E.G.S.PILLAY ENGINEERING COLLEGE

(Autonomous)

NAGAPATTINAM - 611002.

(Affiliated to Anna University, Chennai| Accredited by NAAC with "A++"Grade Accredited by NBA| Approved by AICTE, New Delhi)

REGULATION-2023 B.E CIVIL ENGINEERING

Full Time Curriculum and Syllabus

Second Year – Fourth Semester

COURSE	COURSE NAME	CATEGORY	L	т	D	C	MAX.MARKS			
CODE	COURSE NAME	CATEGORY	L	1	r	C	CA	ES	TOTAL	
Theory Cou	rses									
2302CE401	Mechanics of Solids-II	PCC	3	0	0	3	40	60	100	
2302CE402	Applied Hydraulic Machinery	PCC	3	0	0	3	40	60	100	
2302CE403	Concrete Technology	PCC	3	0	0	3	40	60	100	
2302CE404	Geotechnical Engineering-I	PCC	3	0	0	3	40	60	100	
2302CE405	Environmental Engineering	PCC	3	0	0	3	40	60	100	
2301HSX01	Universal Human Values and Ethics	HSMC	3	0	0	3	40	60	100	
2301MC409	Sustainable Development Goals (SDGs) for Engineers (MC -1)	MC	3	0	0	0	100	0	100	
Laboratory	Courses			1	1		I	I		
2302CE451	Hydraulic Machineries Laboratory	PCC	0	0	2	1	60	40	100	
2302CE452	Environmental Engineering Laboratory	PCC	0	0	2	1	60	40	100	
2302CE453	Computer Aided Civil Engineering Drawing Laboratory	PCC	0	0	2	1	60	40	100	
2304GE451	Professional Development Course - II	ECC	0	0	2	1	100	0	100	
	TO	DTAL	21	0	8	22	620	480	1100	

2301CE401				M	ЕСНА	NICS	OF SC	OLIDS	II			I	T	P	С
													3 0	0	3
PREREOUI	SITE	•													
		•													
	1. Me	chanic	cs of so	olids I											
COURSE O	BJEC	TIVE	S:												
	1. To	o impa	rt knov	vledge	on En	ergy pi	rinciple	es, stre	ss, Stra	ain and	l defor	mation	of soli	ds wit	h
	appli	cation	s to be	ams, c	ylinde	rs and	unsym	metrica	al secti	ons.					
	2. To	o acqui	ire the	ability	to ana	lyze th	e mech	nanism	of loa	d trans	sfer in	columr	ns.		
	3. To	o devel	lop the	clear u	underst	tanding	g of the	shear	force a	and be	nding	momen	it in inc	leterm	inate
	beam	ns.													
COUDSE O	UTCO	MEG	·												
COURSE O		JMES):												
Ont	the suc	ressfu	1 com	letion	of the	course	stude	nts wi	ll he al	le to					
CO1:	Deter	mine t	he def	lection	of bea	ms and	d frame	es usin	g ener	ov the	orems.				
CO2:	Calcu	late th	e defle	ection	of beau	ms by	differe	nt metl	hods a	nd sele	ection	of meth	nod for	detern	nining
	slope	or defl	ection			J									0
CO3:	Analy	ze pr	opped	cantile	ever, f	ixed b	eams	and co	ontinuc	ous be	ams fo	or exte	rnal lo	adings	and
	suppor	rt settl	ements	5.	-									Ũ	
CO4:	Comp	oute th	e load	carryir	ng capa	acity of	f colun	nns.							
CO5:	Comp	oute th	e load	carryir	ng capa	acity of	f thin c	ylinde	r.						
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~												
COs Vs PC	)s MA	PPIN	G:												
	COs	PO1	PO2	PO3	<b>PO</b> 4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12		
	CO1	3	3	105	-	105	-	2	100	-	-	-	2		
	$\frac{\text{CO1}}{\text{CO2}}$	3	3	_	_	_	_	2	_	_	_	_	$\frac{2}{2}$		
	CO3	3	3	-	-	-	-	2	-	-	-	-	2		
	CO4	3	3	-	-	-	-	2	-	-	-	-	2		
	CO5	3	3	-	-	-	-	2	-	-	-	-	2		
COs Vs PS	Os M.	APPI	NG:												
							04 00	0.000	0.0						
					C	Os PS	<u>OIPS</u>	O2PS	03						
						- 102	. 2								
						·02 -	·								
							·	-							
						-04 -	·								
					U	.05 -	. 2	-   -							
COURSEC	ONTE	ENTS	,												
COUNDEC	51111														
MODULE I	EN	IERG	Y PRI	NCIP	LES									9 Ho	urs
														1	

Principle of virtual work – unit load method – Application of energy theorems for computing deflections in determinate beams, plane frames and plane trusses – lack of fit and temperature effects – Williot Mohr's Diagram.

MODULE II DEFLECTION OF BEAMS	9 Hours
Double Integration method - Macaulay's method - Area moment method - Conjugate beam	method -
Strain energy method for determinate beams.	
MODULE III INDETERMINATE BEAMS	9 Hours
Concept of Analysis - Propped cantilever and fixed beams-fixed end moments and reactions - T	Theorem of
three moments – analysis of continuous beams – shear force and bending moment diagrams.	
MODULE IV COLUMNS	9 Hours
Columns: Euler's theory of long columns - critical loads for prismatic columns with diff	erent end
conditions; Rankine Gordon formula for eccentrically loaded columns - middle third rule - core s	ection
MODULE V SYNCHRONOUS MOTOR DRIVE	9 Hours
V/f and self-control of synchronous motor drive; Margin angle control and Power factor control	; VSI and
CSI fed synchronous motor drive; Permanent magnet synchronous motor - Construction, Types, F	3LPM DC
motor and BLPM AC motor.	
	HOURS

### **101AL: 45 HOURS**

### **REFERENCES:**

1. Gambhir. M.L., "Fundamentals of Solid Mechanics", PHI Learning Private Limited., New Delhi, 2009.

2. William A .Nash, "Theory and Problems of Strength of Materials", Schaum"s Outline Series, Tata McGraw Hill Publishing company, 2010.

3. Egor P Popov, "Engineering Mechanics of Solids", 2nd edition, PHI Learning Pvt. Ltd., New Delhi, 2015.

4. PunmiaB.C. "Theory of Structures" (SMTS) Vol 1&II, Laxmi Publishing Pvt Ltd, New Delhi 2018.

5. Basavarajiah and Mahadevapa, Strength of Materials, University press, Hyderabad, 2016.

6. Rattan.S.S., "Strength of Materials", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2016.

7. https://nptel.ac.in/courses/112107146

https://easyengineering.net/ce6402-strength-of-materials-som_14/ 8.

9. https://karthikacivil.weebly.com/strength-of-materials.html

2302CE402			AP	PLIEI	) HYI	DRAU	LIC M	[ACH]	INERY	Y		L	Т	P	С
												3	0	0	3
PREREQU	ISITE:														
	1 Ehr	id mad	honica	and n	aachin	00									
	1. ГIU					es									
COURSE C	BJEC	TIVE	S:												
	1. To	impai	rt basic	know	ledge	to the s	student	s abou	t the op	pen ch	annel f	lows wi	th ana	lysis o	of
	unifo	rm flo	w, gra	dually	varied	flow a	and rap	oidly va	aried fl	OW.		•			
	2. To	expos	se then	1 to ba	$\frac{1}{1}$	nciples	of wo	rking o	of hydr	aulic r	nachin	eries.			
	3.10	desig	n pelto	n whe	el, frai	icis and	d kapla	in turb	ine, ce	ntrifug	al and	reciproc	ating	pum	os.
COURSE O	UTCC	MES	:												
0001020	0100		•												
On	the suc	cessfu	l comp	letion	of the	course	, stude	ents wi	ll be al	ole to					
CO1:	Descri	be the	basics	of op	en cha	nnel fl	ow, cla	assifica	tions a	and and	alysis o	of unifor	m flov	w in st	teady
	state c	onditio	ons wit	h spec	ific en	ergy co	oncept	and its	s applie	cation					
<b>CO2:</b>	Analyz	ze stea	ady gra	adually	varie	d flow	, wate	r surfa	ice pro	files a	and its	length of	calcula	ation	using
~~~	direct	and sta	andard	step n	nethod	s with	change	e in wa	ter sur	face pi	ofiles	due to cl	nange	in gra	des.
CO3:	Derive	the re	elation	ship ai	nong t	the seq	uent de	epths o	of stead	iy, rap	idly va	aried flo	w and	estim	ating
<u> </u>	energy	¹ loss 1	n hydr	aulic j	$\frac{\text{ump w}}{\text{cc}}$	1th exp	osure	to posi	tive an	$\frac{1}{1}$ d nega	ative su	irges.			
<u> </u>	Design	n and c	comput	the the e	efficier	ncy and	1 perfo	rmance	e of tur	bines.	honooto	mictic o		and d	
005:	Differe	indel of	pump	s and	explai	in the	WOFK11	ig prin	cipie	with c	naracte	eristic ci	irves a	and d	esign
	cenun	ugai a		proca	ing pu	mps.									
COs Vs PC	Ds MA	PPIN	G:												
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11 I	PO12		
	CO1	2	1	-	2	-	-	-	-	-	-	-	2		
	CO2	2	1	-	2	-	-	-	-	-	-	-	2		
	CO3	3	2	1	2	-	-	-	-	-	-	-	2		
	C04	3	2	1	$\frac{2}{2}$	-	$\frac{2}{2}$	1	-	-	-	-	2		
	005	5	2	1	2	2	2	1	-	-	-	-	2		
COs Vs PS	SOs MA	APPIN	NG:												
					C	Os PS	O1 PS	O2PS	03						
					C	- 01	• 1	-							
					C	-02	· 1								
					C	-03	· 1	-							
					C	- 04	· 1	-							
					C	-05	. []	-							

MODULE I **UNIFORM FLOW** Definition and differences between pipe flow and open channel flow - Types of Flow - Properties of Open channel - Fundamental equations - Sub-critical, Super-critical and Critical flow - Velocity distribution in open channel - Steady uniform flow: Chezy's equation, Manning equation - Best hydraulic sections for uniform flow - Computation in Uniform Flow - Specific energy and specific force. MODULE II VARIED FLOWS 9 Hours

Dynamic equations of gradually varied - Water surface flow profile classifications: Hydraulic Slope, Hydraulic Curve - Profile determination by Numerical method: Direct step method and Standard step method – Change in Grades.

MODULE III RAPIDLY VARIED FLOWS

Application of the momentum equation for RVF - Hydraulic jumps -Types -Energy dissipation –Positive and Negative surges.

MODULE IV TURBINES

Turbines - Classification - Impulse turbine – Pelton wheel - Reaction turbines - Francis turbine - Kaplan turbine - Draft tube - Cavitation - Performance of turbine - Specific speed - Runaway speed-Minimum Speed to start the pump.

MODULE V PUMPS

Centrifugal pumps - Minimum speed to start the pump - NPSH - Cavitation's in pumps - Operating characteristics - Multistage pumps - Reciprocating pumps - Negative slip - Indicator diagrams and its variations - Air vessels - Savings in work done.

TOTAL: 45 HOURS

REFERENCES:

1. Ven Te Chow, Open Channel Hydraulics, McGraw Hill, New York, 2009.

2. Modi P.N. and Seth S.M., Hydraulics and Fluid Mechanics, Standard Book House, New Delhi, 19th edition, 2013.

3. Mays L. W., Water Resources Engineering, John Wiley and Sons (WSE), New York, 2019

4. Subramanya K., Flow in open channels, Tata McGraw Hill, New Delhi, 2019.

10 Hours

9 Hours

9 Hours

8 Hours

2302CE403				CC	DNCR	ETE I	ECHN	NOLO	GY					P	C
												2		U	3
PREREQUI	SITE														
	1.0		: M	- <u> </u>	1 7	· . 1 ·	1								
	1. Co	nstruct	10n M	aterials	s and 1	ecnno	logy.								
COURSE O	BJEC	TIVE	S:												
	1. To s	study t	he pro	perties	of con	crete 1	nateria	ls.							
	2. To 1	learn a	bout th	ne knov	wledge	of che	emical	and mi	ineral a	admixt	ures in	concre	ete.		
	3. To 1	familia	rize w	ith the	IS me	thod of	f mix d	esign a	as per t	the late	est cod	e.			
	4. To 1	unders	tand th	e fresh	n and h	ardene	d prop	erties of	of cond	crete.					
	5. To 1	know t	he imp	ortanc	e and a	applica	ations of	of spec	ial con	cretes.					
<u>COURSE O</u>	UTCO) MES	:												
On t	he suc	ressfu	1 comr	letion	of the	course	stude	nts wil	ll he al	le to					
CO1:	Expl	ain the	dvnar	nics of	motor	load s	vstem	and tv	pes of	loads a	along v	vith the	eir cha	acteri	stics.
CO2:	Dete	rmine	speed,	currer	nt, volt	age an	d torq	ue of a	rectif	ier / cł	nopper	fed D	C driv	e in al	l four
	quad	rants.													
CO3:	Calc	ulate t	he per	rforma	nce pa	aramet	ers of	induc	tion n	notor o	drives	with a	approp	riate _I	power
CO4·	Disc	ronics	conver	eed co	motori ntrol	ng ano techni	Drakii	ig moo f VSI	$\frac{100}{CSI}$	and c		nverter	feds	vnchr	onous
04.	moto	or drive	es.		Jinioi		ques o	1 101,	, CDI		yciocol		icu s	yneniv	JIIOus
CO5:	Desi	gn a sp	beed an	d curre	ent cor	troller	for a c	losed	loop di	rive sy	stem.				
			~												
COs Vs PC	Os MA	PPIN	G:												
r	COs	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	CO1	3	3	2	-	-	1	2	3	-	-	-	3		
	CO2	3	3	2	-	-	1	2	3	-	-	-	3		
	CO3	3	3	2	-	-	1	2	3	-	-	-	3		
	CO4	3	3	2	-	3	2	2	3	-	-	-	3		
	005	3	5	2	-	-	1	2	5	-	-	-	5		
COs Vs PS	Os M	APPIN	NG:												
					С	Os PS	O1 PS	O2PS	03						
					С	01 2	2 3	-							
					C	$\begin{array}{c c} \mathbf{O2} & 2 \\ \mathbf{O2} & 2 \end{array}$	$\frac{2}{3}$	-							
					C	$\frac{03}{04}$		-							
						04 2 05 2	2 3) 3	-							
						201									
COURSE C	ONTE	ENTS:													

MODULE I	CONSTITUENT MATERIALS	9 Hours
Cement-Differen	nt types-Chemical composition and Properties -Tests on cement-IS Spec	ifications-
Aggregates-Clas	ssification-Mechanical properties and tests as per BIS Grading requirements-Wate	er- Quality
of water for use	in concrete.	
MODULE II	CHEMICAL AND MINERAL ADMIXTURES	9 Hours
Accelerators-Re	tarders- Plasticizers- Super plasticizers- Water proofers - Mineral Admixtures like	e Fly Ash,
Silica Fume, Gro	ound Granulated Blast Furnace Slag and Metakaoline-Their effects on concrete pr	operties
MODULE III	PROPORTIONING OF CONCRETE MIX	9 Hours
Principles of M	Aix Proportioning-Properties of concrete related to Mix Design-Physical pro-	operties of
naterials require	ed for Mix Design - Design Mix and Nominal Mix-BIS Method of Mix Design - M	Mix Design
Examples.		
MODULE IV	FRESH AND HARDENED PROPERTIES OF CONCRETE	9 Hours
Workability-Tes	sts for workability of concrete-Slump Test and Compacting factor Test-Segreg	gation and
Bleeding-Deterr	nination of Compressive and Flexural strength as per BIS - Properties of	Hardened
concrete- Stress-	-strain curve for concrete-Determination of Modulus of elasticity.	
MODULE V	SPECIAL CONCRETES	8 Hours
Light weight co	ncretes - High strength concrete - Fibre reinforced concrete - Ferro cement - F	Ready mix
concrete - SIFC	ON - Shotcrete - Polymer concrete - High performance concrete- self compacting	g concrete
Geopolymer C	oncrete.	
	TOTAL: 45	HOURS
REFERENCES	ð:	
1. Neville, A.M.	<i>A., "Properties of Concrete", Pitman Publishing Limited, London, 2011</i>	
2. Gambhir, M	I.L., "Concrete Technology", Tata McGraw Hill Co., New Delhi, 2004	
3. Neville, A.I	M. and Brooks J.J., "Concrete Technology", Pearson Education, Indian Reprint, 200.	2.
4. IS: 269 – 19	989, Specification for Ordinary Portland cement 33 Grade (Fourth Revision), 1998.	
5 IG 2206 (F		G, 1 1

- 5. IS: 2386 (Part I to VIII) 1963, Method of Tests for Aggregate for Concrete, Bureau of Indian Standards, New Delhi.
- 6. IS: 383 1970, Specification for Course and Fine Aggregates from Natural Sources for Concrete, Bureau of Indian Standards, New Delhi
- 7. IS: 516 1959, Method of Tests for Strength of Concrete, Bureau of Indian Standards, New Delhi.
- 8. IS: 10262 2009, Recommended Guidelines for Concrete Mix Design, Bureau of Indian Standards, New Delhi.
- 9. ACI Committee 211.1,91 Standard Practice for Selecting Proportions for Normal, Heavy weight and Mass Concrete, ACI Manual of Concrete Practice Part 1, 1991, American Concrete Institute, Detroit.

2302CE404				GI	EOTE	CHNI	CAL F	ENGIN	IEERI	NG -]	[Ι		P	C
													5 0	U	3
PREREQUI	ISITE :	:													
	1. Eng	gineer	ing Ge	ology.											
	2. Me	chanic	cs of F	uids.											
COURSE O	BIEC	TIVE	S:												
	2020														
	1. 7	Го und	erstand	the s	oil clas	sificat	ion sys	stem ar	nd phys	sical p	roperti	es of so	oil.		
	2. 7	Го fam	iliarize	e with	the eng	gineeri	ng pro	perties	of soil	s- con	pressi	bility, s	shear s	trengt	n, and
	p	bermea	bility.												
	3. To	o calcu	late the	e stress	s distri	bution	and Sł	near Sti	rength	of soil					
COUDSE O	UTCO	MES	•												
COURSE O		JNIES	•												
On	the suc	cessfu	ıl com	oletion	of the	course	e, stude	ents wi	ll be al	ole to					
CO1:	Expl	ain the	three-	phase	system	n of soi	il and t	heir re	lations	hip					
CO2:	Calcu	ulate t	he perr	neabili	ty and	effect	ive stre	esses ir	the so	oil					
$\frac{\text{CO3:}}{\text{CO4:}}$	Com	rmine	the stre	ess dis	of the	on and	compa	iction (of the s	011					
CO4.	Deter	rmine	the she	ear stre	ength o	f the so	oil								
	2000				<u></u>										
COs Vs PC)s MA	PPIN	G:												
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12]	
	CO1	3	3	2	2	1	-	-	-	-	-	-	2	_	
	CO2	3	3	2	3	1	-	-	-	-	-	-	2		
	CO3	3	3	2	3	1	1	1	-	-	-	-	2		
	CO4	3	3	2	2	1	1	1	-	-	-	-	2		
	CO5	3	3	3	2	1	1	1	-	-	-	-	2		
COs Vs PS	Os M.	APPI	NG:												
						Oc PS		02 PS	03						
					C	01 1									
					Č	02 2	2 -								
					C	03 2	2 -		-						
					С	O4 2	2 -								
					C	05 2	2 -								
COUDER C															
COURSE C	UNIE	21NIS:													
MODULE I	SO	DIL CI	LASSI	FICA'	ΓΙΟΝ	AND	INDEX	X PRO	PERT	TIES				9Ho	urs
Soil formation	n - so	il min	erals –	soil s	tructur	e - three	ee phas	se syste	em - d	efiniti	ons- in	terrela	tionshi	ps - I	ndex
properties - I	S soil	<u>cla</u> ssif	ication	-sol	deposi	ts in Ir	ndia.							•	
MODULE I	I PE	RME	ABIL	TY A	ND EI	FFEC	FIVE S	STRES	SES					9 Ho	urs

Soil hydraulics: soil water – capillary phenomenon – geostatic stress - neutral and effective stresspermeability – Darcy's Law- field and laboratory test - seepage and flow nets. 9 Hours

MODULE III STRESS DISTRIBUTION AND COMPACTION

Stress Analysis- Stress due to concentrated load, due to uniformly loaded area, line load strip load- pressure distribution diagrams - contact stress - Westergarrd's analysis- Compaction - laboratory tests - field compaction.

MODULE IV CONSOLIDATION

One-dimension consolidation - consolidation process - consolidation theory - laboratory test - pre consolidation pressure – total settlement and time rate of settlement-curve fitting methods.

MODULE V SHEAR STRENGTH

Shear strength- Mohr – coulomb theory – shear strength parameter – direct shear, triaxial, and UCC tests – drainage conditions- pore pressure parameters – stress path – in situ shear strength - factors affecting shear strength - shearing characteristics of sand and clay.

TOTAL: 45 HOURS

9 Hours

9 Hours

REFERENCES:

- Bowles, J.E., Physical and Geotechnical Properties of Soils, McGraw Hill, 1998. 1.
- 2. Venkataramiah. C., Geo Technical Engineering, NAIP, 2002.
- 3. https://archive.nptel.ac.in/courses/105/105/105105168/.
- Advanced Soil Mechanics Course (nptel.ac.in). 4.
- 5. https://civilenggforall.com/soil-mechanics-civil-engineering-gate-2020-study-material-free-download-pdfcivilenggforall/.

2302EC405				EN	VIRC	ONME	NTAL	ENG	INEE	RING		Ι	T	Р	C
												3	3 0	0	3
PREREQU	ISITE:	:													1
	1. Fl	uid M	echani	cs.											
	2. W	ater T	echnol	ogy an	d Gree	en Che	mistry.								
	3. En	viron	mental	scienc	e and	sustain	ability	•							
COURSEO	BIFC	TIVE	S												
	DJEC		0.												
	1. T	o intro	duce t	he con	nponer	nts and	design	of cor	ivevan	ce svs	tem.				
	2. T	o crea	te an a	bility t	o desig	gn and	adopt	the req	uired v	vater t	reatme	nt syste	em.		
	3. T	o train	the st	udents	to ana	lyze w	ater di	stributi	on sys	tem ar	d supp	ly to b	uilding	s.	
	4. T	o unde	erstand	the in	portar	nce of p	plannin	g and	design	of sev	verage	system	ı.		
	5. T	o impa	art the	signifi	cation	of disp	osal o	f Sewa	ge.						
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~															
COURSE O	OUTCO	OMES	:												
On	the are	agast	1	lation	of the	201100	atuda	nto mi	11 ha al	la to					
	Outli	no the	n com	amont	of the	course	e, stude	of we	II De al	ble to					
$\frac{\text{CO1.}}{\text{CO2.}}$	Selec	t and	design	the co	nventi	onal ar	nd adva	nced t	reatme	nt uni	ts for th	ne treat	ment o	f wate	r
<u> </u>	Anal	vze th	e wate	r distri	bution	netwo	rk and	extend	$\frac{1}{1}$ to the	indivi	dual bi	uilding	s	1 wate	L
<u> </u>	Build	l a sev	verage	system	h by flo	ow esti	matior	and d	esignir	ng suit	able siz	ze of se	ewers		
CO5:	Desig	gn the	compo	onents	of was	tewate	r treat	nent fa		s for p	roper d	isposal			
										- r	- <b>I</b>	- <b>F</b>	-		
COs Vs PC	Os MA	PPIN	G:												
				1	1			1	T	T	1				
	COs	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12		
	CO1	2	1	-	-	-	1	2	-	-	-	-	-		
	CO2	3	2	1	-	-	2	3	-	-	-	-	1		
	CO3	3	3	2	-	-	2	3	-	-	-	-	2		
	C04	3	3	1	-	-	$\frac{2}{2}$	3	-	-	-	-	1		
	0.05	5	5	1	-	-	2	5	-	-	-	-	1		
COs Vs PS	SOs M	APPI	NG:												
					C	Os PS	O1PS	O2PS	03						
					C	2 <b>01</b> 1	1 -								
					C	2 <b>02</b> 2	2 -	-							
					C	2 <b>03</b> 2	2 -								
					C	2 <b>04</b> 2	2 -								
					C	205 2	2 -	-							
COURSE C	ONTE	ENTS:													
	, L_				<u> </u>			~ ~ ~ ~ ~ ~ ~						0.77	
MODULE I		ATER	R SUPI	<u>'LY –</u>	<u>SOUF</u>	RCE A	ND CO	JNVE	YAN	<u>E</u>		~		<b>9 Ho</b>	ars
Predicting d	emand	for wa	ater – S	Source	s of w	ater – S	Source	selecti	$\log - V$	Vater o	quality	– Stan	dards f	or pot	able
water – Intal	ce struc	tures	– Pipes	s: Mate	erials, l	Laying	, Jointi	ing, Te	sting -	- Pump	o select	10n.			

### MODULE II WATER TREATMENT

9 Hours

Objectives – Selection of unit operations and processes – Principles of Screening	g, flocculation,
sedimentation, filtration – Design principles of flash mixer, clariflocculator, settling tanks	s, sand filters –
Disinfection – Softening – Desalination – Aeration – Iron and Manganese removal – D	Defluoridation –
Residue management.	
MODULE III WATER DISTRIBUTION	9 Hours
Requirements of water distribution - Storage and balancing reservoirs - Distribution	Layouts - pipe
appurtenances – Hydraulics – Analysis of distribution networks – operation and main	itenance – Leak
detection – House service connection.	
MODULE IV SEWERAGE SYSTEM – COLLECTION AND TRANSMISSION	9 Hours
Sources and characteristics of sewage – Sanitary sewage flow estimation – Sewer materials	s, types, shape –
Hydraulics of flow in sanitary sewers – Sewer design – Storm runoff estimation – Sewer a	appurtenances –
Plumbing systems for drainage.	
MODULE V SEWAGE TREATMENT AND DISPOSAL	9 Hours
Objectives – Selection of Treatment Methods – Septic tanks with soak pits – Activated Slue	dge Process and
Extended aeration systems – Trickling filters – Sequencing Batch Reactor (SBR) – U	JASB – Waste
Stabilization Ponds – Recent Advances in Sewage Treatment – Discharge standards – Slu	dge treatment –
Disposal of sludge.	C
ТОТА	L: 45 HOURS
REFERENCES:	
1. Garg, S.K., Environmental Engineering Vol. II, Khanna Publishers, New Delhi, 200	)3.
2. Metcalf and Eddy – Wastewater Engineering – Treatment and Reuse, Tata Mc. Gra	w – Hill Company,
New Delhi, 2010.	
3. Manual on Sewerage and Sewage Treatment, CPHEEO, Ministry of Url	ban Development,
Government of India, New Delhi, 1997.	
4. Garg, S.K., "Environmental Engineering", Vol.1 Khanna Publishers, New Delhi, 20	005.
5. Modi, P.N. "Water Supply Engineering", Vol. I Standard Book House, New Delhi, 2	2005.

6. Punmia, B.C., Ashok K Jain and Arun K Jain, "Water Supply Engineering", Laxmi Publications Pvt. Ltd., New Delhi, 2005

Image: construction of the course, students will be able to         COURSE OUTCOMES:         COURSE OUTCOMES:         A. Lay down broader guidelines of human values and chics for internal and external stakeholders.         COURSE OUTCOMES:         COURSE out the successful completion of the course, students will be able to         COURSE OUTCOMES:         COURSE OUTCOMES:         COURSE OUTCOMES:         COO:       Analyze the principles of effective governance and evaluate their implementation in different scenarios.         CO2:       Analyze the principles of effective governance and evaluate their promoting human rights and create strategies to address ethical dilemmas.         CO3:       Create innovative strategies for improving institutional management and evaluate their potential impact.         CO4:       Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.         CO5:       Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.         CO6:       Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.         CO	2301HSX01		UNIVE	RSAI	HUN	IAN V	ALUE	ES AN	D ETH	HICS			L	Т	P	С
PREREQUISITE:         I Professional Ethics.         COURSE OBJECTIVES:         I Reinstate India's rich cultural legacy and human values of which we are the custodians.         2. Focus on professional ethics, which help citizens to discern desirable and undesirable actions.         3. Re-emphasize constitutional values, universal values, and holistic education to create integrated citizens.         4. Lay down broader guidelines of human values and ethics for internal and external stakeholders.         COURSE OUTCOMES:         On the successful completion of the course, students will be able to         COI: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         COI: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         COI: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         COI: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         COI: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         COI: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         COI: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         COS: E													1	0	2	2
1. Professional Ethics.         COURSE OBJECTIVES:         1. Reinstate India's rich cultural legacy and human values of which we are the custodians.         2. Focus on professional ethics, which help citizens to discern desirable and undesirable actions.         3. Re-emphasize constitutional values, universal values, and holistic education to create integrated citizens.         4. Lay down broader guidelines of human values and ethics for internal and external stakeholders.         COURSE OUTCOMES:         On the successful completion of the course, students will be able to         CO1: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         CO2: Analyze the principles of effective governance and evaluate their implementation in different scenarios.         CO3: Create innovative strategies for improving institutional management and evaluate their potential impact.         CO4: Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.         CO5: Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.         CO6: Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.         CO5 Vs POs MAPPING:         CO3 2 1 2 2 - 1 1 2 2 1 - 1 1 2 2 1 - 1 1 2 2 1 - 1 1 2 2 1 - 1 1 2 1 - 1 1 1 2 1 - 1 1 1 2 1 - 1 1 1 1	PREREQU	ISITE:														
1. Professional Ethics.         COURSE OBJECTIVES:         1. Reinstate India's rich cultural legacy and human values of which we are the custodians.         2. Focus on professional ethics, which help citizens to discern desirable and undesirable actions.         3. Re-emphasize constitutional values, universal values, and holistic education to create integrated citizens.         4. Lay down broader guidelines of human values and ethics for internal and external stakeholders.         COURSE OUTCOMES:         On the successful completion of the course, students will be able to         CO1: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         CO2: Analyze the principles of effective governance and evaluate their implementation in different scenarios.         CO2: Create innovative strategies for improving institutional management and evaluate their potential impact.         CO4: Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.         CO5: Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.         CO6: Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.         CO5 VS POS MAPPING:         CO6 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO10 PO11 PO12 CO1 2 1 2 - 1 1 1 2 1 - 1 1 CO1 2 0																
COURSE OBJECTIVES:         1. Reinstate India's rich cultural legacy and human values of which we are the custodians.         2. Focus on professional ethics, which help citizens to discern desirable and undesirable actions.         3. Re-emphasize constitutional values, universal values, and holistic education to create integrated citizens.         4. Lay down broader guidelines of human values and ethics for internal and external stakeholders.         COURSE OUTCOMES:         On the successful completion of the course, students will be able to         COURSE OUTCOMES:         On the successful completion of the course, students will be able to         COURSE OUTCOMES:         COURSE OUTCOMES:         COURSE OUTCOMES:         COURSE OUTCOMES:         COURSE of the successful completion of the course, students will be able to         COURSE OUTCOMES:         CO2:         Analyze the principles of effective governance and evaluate their implementation in different scenarios.         CO3:         Create innovative strategies for improving institutional management and evaluate their potential impact.         CO4:         Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.		1. Professio	onal Eth	ics.												
1. Reinstate India's rich cultural legacy and human values of which we are the custodians.         2. Focus on professional ethics, which help citizens to discern desirable and undesirable actions.         3. Re-emphasize constitutional values, universal values, and holistic education to create integrated citizens.         4. Lay down broader guidelines of human values and ethics for internal and external stakeholders.         COURSE OUTCOMES:         On the successful completion of the course, students will be able to         CO1: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         CO2: Analyze the principles of effective governance and evaluate their implementation in different scenarios.         CO3: Create innovative strategies for improving institutional management and evaluate their potential impact.         CO4: Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.         CO5: Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.         CO6: Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.         COS VS POS MAPPING:         COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10PO11 PO12 CO3 2 1 2 1 1 2 2 1 1 CO3 2 1 2 1 1 2 2 1 1 1 CO3 2 0 1 1 2 2 0 1 1 2 0 1	COUDSEO	DIECTIVI	76.													
1. Reinstate India's rich cultural legacy and human values of which we are the custodians.         2. Focus on professional ethics, which help citizens to discern desirable and undesirable actions.         3. Re-emphasize constitutional values, universal values, and holistic education to create integrated citizens.         4. Lay down broader guidelines of human values and ethics for internal and external stakeholders.         COURSE OUTCOMES:         On the successful completion of the course, students will be able to         COURSE OUTCOMES:         On the successful completion of the course, students will be able to         COURSE OUTCOMES:         COURSE of effective governance and evaluate their implementation in different scenarios.         CO1: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         CO2: Analyze the principles of effective governance and evaluate their implementation in different scenarios.         CO3: Create innovative strategies for improving institutional management and evaluate their potential impact.         CO4: Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.         CO5: Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.         CO6: Analyze the role of community engagement in promoting social justice and create	COURSEO	BJECTIVI	29:													
2. Focus on professional ethics, which help citizens to discern desirable and undesirable actions.         3. Re-emphasize constitutional values, universal values, and holistic education to create integrated citizens.         4. Lay down broader guidelines of human values and ethics for internal and external stakeholders.         COURSE OUTCOMES:         COURSE OUTCOMES:         On the successful completion of the course, students will be able to         CO1: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         CO2: Analyze the principles of effective governance and evaluate their implementation in different scenarios.         CO3: Create innovative strategies for improving institutional management and evaluate their potential impact.         CO4: Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.         CO5: Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.         CO6: Analyze the proloment in promoting social justice and create initiatives to empower marginalized groups.         CO5: Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.         CO6: Analyze the principles of PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 2 1 2 1 1 2 2 1 1 1 CO2 2 1 2 1 1 2 2 1 1 1 CO2 2 1 1 1 2 2 1 1 1 1 2 1 1 1 CO3 2 1 1 2		1. Reinsta	e India	's rich	cultura	al lega	cy and	humar	n value	s of w	hich w	e are	the	custo	dians.	
actions.       3. Re-emphasize constitutional values, universal values, and holistic education to create integrated citizens.         4. Lay down broader guidelines of human values and ethics for internal and external stakeholders.         COURSE OUTCOMES:         On the successful completion of the course, students will be able to         COURSE OUTCOMES:         On the successful completion of the course, students will be able to         CO1: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         CO2: Analyze the principles of effective governance and evaluate their implementation in different scenarios.         CO3: Create innovative strategies for improving institutional management and evaluate their potential impact.         CO4: Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.         CO5: Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.         CO6: Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.         Cos Vs POs MAPPING:         Cos 2         Cos 2         Cos 2         Cos 2         Cos Vs POs MAPPING:         C		2. Focus o	n profe	ssional	ethics	, whic	h help	citizen	s to di	scern c	lesirab	le and	1 un	desira	ıble	
3. Re-emphasize constitutional values, universal values, and holistic education to create integrated citizens.         4. Lay down broader guidelines of human values and ethics for internal and external stakeholders.         COURSE OUTCOMES:         On the successful completion of the course, students will be able to         COI: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         CO1: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         CO2: Analyze the principles of effective governance and evaluate their implementation in different scenarios.         CO3: Create innovative strategies for improving institutional management and evaluate their potential impact.         CO4: Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.         CO5: Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.         CO6: Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.         CO5 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 2 1 2 - 1 1 2 2 1 - 1 1 CO2 2 1 2 - 1 1 2 2 1 - 1 1 2 1 - 1 1 CO3 2 1 1 2 - 1 1 2 2 1 - 1 1 1 2 1 - 1 1 CO3 2 1 1 2 - 1 1 1 2 1 - 1 1 1 2 1 - 1 1 1 CO3 2 1 1 2 - 1 1 1 2 1 - 1 1 1 1 1 1 1 1 1		actions.	•				•									
integrated citizens.         4. Lay down broader guidelines of human values and ethics for internal and external stakeholders.         COURSE OUTCOMES:         On the successful completion of the course, students will be able to         COIT Apply critical thinking skills to solve problems and make informed decisions in various contexts.         CO1: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         CO2: Analyze the principles of effective governance and evaluate their implementation in different scenarios.         CO4: Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.         CO5: Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.         CO6: Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.         COs Vs POs MAPPING:         Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 2 1 2 - 1 1 2 2 1 - 1 1 CO3 2 1 2 - 1 1 2 2 1 - 1 1 CO3 2 1 2 - 1 1 1 2 2 1 - 1 1 1 CO3 1 - 1 1 CO3 2 1 1 2 - 1 1 1 2 2 1 - 1 1 1 CO3 1 - 1 1 CO3 2 1 1 2 - 1 1 1 2 2 1 - 1 1 1 2 1 - 1 1 1 CO3 2 1 1 2 - 1 1 1 2 2 1 - 1 1 1 2 1 1 - 1 1 1 CO3 2 2 1 1 2 - 1 1 1 2 2 1 - 1 1 1 2 2 1 - 1 1 1 2 2 1 - 1 1 1 2 1 1 - 1 1 1 1		3. Re-emp	hasize o	constit	utional	value	s, univ	ersal v	alues,	and ho	listic e	educat	tion	to cre	eate	
4. Lay down broader guidelines of human values and ethics for internal and external stakeholders.         COURSE OUTCOMES:         On the successful completion of the course, students will be able to         COI:         Apply critical thinking skills to solve problems and make informed decisions in various contexts.         CO2:         Analyze the principles of effective governance and evaluate their implementation in different scenarios.         CO4:         Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.         CO5:         Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.         CO6:         Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.         Cos Vs POs MAPPING:         CO5:         CO6         CO2       1       2       -       1         CO4:       Cos PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO12         CO5:       Cos PO1       PO2       PO3       PO4       PO5       PO6<		integrated	citizens	5.												
stakeholders.         COURSE OUTCOMES:         COURSE OUTCOMES:         On the successful completion of the course, students will be able to         CO1: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         CO2: Analyze the principles of effective governance and evaluate their implementation in different scenarios.         CO3: Create innovative strategies for improving institutional management and evaluate their potential impact.         CO4: Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.         CO5: Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.         CO6: Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.         COs Vs POS MAPPING:         CO3 2 1 2 - 1 1 2 2 1 - 1         CO3 2 1 2 - 1 1 2 2 1 - 1         CO4 2 1 2 1 1 2 2 1 - 1         CO4 2 1 2 1 1 2 2 1 - 1         CO4 2 1 2 1 1 2 3 1 - 1         CO3 2 1 2 1 1 2 3 1 - 1		4. Lay dov	vn broa	der gu	ideline	s of hu	ıman v	alues a	ind eth	ics for	intern	al and	l ext	ternal		
COURSE OUTCOMES:         On the successful completion of the course, students will be able to         CO1:       Apply critical thinking skills to solve problems and make informed decisions in various contexts.         CO2:       Analyze the principles of effective governance and evaluate their implementation in different scenarios.         CO3:       Create innovative strategies for improving institutional management and evaluate their potential impact.         CO4:       Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.         CO5:       Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.         CO6:       Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.         COs Vs POs MAPPING:         Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 2 1 2 -		stakeholde	ers.													
COURSE OUTCOMES:         On the successful completion of the course, students will be able to         CO1: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         CO2: Analyze the principles of effective governance and evaluate their implementation in different scenarios.         CO3: Create innovative strategies for improving institutional management and evaluate their potential impact.         CO4: Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.         CO5: Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.         CO6: Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.         COs Vs POs MAPPING:         CO3 2 1 2 - 1 1 3 1 - 1 1         CO4 2 1 2 - 1 1 2 2 1 - 1         CO4 2 1 2 - 1 1 2 2 1 - 1         CO3 2 1 2 - 1 1 2 2 1 - 1         CO4 2 1 2 - 1 1 2 2 1 - 1         CO4 2 1 2 - 1 1 2 2 1 - 1         CO4 2 1 2 - 1 1 2 2 1 - 1	COUDSEO	UTCOME	a.													
On the successful completion of the course, students will be able to         CO1: Apply critical thinking skills to solve problems and make informed decisions in various contexts.         CO2: Analyze the principles of effective governance and evaluate their implementation in different scenarios.         CO3: Create innovative strategies for improving institutional management and evaluate their potential impact.         CO4: Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.         CO5: Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.         CO6: Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.         COs Vs POs MAPPING:         CO3 2 1 2 - 1 1 2 3 1 - 1         CO4 2 1 2 - 1 1 2 2         CO4 2 1 2 - 1 1 2         CO5 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12         CO6 2 1 2 - 1 1 2 3 1 - 1         CO3 2 1 2 - 1 1 2 3 1 - 1         CO3 2 1 2 - 1 1 2 3 1 - 1         CO4 2 1 2 - 1 1 2 2 1 - 1	COURSEO	UICOME	5:													
CO1:       Apply critical thinking skills to solve problems and make informed decisions in various contexts.         CO2:       Analyze the principles of effective governance and evaluate their implementation in different scenarios.         CO3:       Create innovative strategies for improving institutional management and evaluate their potential impact.         CO4:       Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.         CO5:       Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.         CO6:       Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.         CO5:       Evaluate the injoinal intervence of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.         CO6:       Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.         Cos vs Pos MAPPING:         CO3 2       1       2       -       1         CO3 2       1       2       -       -       1         CO3 2       1       2       -       -       1         CO3 2       1       2       -       -       1       1       -       1         CO3 2       1	On	the successf	ul comp	letion	of the	course	, stude	nts wi	ll be at	ole to						
CO2:       Analyze the principles of effective governance and evaluate their implementation in different scenarios.         CO3:       Create innovative strategies for improving institutional management and evaluate their potential impact.         CO4:       Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.         CO5:       Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.         CO6:       Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.         CO5 Vs POs MAPPING:       Image: Strategies in the importance of a fair and transparent in the importance of a fair and transparent in promoting social justice and create initiatives to empower marginalized groups.         CO6:       Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.         CO8 Vs POs MAPPING:       Image: Strategies in the importance of a fair and transparent in the importance of a fair and transparent in the importance of a fair and transparent in the importance of the importance of a fair and transparent in promoting social justice and create initiatives to empower marginalized groups.         CO3:       2       1       2       -       1       1       -       1         CO3:       2       1       2       -       -       1       -       1       1 </td <td>C01:</td> <td>Apply critic</td> <td>al think</td> <td>ting sk</td> <td>ills to a</td> <td>solve p</td> <td>oroblen</td> <td>ns and</td> <td>make</td> <td>inform</td> <td>ed dec</td> <td>cision</td> <td>s in [•]</td> <td>vario</td> <td>us con</td> <td>texts.</td>	C01:	Apply critic	al think	ting sk	ills to a	solve p	oroblen	ns and	make	inform	ed dec	cision	s in [•]	vario	us con	texts.
Scenarios.CO3:Create innovative strategies for improving institutional management and evaluate their potential impact.CO4:Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.CO5:Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.CO6:Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.COs Vs POs MAPPING:CO3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 2 1 2 1 1 3 1 1 CO2 2 1 2 1 1 2 2 1 1 CO3 2 1 2 1 1 2 2 1 1 CO3 2 1 2 1 1 2 2 1 1 CO3 2 1 2 1 1 2 2 1 1 CO3 2 1 2 1 1 2 2 1 1 CO3 2 1 2 1 1 2 2 1 1 CO3 2 1 2 1 1 2 2 1 1 CO3 2 1 2 1 1 2 2 1 1	<b>CO2:</b>	Analyze the	e princip	oles of	effecti	ve gov	vernanc	e and	evalua	te thei	r imple	ement	atio	n in d	iffere	nt
Create innovative strategies for improving institutional management and evaluate their potential impact.CO4:Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.CO5:Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.CO6:Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.COs Vs POs MAPPING:COs Vs POs MAPPING:CO3 2 1 2 -  1 1 3 1 -  1CO3 2 1 2 -  1 1 2 2 1 -  1CO3 2 1 2 -  1 1 2 2 1 -  1CO3 2 1 2 -  1 1 2 2 1 -  1CO4 2 1 2 -  1 1 2 2 1 -  1CO3 2 1 2 -  1 1 2 2 1 -  1CO3 2 1 2 -  1 1 2 2 1 -  1CO4 2 1 2 -  1 1 2 2 1 -  1CO4 2 1 2 -  1 1 2 2 1 -  1CO4 2 1 2 -  1 1 1 2 1 -  1CO4 2 1 2 -  1 1 1 2 1 -  1CO4 2 1 2 -  1 1 1 2 1 -  1CO4 2 1 2 -  1 1 1 2 1 -  1	CO3.	scenarios.		440400	es for								1	- 4le a		
Impact.CO4:Understand the importance of a fair and transparent system of rewards and reprimand and apply these principles in real-world situations.CO5:Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.CO6:Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.COs Vs POs MAPPING:COs Vs POs MAPPING:COs Vs POs MAPPING:COs 2 1 2 - 1 1 3 1 - 1CO3 2 1 2 - 1 1 2 2 1 - 1CO3 2 1 2 - 1 1 2 2 1 - 1CO3 2 1 2 - 1 1 2 2 1 - 1CO3 2 1 2 - 1 1 2 2 1 - 1CO3 2 1 2 - 1 1 2 2 1 - 1CO3 2 1 2 - 1 1 2 2 1 - 1CO3 2 1 2 - 1 1 2 2 1 - 1CO3 2 1 2 - 1 1 2 2 1 - 1CO3 2 1 2 - 1 1 2 2 1 - 1CO4 2 1 2 - 1 1 1 2 1 - 1CO4 2 1 2 - 1 1 1 2 1 - 1CO4 2 1 2 - 1 1 1 2 1 - 1CO4 2 1 2 - 1 1 1 2 1 - 1CO4 2 1 2 - 1 1 1 2 1 - 1CO5 2 1 2 - 1 1 2 - 1 1 1 2 1 - 1	CO3:	Create inno	vative s	trategi	es for	improv	ving in	stitutio	onal ma	anager	nent ai	nd eva	iluat	te the	r pote	ntial
In the section of the	CO4:	Understand	the im	ortanc	e of a	fair an	d trans	parent	syster	n of re	wards	and r	epri	mand	and a	pply
CO5:Evaluate the effectiveness of institutional policies in promoting human rights and create strategies to address ethical dilemmas.CO6:Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.COs Vs POs MAPPING:COs Vs POs MAPPING:COs Vs POs MAPPING:CO3 2 1 2 - 1 1 3 1 - 1CO3 2 1 2 - 1 1 3 1 - 1CO3 2 1 2 - 1 1 2 2 1 - 1CO4 2 1 2 - 1 1 2 2 1 - 1CO4 2 1 2 - 1 1 2 2 1 - 1CO4 2 1 2 - 1 1 2 2 1 - 1CO4 2 1 2 - 1 1 2 2 1 - 1CO4 2 1 2 - 1 1 2 2 1 - 1CO5 2 1 2 - 1 1 2 2 1 - 1CO4 2 1 2 - 1 1 1 2 1 - 1CO4 2 1 2 - 1 1 1 2 1 - 1CO4 2 1 2 - 1 1 1 2 1 - 1CO5 2 1 2 - 1 1 1 2 1 - 1CO5 2 1 2 - 1 1 1 2 1 - 1CO6 2 1 2 - 1 1 1 2 1 - 1CO6 2 1 2 - 1 1 1 2 1 - 1CO5 2 1 2 - 1 1 1 2 3 1 - 1CO5 2 1 2 - 1 1 1 2 3 1 - 1CO5 2 1 2 - 1 1 1 2 3 1 - 1		these princi	ples in i	real-w	orld sit	uation	s.	1	5				I			11 5
CO6:       Analyze the role of community engagement in promoting social justice and create initiatives to empower marginalized groups.         COs Vs POs MAPPING:         COs Vs POs MAPPING:         CO3       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12         CO3       2       1       2       -       -       1       1       3       1       -       -       1         CO3       2       1       2       -       -       1       1       2       1       -       1         CO4       2       1       2       -       -       1       1       2       1       -       1         CO4       2       1       2       -       -       1       1       2       1       -       1         CO5       2       1       2       -       -       1       2       3       1       -       1	CO5:	Evaluate th	e effec	tivene	ss of	institu	tional	polici	es in	prome	oting l	numar	ı riş	ghts a	and c	reate
Cos vs POs MAPPING:         COs 2 1 2 - 1 1 3 1 - 1         COs 2 1 2 - 1 1 2 2 1 - 1         COs 2 1 2 - 1 1 2 2 1 - 1         COS 2 1 2 - 1 1 2 2 1 - 1         COS 2 1 2 - 1 1 1 2 1 - 1         COS 2 1 2 - 1 1 1 2 1 - 1         COS 2 1 2 - 1 1 1 2 1 - 1	<u> </u>	strategies to	addres	s ethic	al dile	mmas.	amont	in nroi	moting		linetio	a and	oro	oto in	itiotiv	as to
COs Vs POs MAPPING:         COs Vs POs MAPPING:       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12         CO1       2       1       2       -       -       1       1       3       1       -       -       1         CO2       2       1       2       -       -       1       1       2       1       -       -       1         CO3       2       1       2       -       -       1       1       2       1       -       -       1         CO4       2       1       2       -       -       1       1       2       1       -       -       1         CO5       2       1       2       -       -       1       2       3       1       -       -       1         CO5       2       1       2       -       -       1       2       2       2       1       1       1       2       1       -       1       1       2       1       -       1       1       2       1       -       1       1       1       <	C00:	ampower m	arginal	cominized or	roups	engag	ement	in proi	noting	socia	Justic	e and	cre	ate m	manv	es to
COs Vs POs MAPPING:         COs PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12         CO1       2       1       2       -       -       1       1       3       1       -       -       1         CO2       2       1       2       -       -       1       1       2       1       -       -       1         CO3       2       1       2       -       -       1       1       2       1       -       -       1         CO4       2       1       2       -       -       1       1       2       1       -       -       1         CO5       2       1       2       -       -       1       2       3       1       -       -       1         CO5       2       1       2       -       -       1       2       2       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1		empower m	arginar	izeu gi	oups.											
COs       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12         CO1       2       1       2       -       -       1       1       3       1       -       -       1         CO2       2       1       2       -       -       1       2       2       1       -       -       1         CO3       2       1       2       -       -       1       1       2       1       -       -       1         CO3       2       1       2       -       -       1       1       2       1       -       -       1         CO4       2       1       2       -       -       1       1       2       1       -       1         CO5       2       1       2       -       -       1       2       2       1       -       1         CO5       2       1       2       -       -       1       2       2       2       1       -       1	COs Vs PC	)s MAPPIN	G:													
COs       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12         CO1       2       1       2       -       -       1       1       3       1       -       -       1         CO2       2       1       2       -       -       1       2       2       1       -       -       1         CO3       2       1       2       -       -       1       1       2       1       -       -       1         CO4       2       1       2       -       -       1       1       2       1       -       -       1         CO5       2       1       2       -       -       1       2       3       1       -       -       1         CO5       2       1       2       -       -       1       2       2       2       1       1       -       1       1       -       1       1       -       1       1       -       1       1       -       1       1       -       1       1       -       1											<b>–</b> • • •					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		COs PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO</b> 7	<b>PO8</b>	<b>PO9</b>	PO10	PO1	<u>1 PO</u>	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CO1 2 CO2 2	1	2	-	-	1	2	$\frac{3}{2}$	1	-	-	-	1		
CO4       2       1       2       -       -       1         CO5       2       1       2       -       -       1       2       3       1       -       -       1         CO6       2       1       2       -       -       1       2       3       1       -       -       1		<b>CO3</b> 2	1	2	-	-	1	1	2	1	-	-		1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<b>CO4</b> 2	1	2	-	-	1	1	2	1	-	-		1		
		CO5 2	1	2	-	-	1	2	3	1	-	-		1		
		<b>CO6</b> 2	1	2	-	-	1	2	2	2	-	-		1		
COs Vs PSOs MAPPING:	COs Vs PS	Os MAPPI	NG:													
		_ ~	• = •													
COs PSO1 PSO2 PSO3					C	Os PS	O1PS	O2PS	03							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					C	$\frac{01}{02}$	·   -	-								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					C	$\frac{02}{03}$ -			·							

8 Hours

9 Hours

9 Hours

9 Hours

**10 Hours** 

<b>CO4</b>	-	-	-	
CO5	-	-	-	
<b>CO6</b>	-	-	-	

#### **COURSE CONTENTS:**

#### MODULE I INTRODUCTION TO INDIAN ETHOS

Meaning of ethos and cultural essence of India – Scriptures as the base of the Indian Knowledge System (IKS) – Integrating the two methodologies: interiorization process for self-exploration, and exterior scientific pursuit for the prosperity of world – The Law of Karma and Nishkama Karma (The Law of action and selfless action).

**Practical**: Five hours of Yoga practice per week, Ethics through Music and Indian Poetry, Community Engagement.

#### MODULE II HUMAN VALUES AND ETHICS

Knowing the Self and the universal values that we stand for - This is self-enquiry & self-discovery – Background conversations and deep listening - recognizing the assumptions that we make - the biases we have - and the implications for ethical action – Self-identity: distinguishing and embracing oneself (and others) four profiles (inner-potential, social, professional, personality) – Distinguish ideology, perspectives beliefs from embodying values.

**Practical:** Self-discovery, self-enquiry and Mindfulness, Yama & Niyama of Ashthang Yoga.

#### MODULE III CONSTITUTIONAL VALUES AND GLOBAL CITIZENSHIP

Values embedded in the Preamble of the Indian Constitution Integration of Human Rights and duties – Directive principles and responsibilities as citizens of India – Sensibility and responsibilities towards global environment, Loksangraha and Vasudhaiva Kutumbakam.

**Practical:** Debates and Theatre on diversity and plurality, research on similarities and differences in the ethos of different countries

#### MODULE IV VALUES AND SKILLS FOR YOUTH

Designing to make a difference through strategies using the Conscious Full Spectrum Response model – Listening for commitment behind complaints to transform contentious arguments and create a space for listening and change – Distinguishing judgement from discernment – Being assertive and confident (assertiveness incorporates self-confidence).

**Practical :** Development of concentration among students through music, fine arts, mathematics, sports, yoga and mindfulness.

#### MODULE V INTEGRATED PERSONALITY AND WELL-BEING

The three gunas (qualities of sattva—purity and harmony, rajas —activity and passion, tamas —darkness and chaos), the four antah-karanas (inner instruments), and panchkosha (five sheaths) – Stress management: meditated personality and agitated personality – Oneness, non-duality, and equanimity – Physical, mental, social, and spiritual well-being.

Practical : Talks on importance of the Ayurvedic concept of wellbeing and nutrition, sports activities TOTAL: 45 HOURS

### **REFERENCES:**

1. Blanchard, Kenneth and Peale, Norman Vincent. 1988. The Power of Ethical Management. New York: William Morrow and Company, Inc.

2. Gandhi, Mohandas Karamchand. 1971. Pathway to God compiled by MS Deshpande. Ahmedabad: Navajivan Mudranalaya, Navjivan Trust.

3. <u>https://fdp-si.aicte-india.org/UHV-II%20Class%20Note.php</u>

2301MC409	SUSTAINABLE DEVELOPMENT GOALS (SDGS) FOR ENGINEERS	L	Т	Р	С
		3	0	0	0
PREREOUI	SITE:				
<b>C</b>					
	1. This course assumes no prior background in sustainable development, or related fields. It covers the fundamental principles of sustainability Development Goals (SDGs) from the ground up, including the role of en practices. The course is designed to be accessible to all engineering st necessary context and foundational knowledge for understanding and engineering.	anviro and ginee udent appl	onment the rs in s, pro ying	ntal st Sustai sustai ovidir sustai	udies, nable nable g the nable
COURSE O	BJECTIVES:				
	1. Understand the principles of sustainable development and the role achieving the United Nations Sustainable Development Goals (SD	of ei Gs).	ngine	ers ir	1
	2. Analyze the environmental, social, and economic dimensions of su	ıstain	abili	ty and	1
	A not sustainable design principles and methodologies to develop	inno	votiv	0	
	engineering solutions.	mno	valiv	e	
	4. Evaluate the environmental and social impacts of engineering proj	ects a	ind p	ropos	e
	improvements.				
	5. Communicate effectively on sustainability challenges and advocate	e for	actio	nable	
	solutions.				
COURSE O	UTCOMES:				
Upo	n successful completion of the course, students will be able to				
CO1:	<b>Understand</b> the principles and concepts of sustainable development and the	he rol	e of e	engine	ers in
<u> </u>	achieving the SDGs	ataina	h:1:++	and	their
CO2:	interconnections	stama	binty	and	their
CO3:	<b>Apply</b> sustainable design principles and methodologies to engineering proj	ects.			
CO4:	<b>Evaluate</b> the environmental and social impacts of engineering solutions.				
CO5:	Communicate effectively on sustainable development issues and propose	innov	ative	soluti	ons.
COS VS PO	s MAPPING:				
l l	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO	11 PC	)12		
-	<b>CO1</b> 2 3 2 2 1 2 1 1 1 1 2				
	CO2         3         3         2         1         2         1         1         1         1         2	-			
	CO3         3         2         3         2         1         2         1         1         1         1         2				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
<b> </b>					
COs Vs PS	Os MAPPING:				

			CO		DCO2		1				
				P301	P502	P303					
			COI	-	-	-	-				
	CO5										
COL											
COL	IRSE CON	TENIS:									
MOI								( Harring			
	DULE I	INTRODUCTION TO S	5U51A	AINAI	SLE D	EVEI	JOPMENI	0 Hours			
Con	Cepts of Sus	af anatair ability									
0	Definition of sustainability.										
0	The triple	bottom ling (aconomic on	elopine	ent.	a o o i o l	)					
0	The triple	o development coole (SDC		lental,	social	) 	iona				
0	Sustamadi	e development goals (SDC	JS) and	l their	interco	mecu	ions.				
Dala	of Enginee	ra in Sustainable Dovelo	nmont								
Noie	Ethical cor	rs in Sustainable Develo	pment								
0	Engineerin	og for a sustainable future	3.								
0		dies of successful enginee	ring pr	niects	that ad	Idress	SDGs				
MO	O Case studies of successful engineering projects that address SDOS										
Clim	ate Change	and Its Impacts						12 110015			
	Causes and	l effects of climate change	<b>`</b>								
0	Mitigation	strategies (renewable ene	rov en	erove	fficien	cv)					
0	Adaptation	measures (disaster prepa	rednes	e cilete	ainable	infras	structure)				
Reso	urce Mana	gement and Conservation	n	5, 5454	inaon	innad	, in detuile)				
0	Water scar	city and management									
0	Waste mar	agement and circular eco	nomv								
Susta	ainable mate	rials and resource efficien	CV.								
MO	DULE III	SOCIAL SUSTAINABI	LITY					9 Hours			
Pove	Poverty and Inequality										
0	Global pov	verty and inequality trends									
0	Social just	ice and equity in engineer	ing pro	oiects.							
0	<ul> <li>Community engagement and development initiatives</li> </ul>										
Heal	Health and Well-being										
0	Sustainable	e healthcare and public he	alth.								
0	• Occupational health and safety.										
C	• Inclusive design and accessibility.										
MOI	MODULE IV ECONOMIC SUSTAINABILITY 9 Hours										
Sust	ainable Eco	nomic Growth									
0	• Green economy and sustainable business practices.										
0	• Sustainable finance and investment.										
0	• Circular economy and resource efficiency.										
Sustainable Infrastructure and Urban Development											
0	• Smart cities and sustainable urban planning.										
0	• Sustainable transportation and mobility.										
0	<ul> <li>Sustainable housing and community development.</li> </ul>										
MO	DULE V	ENGINEERING FOR S	SUSTA	INA	BILIT	Y		9 Hours			

### Sustainable Design Principles

- Life cycle assessment (LCA)
- Cradle-to-cradle design.
- Sustainable materials and technologies.

### **Case Studies and Projects**

- Group projects on developing sustainable solutions to local challenges.
- Presentation and evaluation of student projects.

### TOTAL: 45 HOURS

### **REFERENCES:**

1. M.P. Poonia and S.C. Sharma, Environmental Studies, Khanna Publishing, 2017.

2. R. Rajagopalan, Environmental Studies: From Crisis to Cure, Oxford University Press, 2016.

3. G. N. Tiwari and Rajeev Singh, Fundamentals of Renewable Energy Resources, Narosa Publishing, 2016.

4. Rangaswamy Rajagopal, Sustainable Urban Planning in India, Springer, 2021.

2302CE451		HYDRAULIC MACHINERY LABORATORY								Ι	<b>T</b>	P	C		
											(	) 0	2	1	
PREREQUISITE:															
	1. Fluid mechanics-1 and applied hydraulic machinery.														
COURSEO	COURSE OBJECTIVES:														
COURSEO															
	1. To acquire knowledge about properties of fluid.														
	2. To understand knowledge about the losses in pipes.														
	3. To understand knowledge about the characteristics of pumps and turbines.														
COURSE O	UTC	OMES	:												
0001020	010		•												
On	the su	ccessfu	l comp	letion	of the	course	e, stude	nts wil	ll be ab	ole to					
		Aeasure	e the fl	ow pro	operties	s of flu	iid.	- : <u>C</u> l -	(1						
	2: ( 3. (	Conduc	t the exper	iment	to find	chara	e losse	s in flo	w thro	ugh pi	pes.	0			
CO.	<b>4:</b> (	Cenduc	t exper	iment	to find	chara	cteristi	cs curv	res of v	arious	turbin	s. es.			
		Jonado	<i>c</i> enper			Unuru	eteristi	co curv	00 01 1	unous	turom	00.			
COs Vs PC	)s MA	PPIN	G:												
	COa	DO1	DO1	DO3	DO4	DO5	DOC	<b>DO7</b>	DOP	DOG		DO11	DO12		
		3	<b>PO2</b>	2	<b>PO4</b>	2	<b>PU0</b>	<b>PO</b> / 2	- PU8	<b>PU9</b>	- -	- -	2 2		
	CO2	3	2	1	1	1	2	2	-	2	-	-	2		
	CO3	3	2	1	1	1	$\frac{-}{2}$		-	2			3		
	<b>CO4</b>	3	2	1	1	1	2	2	-	2	-	-	3		
	0- M														
CUS VS PS	OS M	APPI	NG:												
					С	Os PS	O1PS	O2PS	03						
					С	01 3	3 -	-							
					С	<b>O2</b> 3	3 -	-							
					C	03	3 -	-							
					C	04 3	<b>)</b> -	-   -							
LIST OF EX	XPER	IMEN	TS:												
1. Calibrati	on of l	Rotom	eter.												
2. Flow thr	ough V	/enturi	meter	Orifice	meter	<u>.</u>	<u> </u>								
3. Flowthro	ough V	ariable	ductar	ea -Be	rnoulli	i``s Exj	perimei	nt.							
5 Determin	<ul> <li>4. Flow through Orifice, Mouthpiece and Notches.</li> <li>5. Determination of friction coefficient in pipes.</li> </ul>														
6. Determin	nation	of loss	coeffi	cients	for pip	e fittin	igs.								
7. Characte	ristics	of Cer	trifuga	l pum	ps.		0								
8. Characte	ristics	of Gea	ır pum	p											
9. Characte	ristics	of Sub	mersit	ole pun	np.										
10. Charact	eristic	s of Re	eciproc	ating p	oump.										

B.E – Civil Engineering | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2023 Approved in 11th Academic Council Meeting held on 12.06.2024

11. Characteristics of Pelton wheel turbine.

12. Characteristics of Francis turbine.

13. Characteristics of Kaplan turbine.

ADDITIONAL EXPERIMENTS:

1. Characteristics of multi stage Centrifugal pumps.

2. Characteristics of jet on vane.

#### **TOTAL: 30 HOURS**

#### **REFERENCES:**

1. Sarbjit Singh. "Experiments in Fluid Mechanics", Prentice Hall of India Pvt. Ltd, Learning

2. Private Limited, Delhi, 2009.

3. "Hydraulic Laboratory Manual", Centre for Water Resources, Anna University, 2004.

4. Modi P.N. and Seth S.M., "Hydraulics and Fluid Mechanics", Standard Book House, New Delhi, 2000.

5. Subramanya K. "Flow in open channels", Tata McGraw Hill Publishing. Company, 2001

6. Fluid Mechanics and Machinery Lab Manual – E. Venkatesan,, EGSPEC-2022

2302CE452	302CE452 ENVIRONMENTAL ENGINEERING LABORATORY										Ι	L T	P	C	
											0	) 0	2	1	
DDEDEOU	GITE													1	L
PREREQU	1511E	:													
		1 W	ater Te	chnolo	ov and	d Gree	n Cher	nistrv							
		2. En	vironn	nental	Engine	ering.		instry.							
COURSE O	BJEC	TIVE	S:												
	1. To know the basics, importance of water and wastewater parameters measurement.										t.				
	2. To know about the calibration and handling of the equipment.														
	3	3. To	bewar	e of th	e proce	edure f	for qua	ntifyin	g quali	ty para	ameters	s for w	ater and	l	
		wa	stewate	er.											
COUDEE O			1												
COURSE O		JMES	:												
On	the suc	cessfu	l comr	letion	of the	course	stude	nts wi	ll be al	le to					
CO	<b>1:</b> C	Thoose	the acc	curate	metho	d for c	alibrati	on and	1 standa	ardizat	ion of	the eau	ipment		
CO	2: U	Itilize	the pro	per sai	nple c	ollectio	on proc	cedure	for ana	lvsis.					
CO	3: S	elect th	he suita	able m	ethod t	for pre	serving	g the sa	amples	,					
CO	<b>4:</b> E	xamin	e the c	ollecte	d wate	er and v	wastew	ater fo	or vario	us par	ameter	s.			
CO	5: In	nferenc	e the r	esult o	f the s	ample	analys	is to sı	iggest	the app	oropria	te treat	ment m	ethod	
COs Vs PC	)s MA	PPIN	G:												
	COa	DO1	DOJ	DO3	DO4	DO5	DOC	DO7	DOQ	DOO	<b>DO10</b>	DO11	DO12		
		3	3	3	2	2	2	2	100	1	1010	FUII	1		
	C01	3	3	3	2	$\frac{2}{2}$	$\frac{2}{2}$	2	-	1	-	-	1		
	C02	3	3	3	2	$\frac{2}{2}$	$\frac{2}{2}$	2	-	1	-	-	1		
	C03	3	3	3	2	2	2	2	-	2	-	-	2		
	C04	3	3	3	3	3	3	3	-	$\frac{2}{2}$	-	-	2		
	05	5	5	5	5	5	5	5	-	4	-	-	2		
COs Vs PS	SOs M	APPI	NG:												
0001012	000112														
					С	Os PS	O1PS	O2PS	603						
					С	: <b>01</b> -			-						
					С	<b>:02</b> -			-						
					С	<b>:03</b> -			-						
	CO4														
CO5															
LIST OF E	XPER	IMEN	TS:												
1. Samplin	. Sampling and preservation methods for water and wastewater (Demonstration only).														
2. Measure	Measurement of pH, Electrical conductivity, and turbidity.														
3. Determin	nation	of Cal	cium, I	Potassi	um an	d Sodi	um.								
4. Determin	Determination of Phosphate and Sulphate.														
5. Determin	nation	of Opt	imum	Coagu	lant D	osage l	by Jar t	est ap	paratus	•					
6. Determin	nation	of ava	ilable (	Chlorin	e in B	leachi	ng pow	der an	d resid	ual ch	lorine i	n wate	r.		

B.E – Civil Engineering | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2023 Approved in 11th Academic Council Meeting held on 12.06.2024

7. Determination of Ammonia Nitrogen.

8. Estimation of suspended volatile and fixed solids.

9. Determination of Dissolved Oxygen.

10. Estimation of B.O.D.

11. Estimation of C.O. D.

12. Determination of total and fecal coliform (Demonstration only).

**TOTAL: 45 HOURS** 

#### **REFERENCES:**

- 1. APHA, "Standard Methods for the Examination of Water and Wastewater", 22nd Ed. Washington, 2012.
- "Laboratory Manual for the Examination of water, wastewater soil Rump", H.H. and Krist, H. Second Edition, VCH, Germany, 3rd Edition, 1999.
- 3. "Methods of air sampling & analysis", James P. Lodge Jr (Editor) 3rd Edition, Lewis publishers, Inc, USA, 1989.

2302CE453	302CE453 COMPUTER AIDED CIVIL ENGINEERING DRAWING LABORATORY									I	-	Т	Р	С		
												0	)	0	2	1
PREREQUI	SITE	:														
		1. En	gineer	ing gra	phics.											
COURSE OBJECTIVES:																
	1	. To in	npart l	cnowle	dge an	ıd skill	releva	nt to b	uilding	g draw	ing and	l detail	ing l	ab ı	ısing	
		com	Julei S	onwar	с.											
COURSE O	UTCO	OMES	:													
	1	6	1	1	6.1		. 1			1 .						
CO1	the suc	ccessiu	l comp	oletion	of the	course	e, stude	nts will	ll be at	bearir	ng and	framed	huil	din	ac	
CO2	$\frac{1}{2}$ : Dr	art the	struct	ural de	tailing	of RC	C elem	nents.		Juan	ig and	manico	Jun	um	gs.	
CO3	3: Dr	aw the	struct	ural de	tailing	of RC	C wate	r tanks	s, footi	ngs an	d retai	ning w	all.			
CO4	<b>1:</b> Dr	aw the	struct	ural de	tailing	of stee	el struc	ture.		0		Ŭ				
COS	5: Dr	aft the	structu	iral det	ailing	of Ind	ustrial	structu	ires.							
COs Vs PC	)s MA	PPIN	G:													
Г	~~		-						-		<b>D</b> 0 1 0	2011				
-	$\frac{COs}{CO1}$	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	PO7	PO8	<b>PO9</b>	PO10	PO11	$\frac{PO1}{2}$	12		
-	$\frac{CO1}{CO2}$	3	2	-	2	$\frac{2}{2}$	3	-	2	3	$\frac{2}{2}$	-	$\frac{2}{2}$			
-	CO2	3	2	-	2	2	3	-	2	3	2	-	2			
-	CO4	3	2	-	2	2	3	-	2	3	2	-	2			
	CO5	3	2	-	2	2	3	-	2	3	2	-	2			
		A DDIN														
	CUS VS PSUS MAPPING:															
					С	Os PS	O1 PS	O2PS	03							
					C	01 3	3 2	-								
					C	$\begin{array}{c c} \mathbf{O2} & 3 \\ \mathbf{O2} & 3 \end{array}$	$\frac{3}{2}$	-								
						$\frac{03}{04}$ 3	$\frac{1}{2}$	-								
					C	04 3	, <u>2</u> 3 2	-								
LIST OF EX	<b>KPER</b>	IMEN	TS:													
1				- 1	•											
	1. Principles of planning and orientation.															
2. D	2. Dunuings with ioau bearing walls and KCC 1001 (Fian, section, elevation) 3. Buildings with sloping roof															
<u> </u>	4 Buildings with Framed structures															
5. B	uildin	g infor	matior	n mode	ling.											
6. R	einfor	cemen	t detail	s of R	CC str	uctural	eleme	nts (sla	ab, bea	m and	colum	n)				
7. R	einfor	cemen	t detail	ls of fo	otings	(Isolat	ted, ste	pped, o	combir	ned for	oting)					
8. S	8. Steel structures (Steel Connections detailing, beam to column connection, beam to beam															

### B.E – Civil Engineering | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2023 Approved in 11th Academic Council Meeting held on 12.06.2024

	connection – bolt & Weld, Roof truss & purlin)
	TOTAL: 30 HOURS
REFERE	NCES:
1.	V.B.Sikka, "A course in Civil Engineering Drawing" S.K.Kataria & Sons Publishers, Seventh
	Edition, 2015.
2.	D.N.Ghose, "Civil Engineering Drawing and Design" CBS Publishers & Distributors Pvt.Ltd., 2nd
	Edition, 2010.
3.	National Building Code of India 2016 (NBC 2016)
4.	Unnikrishna Pillai and Devdas Menon, Reinforced Concrete Design (Third Edition), Tata Mc Graw
	Hill Publishing Company Ltd., New Delhi, 3rd Edition, 2017.
5.	Subramanian N, Design of Steel Structures, Oxford University Press, New Delhi, 2016.