-	-		
	CO3	3	2	1	-	-	-	-	-	-	-	-	-		
	CO4	3	2	-	-	-	-	-	-	-	-	-	-		
L	CO5	3	2	-	-	-	-	-	-	-	-	-	-		
COs Vs PS	Os MA	APPIN	NG:												
						COs]	PSO1	PSO2	2						
					(C O 1	-	3							
						C O2	-	3							
						C O3	-	2							
						C O 4	-	3							
						CO5	-	3							
COURSE C	ONTE	NTS:													
	1				0.00			FLON						0.11	
COURSE CO	IN	ΓROI	DUCT				NICA							9 Hoi	
MODULE I Need and Im	IN portan	FROI ce of	DUCTI Comm	unicat	ion, El	ement	s of Co	ommur	nication	n syste		-	ntation	of sig	nal
MODULE I Need and Im n time and	IN portan freque	FROI ce of ency	DUCTI Comm domair	unicat unicat	ion, El g Four	ement rier an	s of Co alysis.	ommur Need	nication for N	n syste Iodula	tion. A	Amplit	ntation ude Mo	of sig odulat	nal ion
MODULE I Need and Im n time and Frequency S	IN portan freque pectru	FROI ce of ency of m of	DUCTI Comm domair AM,]	unicat using Power	ion, El g Four in AN	ementa rier an A wav	s of Co alysis. ve, Gei	ommur Need neratio	nication for N n of A	n syste Iodula AM sij	tion. A gnal -S	Amplit Square	ntation ude Mo law N	of sig odulat Iodula	nal ion ator
MODULE I Need and Im	IN portan freque pectru	FROI ce of ency of m of	DUCTI Comm domair AM,]	unicat using Power	ion, El g Four in AN	ementa rier an A wav	s of Co alysis. ve, Gei	ommur Need neratio	nication for N n of A	n syste Iodula AM sij	tion. A gnal -S	Amplit Square	ntation ude Mo law N	of sig odulat Iodula	nals ion ator

MODULE II ANGLE MODULATION

Principle of frequency and Phase modulation, Relation between FM and PM wave, Frequency Deviation and bandwidth of waveform, Narrow band and wideband FN. Bessel Functions and Carlson's rule. Generation of FM and PM wave. Comparison of AM, FM and PM. FM Detectors – Slope detectors, Frequency discriminators, Ratio Detectors. Feedback Demodulators-The Phase Locked Loop-Frequency Compressive feedback demodulator- Pre emphasis and Deemphasis

MODULE III NOISE AND RANDOM PROCESS

Noise and its types-Noise Voltage-Signal to Noise ratio-Noise Figure- Noise Temperature. Gaussian and White noise Characteristics, Narrowband Noise Representation, Figure of merit in AM, DSB-SC, SSB and FM Demodulation.

MODULE IV TRANSMITTERS AND RECEIVERS

Transmitter characteristics & Classification - Low Level and High Level transmitters - AM broadcasting transmitters - Pilot carrier technique- FM transmitters. Receiver -characteristics and Classification- Tuned radio frequency receiver - Super heterodyne receiver – AM and FM receivers.

MODULE V PULSE MODULATION

Sampling Theorem, Pulse Modulation Schemes -PAM, PWM and PPM Generation and Detection Conversion of PWM to PPM. Multiplexing Techniques – TDM and FDM.

TOTAL: 45 HOURS

REFERENCES:

1. Simon Haykin, "Communication systems", 5th Edition, ISBN:978-0-471-69790-9, Wiley.

2. H.Taub & Schilling, Gautam Sahe, "Principles of Communication Systems", TMH, 2007, 3rd Edition.

3. George Kennedy and Bernard Davis, "Electronics and Communication System", 4th Edition, TMH, 2009.

4. Dennis Roddy, John Coolen, "Electronic Communications", Prentice Hall of India, 2013.

5. H.P.Hsu, "Schaum Outline Series Analog and Digital Communication", TMH, 2006.

9 Hours

9 Hours

9 Hours

9 Hours

2302EC403					CONT	ROLS	SYSTI	EMS				I		P	C
												3	1	0	4
REREQUI	ISITE:														
		1.	Lapla	ace tra	nsform	and In	verse	Laplac	e trans	form	Basic o	of matr	ix funct	ions	
			Lupit			und m		Lupiae	e truits		Buble	or mad	In Faile		
OURSE O	DIFCT		<u>c.</u>												
UURSE U	BJECI	IVE	5:												
	1.	To in	ntrodu	ce the	compo	nents a	and the	ir repr	esentat	ion of	contro	l syste	ms		
						ls for a	nalyzi	ng the	time re	espons	e, freq	uency 1	respons	e and	
	3.	stabi	lity of	the sy	stems. ous app		f 41			1.					
	3.	1016	earn th	le vario	ous app	broach	for the	state v	ariable	e anary	/\$1\$.				
COURSE O	UTCO	MES	:												
0	41	C.	1	.1.4	. 6 41				11 1 1.	1.4.					
CO1 :	the succ Deterr										vstems	s using	g bloc	k dia	grai
	reduct	ion te	echniq	ue, sig	nal flov	w grap	h.				-	_	,		5
CO2:	Analyz													1.4	
CO3: CO4:	Deterr	nine (the st	ability	of a c	domai control	n spec syster	n usin	g Rout	1g Boo h-Hur	ie, Pola witz C	ar and I	Nyquist n and I	Root I	001
	Techn	ique.													
CO5:							faph	ysical	syster	n and	calcı	ulate C	Controll	ability	an
	Observ	vabili	ity of c	control	systen	1									
COs Vs PC)s MAP	PIN	G:												
Г	COs I	001	PO2	PO3	PO4	PO5	PO6	PO7	PO8	DOO		PO11	DO11		
-		3	2	105	-	-	-	-	-	2	1	-	1		
		3	2	1	-	-	-	-	-	2	1	-	1		
		3 3	22	1	-	-	-	-	-	2	1	-	1		
-		3	2	1	-	-	-	-	-	2	1	-	1		
L		-			I			I	I			1			
COs Vs PS	Os MA	PPIN	NG:												
						CO	DCO1	DGOO	1						
						COs CO1		PSO2	-						
						CO1		-	-						
						CO3		-							
						CO4	1	-							
						CO5	1	-]						
COURSE C	ONTEN	NTS:													
	CO	NTR		VSTEN	AS RE	PRES	ENTA	TION	I					9 Hoi	irs
MODULE I										tems-T	ransfe	er funct			
		ol sys	stems-	- p •											
ntroduction ontrol syste	to contr ems – N	Aecha	anical	transla	ational	and r						ystems	-Block	diagi	am
ntroduction ontrol syste eduction tec	to contr ems – N hniques	∕lecha − Sig	anical gnal fl	transla ow gra	ational ph red	and roution						ystems			
MODULE I ntroduction control syste eduction tec MODULE I Standard test	to contr ems – N ehniques I TIM	/lecha – Sig IE R	anical gnal fl ESPO	transla ow gra NSE A	ational ph red NAL	and roution	using	Mason	s gain	formul	a.			9 Hoi	irs

for step input-Time domain specifications-Steady state error- Controllers - PI, PD, PID controllers.

MODULE III FREQUENCY RESPONSE ANALYSIS

Frequency domain specifications-Frequency response of standard second order system-Frequency response analysis using Polar plot-Bode Plot and Nyquist Plot.

MODULE IV STABILITY ANALYSIS OF CONTROL SYSTEMS

Introduction to stability-Roots of characteristic equation-Routh Hurwitz stability criterion-Conditionally stable systems-Concepts of root locus-Guidelines for sketching root locus.

MODULE V STATE SPACE ANALYSIS

State variable representation-Conversion of state variable models to transfer functions-Solution of state equations-Equivalence between transfer function and state variable representations-Concepts of Controllability and Observability.

TOTAL: 45 HOURS

9 Hours

9 Hours

9 Hours

- 1. Nagrath I.J. and Gopal.M, "Control Systems Engineering", 5th Edition, New Age International Publishers, New Delhi, 2008.
- 2. Kuo,B.C, "Automatic Control Systems", 8th Edition, John Wiley and Sons, New York, 2003.

2302EC404	T			DI	GITA	L SIG	NALI	PROC	ESSIN	G		i	L T	·	P	С
					01111			NOC.		U			$\frac{1}{3}$ 1		0	4
PDEDEOU												l				
PREREQUI	ISTIE:															
	T		1. Di	gital E	lectron	nics										
	+			-	nd Sys											
				2												
COURSE O	BJEC	TIVE	S:			·										
	-					ier Tra		<u> </u>			_			<u> </u>		
	2					eristics	ot III	R filter	r and	to lear	n the	design	ı ot II	R ti	ilters	; tor
	+		tering u			nals. eristics	of Fl	P filte	r and	to lea	rn the	decig	n of F	TR	filte	r foi
			tering u				01 11	IV III.	d and	10 100		ucsigi	1 01 1	IIX .	Inter	101
	2					word le	ength e	ffects a	and DS	P App	licatio	ns				
	5					ramma										
SOUDGE O																
COURSE O	UTCU)MES	:													
On	the suc	cessfi	ıl com	oletion	of the	course	stude	ents wi	II he at	ole to						
CO1:						rithms					s.					
CO2:	Desig	gn of l	IIR filt	ers for	filterir	ng unde	esired	signals	5.	1						
CO3:	Desig	gn of l	FIR filt	ters for	r filteri	ing und	lesired	signals	s.							
CO4:	Solve	e the c	comple	x prob	lem us	ing Fin	<u>iite wo</u>	ord leng	<u>yth ette</u>	ects.						
CO5:	Expi	a1n ui	e arcini	ieciure	anu pi	rogram	ming	טירא <u>זר</u>	SP proc	essors	•					
COs Vs PC)s MA	PPIN	G:													
														_		
	COs		PO2	PO3		-	PO6	PO7	PO8	PO9	PO10	PO11	-	2		
	CO1	3	3	3	3	3	-	-	-	-	-	-	3	_		
	CO2 CO3	3	3	3	3	3	-	-	-	-	-	- 	3	-		
	CO3		3	3	3	3	-	-	-	-	-	-	3	-		
	CO4	-	3	3	-	-	<u> </u>	<u>+</u> _	-	-	-	-	3	-		
					·				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>ــــــــــــــــــــــــــــــــــــ</u>		
COs Vs PS	SOs M	APPIN	NG:													
							DCO1	DCO1	1							
						COs CO1	-	PSO2 3	ł							
						CO1 CO2		3	ł							
						CO2 CO3		3	ł							
						CO3	-	3	ł							
						C04 C05		3	ł							
						005	5	5]							
COUDSEC	'ANTE	TTC.														
COURSE C	UNIE	<u>IN15.</u>														
MODULE I	DI	SCRE	TE FO	OURI	ER TR	ANSF	ORM							9	Hou	rs
Introduction									nethods	s based	1 on D	FT – F	FT A			
Decimation i				-				-			* • •		. -	0-		E.
		-												0	Tau	- ~
MODULE I			TER D				time	TID fi	tion fre		<u>1.~ fi</u>	14	TTD fil		Hou	
Structures of	[IIK –	Anan	og mu	er desi	gn – 1	JISCICO	e time	11К 11	her no)m and	nog m	iter –	11K 111	ter	lesi	μı,

Impulse Invariance, Bilinear transformation, Approximation of derivatives – (LPF, HPF, BPF, BRF) filter design using frequency translation.

MODULE III FIR FILTER DESIGN

Structures of FIR – Linear phase FIR filter – Fourier Series - Filter design using windowing techniques (Rectangular Window, Hamming Window, Hanning Window), Frequency sampling techniques.

MODULE IV FINITE WORDLENGTH EFFECTS

Finite wordlength effects in digital Filters: Errors, Limit Cycle, Noise Power Spectrum, Fixed point and floating point number representations – Quantization- Truncation and Rounding errors - Quantization noise – quantization error – Overflow error – Round-off noise power - limit cycle oscillations due to product round off and overflow errors

MODULE V DSP APPLICATIONS

Introduction – TMS320C5X Architecture – Features – Addressing Formats – Functional modes - Introduction to Commercial DSP Processors – TMS320C64XX, TMS320C54X. Multirate Signal Processing – Decimation, Interpolation, Sampling rate conversion by a rational factor - Adaptive Filters.

TOTAL: 45 HOURS

9 Hours

9 Hours

- 1. J.G. Proakis and D.G. Manolakis, Digital Signal Processing Principles, Algorithms and Applications, Pearson Education, New Delhi, PHI. 2003.
- 2. S.K. Mitra, Digital Signal Processing A Computer Based Approach, McGraw Hill Edu, 2013.
- 3. B.Venkataramani and M.Bhaskar, Digital Signal Processors Architecture, Programming and Applications, Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.
- 4. Robert Schilling & Sandra L.Harris, Introduction to Digital Signal Processing using MATLAB, Cengage Learning, 2014.
- 5. P. Ramesh Babu, Digital Signal Processing, Scitech Publications Pvt Ltd, Fourth Edition, 2011.

2302EC405			(0)		ECTR								LT	P	0
			(0	scillat	or, An	nplifie	ers, Mi	ultı vıl	orator))			3 1	0	4
REREQUI	SITE														
KEKEQUI	SITE.														
		1.	Electro	on Dev	ices										
OUDSE O			C .												
OURSE O	BJEC	IIVE	5:												
	1.	Tol	earn th	e fund	amenta	l conc	epts be	ehind ti	ransist	or bias	ing an	d to di	fferent	iate sm	all
					ignal c										
	2.									fiers, P	ower	amplifi	iers and	d oscill	ato
	3.	Tod	iscuss	varıou	s appli	cation	s of an	alog ci	rcuits						
OURSE O	UTCO	OMES	:												
	1	C	1	1	0.1		. 1			1.					
CO1:					of the						ore an	d Field	1 Effec	t Trans	iste
CO1:														ysis and	
			respons					-r			8	8)	
CO3:					s and ti			ers.							
CO4:	Anal	yze di	fferent	types	of osci	llators	•								
CO5:	Expe	rimen	t with	analog	circuit	ts for p	product	develo	opmen	t.					
COs Vs PC)s MA	PPIN	G:												
r							1			1	1	1	1	7	
-	COs CO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11		-	
-	CO1	2 3	3	2	- 2	-	2	-	-	-	-	-	3	_	
-	CO3	3	2	1	1	-	2	-	-	-	-	-	3		
ſ	CO4	3	3	2	2	-	2	-	-	-	-	-	3		
l	CO5	3	2	1	1	1	1	-	-	-	-	-	3		
COs Vs PS	Os M	APPI	NG:												
					Г	COs	DSO1	PSO2	2						
					-	CO3	3	-	2						
						CO2	3	-	-						
					_	CO3	3	-	-						
					-	CO4	3	-							
					Ē	CO5	3	-							
					L										
					L										
OURSE C	ONTE	ENTS:													
														0.77	
10DULE I	01	/ERV	IEW (MICO	NDUC								9 Hou	
IODULE I eviews on	OV semico	ERV onduct	IEW (or phy	rsics, t	MICO	NDU(junction	on trar	nsistor	(BJT)	; Diffe	rent ty	ypes of			
IODULE I eviews on	OV semico of BJT	ERV onduct ampl	IEW (or phy ifiers;]	rsics, b FET tra	MICO vipolar ansisto	NDUC junction r; bias	on trar ing, de	nsistor sign ar	(BJT); nd anal	; Diffe ysis of	rent ty f FET	ypes of amplif		ng- Des	sigı
COURSE C 10DULE I Leviews on nd analysis 10DULE I	OV semico of BJT	ERV onduct ampl	IEW C or phy ifiers;] SIGN	rsics, b FET tra	MICO	NDUC junction r; bias	on trar ing, de	nsistor sign ar	(BJT); nd anal	; Diffe ysis of	rent ty f FET	ypes of amplif			sig
IODULE I eviews on nd analysis	OV semico of BJT I SN AN	ERV onduct ampl IALL IPLII	IEW (or phy ifiers;] SIGN FIERS	rsics, b FET tra AL AN	MICO ipolar ansisto NALYS	NDUC juncti r; bias SIS Al	on trar ing, de ND FR	nsistor sign ar EQUI	(BJT); nd anal ENCY	; Diffe lysis of RESP	FET	ypes of amplif E OF	iers.	ng- Des 9 Hou	sign u rs

MODULE III TUNED AMPLIFIERS AND POWER AMPLIFIERS

Small signal tuned amplifiers – Analysis of capacitor coupled single tuned amplifier – double tuned amplifier – Stagger tuned amplifiers.

Power amplifiers - class A, class B, class AB, Biasing circuits, class C and class D

MODULE IV OCILLSATORS

9 Hours

9 Hours

9 Hours

Sinusoidal oscillators, General form of oscillator circuit (Hartley & Colpitts), Barkhausen Criterion, Design and analysis of RC phase shift (FET/ BJT) oscillator, Wien bridge oscillators, Resonant circuit oscillators, Crystal oscillator.

MODULE V APPLICATIONS OF ANALOG ELECTRONICS

Selection of Components and Circuit Elements in an Application - Automatic Switch on of Lamp in the Dark Using a BJT - Automatic Switch-On of Lamp in the Presence of Light Using a BJT - Humidity Detector -Smoke Detector - Future Advances in Applications of Analog Electronics – Case study: Analog Electronics Sees a Revival in the Music Industry.

TOTAL: 45 HOURS

- 1. A. Sedra and K. Smith, Microelectronic Circuits, 7th Eition. Oxford Univ. Press, 2016
- 2. Hernando Lautaro Fernandez-Canque by Taylor & Francis Group, LLC, 2017
- 3. Jacob Millman, C. Halkias and Satyabrata Jit, Electronic Devices and Circuits, 4th Edition, Tata McGraw-Hill, 2015.
- 4. Salivahanan, N. Suresh Kumar and A. Vallava Raj, Electronic Devices and circuits, TMH, 2nd Edition 2008.

301HSX01	UNIVERSAL HUMAN VALUES AND ETHICS	L 1	Т 0	P 2	C 2
		1	U	2	2
REREQUISIT	Е:				
	1. Professional Ethics				
OURSE OBJI	ECTIVES:				
	1. Reinstate India's rich cultural legacy and human values of whic custodians.	h we	are th	e	
	2. Focus on professional ethics, which help citizens to discern des actions.	irable	and u	indes	irat
	3. Re-emphasize constitutional values, universal values, and holis integrated citizens.				
	 Lay down broader guidelines of human values and ethics for in stakeholders. 	ternal	and e	extern	al
OURSE OUT	COMES:				
On the success	ful completion of the course, students will be able to				
C01:	Apply critical thinking skills to solve problems and make informed contexts.	d deci	isions	in va	aric
CO2:	Analyze the principles of effective self - governance and evaluate the different scenarios.	eir im	pleme	entati	on
CO3:	Understand the importance of a fair and transparent system of rewa constitution of India and apply these principles in real-world situation		nd rep	orimai	nd
CO4:	Analyze the role of an individual to develop social reliability and cr their assertiveness and self - confidence.		ware	ness a	ıbo
CO5:	Understand the knowledge of inner qualities and instruments of management and analyze the effects of meditation in one's physical spiritual well - being.				
Os Vs POs M	APPING:				
<u></u>) PO			

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	1	2	3	1	2	-	2
CO2	3	3	2	-	-	1	2	2	1	2	-	2
CO3	2	1	-	-	-	2	1	2	1	2	-	1
CO4	3	3	2	-	-	1	1	2	2	2	-	1
CO5	2	1	-	-	-	2	2	3	1	2	-	1

COs Vs PSOs MAPPING

COs	PSO1	PSO2
CO1	-	-
CO2	-	-
CO3	-	-
CO4	-	-
CO5	-	-

COURSE CONTENTS:

MODULE I INTRODUCTION TO INDIAN ETHOS

Meaning of ethos and cultural essence of India – Scriptures as the base of the Indian Knowledge System (IKS) – Integrating the two methodologies: interiorization process for self-exploration, and exterior scientific pursuit for the prosperity of world – The Law of Karma and Nishkama Karma (The Law of action and selfless action).

Practical: Five hours of Yoga practice per week, Ethics through Music and Indian Poetry, Community Engagement.

MODULE II HUMAN VALUES AND ETHICS

Knowing the Self and the universal values that we stand for - This is self-enquiry & self-discovery – Background conversations and deep listening - recognizing the assumptions that we make - the biases we have - and the implications for ethical action – Self-identity: distinguishing and embracing oneself (and others) four profiles (inner-potential, social, professional, personality) – Distinguish ideology, perspectives beliefs from embodying values.

Practical: Self-discovery, self-enquiry and Mindfulness, Yama & Niyama of Ashthang Yoga.

MODULE III CONSTITUTIONAL VALUES AND GLOBAL CITIZENSHIP

Values embedded in the Preamble of the Indian Constitution Integration of Human Rights and duties – Directive principles and responsibilities as citizens of India – Sensibility and responsibilities towards global environment, Loksangraha and Vasudhaiva Kutumbakam.

Practical: Debates and Theatre on diversity and plurality, research on similarities and differences in the ethos of different countries.

MODULE IV VALUES AND SKILLS FOR YOUTH

Designing to make a difference through strategies using the Conscious Full Spectrum Response model – Listening for commitment behind complaints to transform contentious arguments and create a space for listening and change – Distinguishing judgments from discernment – Being assertive and confident (assertiveness incorporates self-confidence).

Practical : Development of concentration among students through music, fine arts, mathematics, sports, yoga and mindfulness

MODULE V INTEGRATED PERSONALITY AND WELL-BEING

The three gunas (qualities of sattva—purity and harmony, rajas —activity and passion, tamas —darkness and chaos), the four antah-karanas (inner instruments), and panchkosha (five sheaths) – Stress management: meditated personality and agitated personality – Oneness, non-duality, and equanimity – Physical, mental, social, and spiritual well-being.

Practical : Talks on importance of the Ayurvedic concept of wellbeing and nutrition, sports activities

TOTAL: 45 HOURS

REFERENCES:

1. Blanchard, Kenneth and Peale, Norman Vincent. 1988. The Power of Ethical Management. New York: William Morrow and Company, Inc.

2. Gandhi, Mohandas Karamchand. 1971. Pathway to God compiled by MS Deshpande. Ahmedabad: Navajivan Mudranalaya, Navjivan Trust.

3. https://fdp-si.aicte-india.org/UHV-II%20Class%20Note.php

9 Hours

8 Hours

9 Hours

10 Hours

9 Hours

2302EC451	Α	NALO	G INT	EGRA	TED (CIRCU	JITS I	LABO	RATC	ORY	Ι		P	C
											0	0	3	1.5
PREREQUIS	TE:													
	1. Ele	ectron D	evices											
		F C												
COURSE OB.	JECTIV	ES:												
	1.	To exp	ose the	studer	nts to li	inear a	nd inte	grated	circui	ts				
	2.	To und	erstand	l the ba	usics of	flinear	integr	ated ci	rcuits	and av	ailable	ICs		
	3.	To und												
	4.	To appl To acqu									ication	S		
	5.	10 acqu		Uasic	KHOWI	euge o	i speci							
COURSE OU	ГСОМЕ	S:												
On the	e success	ful com	letion	of the	course	stude	nts wi	ll be ab	le to					
CO1:	Desig	n oscilla	tors an	d amp	lifiers	using c	peration	onal an	nplifie	rs.				
CO2:	Desig	n filters	using (Op-am	p and p	perforn	n expe	riment	on fre	quency	respo	nse.		
<u>CO3:</u>		ze the w						requence	cy mul	tiplier.				
CO4: CO5:		n Regula ze the p						Iti vihr	otora	ing D	SDICE			
0.03.	Allary	ze tile p	eriorini			ators a	<u>IIa IIIa</u>			ising r	SFICE	1		
COs Vs POs	MAPPI	NG:												
			DO2	DO4	DO5	DOC	D07	DOQ	DOO	DO10	DO11	DO12		
	COS PO CO1 2	1 PO2	PO3	P04	PO5	PO6	PO7	P08	P09 -	PO10	PO11	PO12		
	$\frac{1}{202}$ 2	3	3	2	_	_	_	_	-	-	_	_		
	CO3 1	-	-	2	-	-	-	-	-	-	-	-		
(CO4 1	-	2	1	-	-	-	-	-	-	-	-		
0	CO5 1	2	3	2	-	-	-	-	-	-	-	-		
COs Vs PSO	s MAPP	ING												
05 13150	5 IVIAI I	1110.												
						PSO1	PSO2]						
					CO1	2	1	-						
					CO2		1	-						
					CO3 CO4		1	-						
					C04		1	-						
					000									
LIST OF EXP	ERIME	NTS:												
LIST OF EAT				Differen	ntial an	nnlifie	re					2 Hour	·c	
	ng Non	nverting	ranai		Inal al	npinte						2 110u1 3 Hour		
1. Inverti	ng, Non tor and I									1				
1.Inverti2.Integra3.Instrum	tor and I nentation	Different amplifi	iator er and	series			ack am	plifier				2 Hour		
1.Invertig2.Integra3.Instrum4.Active	tor and I nentation low-pass	Different amplifi s, High-p	iator er and pass an	series d band	l-pass f	filters.	ack am	plifier				2 Hour 3 Hour	'S 'S	
 Inverti Integra Instrun Active Compa 	tor and I nentation low-pass rator and	Different amplifi s, High-I l Schmit	iator er and bass an t Trigg	series d band ger usir	l-pass f 1g op-a	filters. Imp						2 Hour 3 Hour 3 Hour	'S 'S 'S	
 Invertit Integra Instrum Active Compa RC Pha 	tor and I nentation low-pass rator and ase shift	Different amplifi s, High-I l Schmit and Wie	iator er and bass an t Trigg n bridg	series d band ger usir ge osci	l-pass f 1g op-a llators	filters. imp using o						2 Hour 3 Hour 3 Hour 2 Hour	'S 'S 'S	
1.Invertition2.Integration3.Instrum4.Active5.Compare6.RC Phang7.D/A and	tor and I nentation low-pass rator and	Different amplifi s, High- <u>1</u> l Schmit and Wie	iator er and bass an t Trigg n bridg , Sine -	series d band ger usir ge osci - wave	l-pass f ng op-a llators genera	filters. ump using o ator.	op-amp					2 Hour 3 Hour 3 Hour	'S 'S 'S 'S	

10. Simulation of Experiments 1, 2, 3, 4, 6 and 7.	3 Hours
11. D/A and A/D converters (Successive approximation)	2 Hours
12. Analog multiplier	2 Hours

Virtual Lab Experiments:

- 1. Instrumentation amplifier and series, shunt feedback amplifier
- 2. Active low-pass, High-pass and band-pass filters.
- 3. Comparator and Schmitt Trigger using op-amp.

Additional Experiments:

- 1. Mini project using Op-Amp and Specialized IC's.
- 2. Design an instrumentation amplifier for body temperature detection
- 3. Design a PLL circuit for a simple application.

TOTAL: 30 HOURS

- 1. S.Franco, Design with Operational Amplifiers and Analog Integrated Circuits, Third edition TMH, 2003.
- 2. Sedra and Smith, Microelectronics Circuits, First edition, Oxford Univ. Press, 2004.
- 3. Coughlin, Driscoll, OP-AMPS and Linear Integrated Circuits, First edition, Prentice Hall, 2001.
- 4. John D Ryder, Electronic fundamentals and Applications: Integrated and Discrete systems, 5th Edition, PHI, 2003.
- 5. Donald .A. Neamen, Electronic Circuit Analysis and Design Second edition, Tata McGraw Hill, 2009.

2302EC452		D	IGITA	AL SIC	GNAL	PROC	CESSI	NG LA	ABOR	ATOR	RY			P 2	C
													0	2	
PREREQUIS	IIE:														
		1	l. Dig	gital El	ectron	ics, Sig	gnals a	nd Sys	stems						
COURSE OB	IFC	FIVE	<u>c.</u>												
	JEC		5.												
						urier Ti									
					haract	eristics	s of dig	ital fil	ter and	to lea	rn the o	design	of digi	tal fil	ters f
						digital	signal	proce	ssor ai	nd emu	late th	e diffe	erent ty	pes c	of bas
			ignals.			υ	0	1					5	1	
COURSE OU	TCO	MES	:												
On th	e suco	cessfu	l com	oletion	of the	course	, stude	nts wi	ll be at	ole to					
C01:	Co	mpute	e the D	FT, FI	FT, and	l signal	l gener	ation.							
CO2:		•				ind cor						· .			
CO3: CO4:						sing, sp		ram ar	nd moc	lulatioi	1 of a s	agnal.			
C04: C05:		<u> </u>	<u> </u>			g MAT zation		Simuli	nk						
CO6:						sor and				facing	with a	ndroid	device	es.	
		•							2	0					
COs Vs POs	MA	PPIN	G:												
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	C O1	3	2	3	3	3	-	-	-	2	1	-	1		
	CO2	3	2	3	3	3	-	-	-	2	1	-	1		
	CO3 CO4	3	2	3	3	3	-	-	-	2	1	-	1		
	CO4	3	2	3	3	3	-	-	-	2	1	-	1		
	CO6	3	2	3	3	3	-	-	-	2	1	-	1		
COs Vs PSC	OS MA	APPIN	NG:												
						COs	PSO1	PSO2]						
						CO1		2							
						CO2		2							
						CO3		2							
						CO4		2							
						CO5		2							
						CO6	3	2							
LIST OF EX	PERI	MEN	TS:												
1. Simula	ate th	e Sian	al Ger	eratio	n and v	visualiz	vation						2 H	mre	
2. Comp		-											2 H		
						utocor	relation	n.					2 He		
					lar Cor									ours	
	ale ino			01104		110101010	011.								

6. Simulate the Spectrogram to demonstrate the signal frequency over a time.	2 Hours
7. Design the Modulation of a different signal.	2 Hours
8. Compute the DFT Estimation of signal.	2 Hours
9. Design a different IIR filter.	2 Hours
10. Design different types of FIR Filter.	2 Hours
11. Realize the Filter design for cascade, Direct form 1 & 2 using simulink.	3 Hours
12. Realize the IIR Filter design for direct form and cascade form.	3 Hours
13. Study about the DSP processor with some basic experiments.	2 Hours
14. Study the MATLAB interfacing with android or embedded system.	2 Hours

ADDITIONAL EXPERIMENTS:

- 1. Study of MATLAB onramp online certification program.
- 2. Study of Signal processing onramp online certification program.
- 3. Study of Simulink onramp online certification program.

- 1. J.G. Proakis and D.G. Manolakis, Digital Signal Processing Principles, Algorithms and Applications, Pearson Education, New Delhi, PHI, 2003.
- 2. S.K. Mitra, Digital Signal Processing A Computer Based Approach, McGraw Hill Edu, 2013.
- 3. B.Venkataramani and M.Bhaskar, Digital Signal Processors Architecture, Programming and Applications, Tata McGraw Hill Publishing Company Limited. New Delhi, 2003.
- 4. Robert Schilling & Sandra L.Harris, Introduction to Digital Signal Processing using MATLAB, Cengage Learning, 2014.
- 5. P. Ramesh Babu, Digital Signal Processing, Scitech Publications Pvt Ltd, Fourth Edition, 2011.

2302EC45	2302EC453 ELECTRONIC CIRCUITS LABORATORY											Ι		Г	P	С
												() (0	3	1.5
PREREOU	PREREQUISITE:															
1. Electron Devices																
COURSE OBJECTIVES:																
	1. To Be exposed to the characteristics of basic electronic devices															
	2. To Study the characteristic of amplifier and oscillator.															
	 To gain hands on experience in designing electronic circuits. To learn simulation software used in circuit design. 															
		4. T	o learn	ı sımul	ation s	softwar	e used	in circ	cuit des	sign.						
COURSE O	UTCO	MES	•													
COURSEO		JNILS	•													
On the succe	On the successful completion of the course, students will be able to															
	CO1: Calculate the frequency of oscillators for diverse commercial applications.															
CO2	CO2: Analyze various types of amplifiers for product development.															
CO	3: S	imulat	e ampl	ifiers a	nd osc	illators	s using	Spice.	•							
CO N DO		DDD	~													
COs Vs PC)s MA	PPIN	G:													
	COa	PO1	PO2	PO3	DO4	PO5	PO6	PO7	DOQ	DOO	PO10	DO11		2		
	CO3		1	1	PU4	P05	PU0	ru/	PUð		PUIU	PUII	3	<u>_</u>		
	CO1		3	2	2	-	-	-	-	-	-	-	3	_		
	CO2		-	1	2	_	_	_	_	_	_	_	3			
	000			1	4								5			
COs Vs PSOs MAPPING:																
						COs	PSO1	PSO2	1							
COs PSO1 PSO2 CO1 2 -																
CO2 1 -																
						CO3		-								
LIST OF EX	XPER	IMEN	TS:													
1. Desi	gn of I	RC Pha	ase shit	ft oscil	lator a	nd Wie	en Brid	lge Osc	cillator	•					3 Ho	urs
2. Design of Hartley Oscillator and Colpitts Oscillator.													3 Ho			
	0	<u> </u>	Tuned												3 Ho	
			r, Clam												3 Ho	
	5. Differentiator and Multivibrator circuits.														3 Ho	
	6. Active low-pass, High pass & Band pass filters7. Class A and Class C tuned Amplifiers.														<u>3 Ho</u>	
							<u></u>								3 Ho	urs
															<u> </u>	
								cillator	•						2 Ho	
	 9. Simulation of Double and Stagger tuned Amplifier. 10. Simulation of Monostable Multivibrator. 														2 Ho	
10. Sint 11. Simt															2 Ho 3 Ho	
	114110[]	UI DIS	naule N	/1u111V1	Jator										5 110	u1 S
												TOT	FAL:	30	ноц	RS
VIRTUAL LAB EXPERIMENTS:																
					lator a	nd Wie	en Brid	lge Oso	cillator							

- 2. Design of Hartley Oscillator and Colpitts Oscillator.
- 3. Design of Single Tuned Amplifier.

ADDITIONAL EXPERIMENTS:

1. Design of Power inverter.

2. Design of Function Generator

- 1. Donald A Neaman, Semiconductor Physics and Devices, Third Edition, Tata McGraw Hill Inc. 2007.
- 2. Donald.A. Neamen, Electronic Circuit Analysis and Design, 2nd Edition, Tata McGraw Hill, 2009.
- 3. Adel.S. Sedra, Kenneth C. Smith, Micro Electronic Circuits, 6th Edition, Oxford University Press, 2010.
- 4. Jacob Millman, C. Halkias and Satyabrata Jit Electronic Devices and Circuits, 3rd Edition, Tata McGraw-Hill, 2011.