# E.G.S. PILLAY ENGINEERING COLLEGE

### (Autonomous)

Approved by AICTE, New Delhi Affiliated to Anna University, Chennai Accredited by NAAC with "A++"Grade Accredited by NBA (CSE, EEE, MECH, ECE, CIVIL, IT)

### NAGAPATTINAM-611002



## **B.E. Biomedical Engineering**

### Full Time Curriculum and Syllabus

### **Second Year – Fourth Semester**

| COURSE    |                                                       | CATECODY    | т  | т | р | C  | M   | AX. MA | RKS   |
|-----------|-------------------------------------------------------|-------------|----|---|---|----|-----|--------|-------|
| CODE      | COURSE NAME                                           | CATEGORY    | L  | Т | Р | C  | CA  | ES     | TOTAL |
|           | THE                                                   | ORY COURSES | 5  |   |   |    |     |        |       |
| 2302BM401 | Bio Sensors and Measurements                          | PCC         | 3  | 0 | 0 | 4  | 40  | 60     | 100   |
| 2302BM402 | Communication Engineering for<br>Biomedical Engineers | PCC         | 3  | 0 | 0 | 3  | 40  | 60     | 100   |
| 2302BM403 | Biomedical Signals & Systems                          | PCC         | 3  | 1 | 0 | 4  | 40  | 60     | 100   |
| 2302BM404 | Diagnostic and Therapeutic<br>Equipment I             | PCC         | 2  | 0 | 4 | 4  | 40  | 60     | 100   |
| 2302BM405 | Biomedical Instrumentation                            | PCC         | 3  | 0 | 2 | 4  | 40  | 60     | 100   |
| 2301HSX01 | Universal Human values and Ethics                     | BSC         | 2  | 0 | 0 | 2  | 40  | 60     | 100   |
|           | Mandatory Course -1                                   | MC          | 3  | 0 | 0 | 0  | 100 | 0      | 100   |
|           | PRACT                                                 | TICAL COURS | ES |   |   | •  |     |        |       |
| 2302BM451 | Biosensors and Measurements<br>Laboratory             | PCC         | 0  | 0 | 3 | 2  | 40  | 60     | 100   |
| 2302BM452 | Diagnostic and Therapeutic<br>Equipment Laboratory    | PCC         | 0  | 0 | 3 | 2  | 40  | 60     | 100   |
| 2302BM453 | Biomedical Instrumentation<br>Laboratory              | PCC         | 0  | 0 | 3 | 2  | 40  | 60     | 100   |
|           | Professional Development Course 1                     | EEC         | 0  | 0 | 2 | 1  | 100 |        | 100   |
|           | TOTAL                                                 |             |    |   |   | 28 | 430 | 470    | 900   |

L-Lecture| T-Tutorial| P-Practical| C-Credit| CA -Continuous Assessment| ES-End Semester

| 2302BM401                      |            |            |         | BI       | OSEN    | SORS        | AND                | MEAS       | SURE   | MENT    | ГS           |          | L<br>3          | T<br>0        | P<br>0  | C<br>3 |
|--------------------------------|------------|------------|---------|----------|---------|-------------|--------------------|------------|--------|---------|--------------|----------|-----------------|---------------|---------|--------|
|                                |            |            |         |          |         |             |                    |            |        |         |              |          | 3               | U             | U       | 3      |
| PREREQU                        | ISITE:     |            |         |          |         |             |                    |            |        |         |              |          |                 |               |         |        |
|                                | 1. Nil     |            |         |          |         |             |                    |            |        |         |              |          |                 |               |         |        |
|                                | 1111       |            |         |          |         |             |                    |            |        |         |              |          |                 |               |         |        |
| COURSE O                       | BJEC       | TIVE       | S:      |          |         |             |                    |            |        |         |              |          |                 |               |         |        |
|                                | 1 5        | ** 1       |         | .1 . 7.7 | •       | 1.9         |                    | <u>c</u>   |        |         |              |          |                 | 1             |         | 1      |
|                                |            |            |         |          |         |             | lards of<br>ration |            |        |         | variou       | is phy   | S1C             | al qua        | ntities | and    |
|                                |            |            |         |          |         |             | ne Trar            |            |        |         | nodels       | and      | Res             | nonse         | 9       |        |
|                                |            |            |         |          |         |             | Resist             |            |        |         |              |          |                 |               |         |        |
|                                | opera      | ation a    | nd Ap   | plicatio | ons.    |             |                    | -          | -      |         |              | 0        | I               | 1             |         |        |
|                                |            |            |         |          |         |             | sors an            |            |        |         |              |          |                 |               |         |        |
|                                | 5. To      | acqui      | re the  | knowle   | edge of | anoth       | er spec            | al Tra     | ansduc | er.     |              |          |                 |               |         |        |
| COURSE O                       | UTCC       | )MES       | :       |          |         |             |                    |            |        |         |              |          |                 |               |         |        |
| <u>coensil o</u>               |            |            | •       |          |         |             |                    |            |        |         |              |          |                 |               |         |        |
|                                | the suc    |            |         |          |         |             |                    |            |        | ole to  |              |          |                 |               |         |        |
| CO1:                           |            |            |         |          |         |             | and Er             |            |        |         |              |          |                 |               |         |        |
| CO2:<br>CO3:                   |            |            |         |          |         |             | cers an<br>Trans   |            |        |         | nlicati      | one      |                 |               |         |        |
| <u> </u>                       |            |            |         |          |         |             | ferent             |            |        |         |              |          | nn              | icatio        | ns      |        |
|                                | Explai     |            |         |          |         |             |                    |            |        | 5011501 | 5 und        | unon a   | PP <sup>1</sup> | loution       | 10      |        |
|                                |            |            |         |          | 1       | 1           |                    |            |        |         |              |          |                 |               |         |        |
| COs Vs PC                      | )s MA      | PPIN       | G:      |          |         |             |                    |            |        |         |              |          |                 |               |         |        |
|                                | COa        | <b>DO1</b> | DO1     | PO3      | PO4     | <b>DO</b> 5 | PO6                | D07        | DOP    | DOO     | <b>DO1</b> ( |          | 1 1             | 012           |         |        |
|                                | COs<br>CO1 |            | PO2     | 2        | P04     | P05         | PUo                | <b>PO7</b> | PUð    | PO9     | POI          | 2        | 1 1             | 2             |         |        |
|                                | CO1        |            | -       | 2        | -       | 2           | -                  | -          | -      | -       | -            | 2        |                 | $\frac{2}{2}$ |         |        |
|                                | CO3        | 3          | 2       | 2        | -       | 2           | -                  | -          | -      | -       | -            | 2        |                 | 2             |         |        |
|                                | <b>CO4</b> |            | 2       | 2        | -       | 2           | -                  | -          | -      | -       | -            | 2        |                 | 2             |         |        |
|                                | CO5        | 3          | 2       | 2        | -       | 2           | -                  | -          | -      | -       | -            | 2        |                 | 2             |         |        |
| COs Vs PS                      |            | A DDIN     |         |          |         |             |                    |            |        |         |              |          |                 |               |         |        |
|                                |            |            | IG:     |          |         |             |                    |            |        |         |              |          |                 |               |         |        |
|                                |            |            |         |          | С       | Os PS       | O1 PS              | O2 PS      | 03     |         |              |          |                 |               |         |        |
|                                |            |            |         |          | С       | 01          | 1 -                | -          |        |         |              |          |                 |               |         |        |
|                                |            |            |         |          |         | 02 1        |                    | -          | -      |         |              |          |                 |               |         |        |
|                                |            |            |         |          |         |             | <u> </u>           | -          | -      |         |              |          |                 |               |         |        |
|                                |            |            |         |          |         | • •         | l -                | -          | -      |         |              |          |                 |               |         |        |
|                                |            |            |         |          | U       | 05          | -                  | -          |        |         |              |          |                 |               |         |        |
| COURSE C                       | ONTE       | ENTS:      |         |          |         |             |                    |            |        |         |              |          |                 |               |         |        |
|                                |            |            |         |          |         |             |                    |            |        |         |              |          |                 |               |         |        |
| MODULE I                       |            |            |         |          | SUR     |             |                    |            |        |         |              |          |                 |               | 9 Hoi   |        |
| Measuremen                     | -          |            |         |          |         |             |                    |            |        |         |              | nods,    | stat            | tics ca       | librat  | ion.   |
| Classification                 |            |            |         |          |         |             |                    |            | and ur | ncertai | nty.         |          |                 |               |         |        |
| MODULE I                       | -          |            |         |          |         |             | NSDU               |            |        |         |              | 1 5      |                 |               | 9 Hoi   |        |
| Static charac                  | teristic   | s - acc    | curacy, | precis   | 10n, se | nsitivi     | ty, line           | arity.     | Mathei | natica  | I mode       | el of ti | ans             | sducer        | s – ze  | ro,    |
| first order an <b>MODULE I</b> |            |            |         |          |         |             |                    |            |        | mp and  | 1 SINUS      | oiual    | mp              | uts.          | ) Hou   | ire    |
| Resistance P                   |            |            |         |          |         |             |                    |            |        | charac  | teristi      | cs and   | an              |               |         |        |
|                                |            |            |         |          |         |             |                    |            |        |         |              |          |                 |               |         |        |

| MODULE IV BIOSENSORS - PHYSIOLOGICAL RECEPTORS                                       | 9 Hours                    |
|--------------------------------------------------------------------------------------|----------------------------|
| Type of Bio Sensor - Chemoreceptors, Baroreceptors, sensors for smell, sound, visit  | ion and taste. Biosensors  |
| - Working Principle and Applications.                                                |                            |
| MODULE V SPECIAL TRANSDUCERS                                                         | 9 Hours                    |
| Piezoelectric transducers, magnetostrictive transducers, IC sensor digital transduce | ers - smart sensor - fibre |
| optic transducers-Introduction to MEMS and Nano Sensors.                             |                            |
|                                                                                      | TOTAL: 45 HOURS            |
|                                                                                      |                            |
| REFERENCES:                                                                          |                            |
| 1. S.M. Sze, "Semiconductor Sensors," New York, 1994, John Wiley & Sons.             |                            |
| 2. L. Ristic, "Sensor Technology and Devices," 1994, Artech House, Inc.              |                            |
| 3. John G. Webster, HalitEren "Measurement, Instrumentation, and Sensors Handboo     | k: Electromagnetic,        |

Optical, Radiation, Chemical, and Biomedical Measurement", 2017

4. Jacob Fraden, "Handbook of Modern Sensors: Physics, Designs, and Applications", Fourth Edition, Springer.

| 2302BM402    | COMMUN                                                    | ICATIO   |          | IGINE<br>NGIN     |           | G FO         | R BIO    | MEDI    | CAL     | L        | Т       | Р       | C    |
|--------------|-----------------------------------------------------------|----------|----------|-------------------|-----------|--------------|----------|---------|---------|----------|---------|---------|------|
|              |                                                           |          |          |                   |           |              |          |         |         | 3        | 0       | 0       | 3    |
| PREREQU      | ISITE:                                                    |          |          |                   |           |              |          |         |         |          |         |         | •    |
|              | 1. Semiconducto                                           | or physi | cs.      |                   |           |              |          |         |         |          |         |         |      |
|              | 2. Basic electric                                         |          |          | nics.             |           |              |          |         |         |          |         |         |      |
|              |                                                           |          |          |                   |           |              |          |         |         |          |         |         |      |
| OURSE OI     | BJECTIVES:                                                |          |          |                   |           |              |          |         |         |          |         |         |      |
|              | 1. Explain the c                                          | oncepts  | of ger   | neration          | n and d   | etectio      | on of a  | mplitu  | de moo  | lulatior | schen   | nes.    |      |
|              | 2. Describe the                                           | -        | -        |                   |           |              |          | -       |         |          |         |         |      |
|              | 3. Explain the co                                         |          |          |                   |           |              |          |         |         |          |         |         |      |
|              | 4. Explain the c                                          |          |          |                   |           |              |          |         |         |          |         | nes.    |      |
|              | 5. Illustrate the                                         | usage o  | of com   | munica            | tion m    | odaliti      | ies to a | commu   | nicate  | physiol  | ogical  |         |      |
|              | Signals.                                                  |          |          |                   |           |              |          |         |         |          |         |         |      |
| OURSE OU     | JTCOMES:                                                  |          |          |                   |           |              |          |         |         |          |         |         |      |
|              |                                                           |          |          |                   | _         |              |          | _       |         |          |         |         |      |
|              | ne successful com                                         |          |          |                   |           |              |          |         |         |          |         |         |      |
| CO1:         | 1. Describe the                                           |          |          | techni            | iques o   | of gen       | eration  | , trans | missio  | n and r  | eceptio | on of   |      |
|              | amplitude modu                                            |          |          |                   |           |              |          |         |         |          |         |         |      |
| <b>CO2:</b>  | 2. Explain the c                                          |          |          |                   |           |              |          |         |         |          |         |         |      |
| CO3:         | 3. Illustrate the t                                       | transmis | ssion a  | nd rece           | eption of | of sign      | als usiı | ng digi | tal moo | dulation | schen   | nes.    |      |
| <b>CO4:</b>  | 4. Interpret the t                                        | echniqu  | e of in  | format            | ion the   | eory an      | d codi   | ng tech | iniques | •        |         |         |      |
| CO5:         | 5. Classify the u                                         |          |          |                   |           |              |          |         |         |          |         | nicatio | n.   |
|              | 6. Discuss about                                          | t the mu | ltiple a | access            | technic   | ue use       | ed in si | gnal co | ommun   | ication  | •       |         |      |
| COs Vs PO    | s MAPPING:                                                |          |          |                   |           |              |          |         |         |          |         |         |      |
|              |                                                           |          |          |                   | _         | -            |          |         | -       |          |         |         |      |
|              |                                                           | 2 PO3    |          | -                 | PO6       | <b>PO7</b>   | PO8      | PO9     | PO10    | PO11     | PO12    |         |      |
| _            | <b>CO1</b> 3 2                                            | 1        | 1        | 1                 | -         | -            | -        | -       | -       | 1        | 1       |         |      |
| _            | <b>CO2</b> 3 2                                            | 1        | 1        | 1                 | -         | -            | -        | -       | -       | 1        | 1       |         |      |
| -            | <b>CO3</b> 3 2                                            | 1        | 1        | 1                 | -         | -            | -        | -       | -       | 1        | 1       |         |      |
|              | CO4         3         2           CO5         3         2 | 1        | 1        | 1                 | -         | -            | -        | -       | -       | 1        | 1       |         |      |
|              | <b>CUS</b> 5 2                                            | 1        | 1        | 1                 | -         | -            | -        | -       | -       | 1        | 1       |         |      |
| COs Vs PSC   | <b>Ds MAPPING:</b>                                        |          |          |                   |           |              |          |         |         |          |         |         |      |
|              |                                                           |          |          | COs PS            |           | 02 PS        | 03       |         |         |          |         |         |      |
|              |                                                           |          |          | <b>CO1</b> 2      |           |              |          |         |         |          |         |         |      |
|              |                                                           |          |          | $\frac{1}{202}$   |           |              |          |         |         |          |         |         |      |
|              |                                                           |          |          | $\frac{102}{203}$ |           |              |          |         |         |          |         |         |      |
|              |                                                           |          |          | $\mathbf{CO4}$    |           |              |          |         |         |          |         |         |      |
|              |                                                           |          |          | 205 2             |           |              |          |         |         |          |         |         |      |
|              |                                                           |          | C        |                   | - 1 -     | <b>·</b>   · |          |         |         |          |         |         |      |
| OURSE CO     | <b>DNTENTS:</b>                                           |          |          |                   |           |              |          |         |         |          |         |         |      |
|              |                                                           |          | пт ат    |                   |           |              |          |         |         |          |         | 0 + 2 1 | Ione |
| 10DULE I     | AMPLITUDE                                                 |          |          |                   | ad-1-1'   | on *         |          | da      | dulat   |          |         | 9+3 E   |      |
|              | o communication                                           |          |          |                   |           |              |          |         |         |          |         |         |      |
| DALVSIS OF A |                                                           |          |          |                   |           |              | (L'A     |         |         |          |         |         | wav  |
|              | AM, DSB-SC, S                                             |          |          | signal-t          | .o- noi   | se rat       | io (SN   | R)-Re   | cervers | for c    | ontinu  | ious v  |      |
|              | Super heterodyn                                           | e Rece   | vers.    | signai-i          | .o- noi   | se rat       | IO (SN   | R)-Re   | cervers | o for c  |         | 9+3 E   |      |

Basic concepts of frequency modulation .single tone frequency modulation, spectrum Analysis of sinusoidal FM wave -Narrow band FM -Wide band FM, Constant Average power Transmission band width of FM wave-Noise.

#### MODULE III DIGITAL MODULATION

Amplitude Shift Keying (ASK) – Frequency Shift Keying (FSK) Minimum Shift Keying (MSK) –Phase Shift Keying (PSK) – BPSK – QPSK - Quadrature Amplitude Modulation (QAM).

#### MODULE IV INFORMATION THEORY AND CODING

Measure of information – Entropy – Source coding theorem - Shannon-Fano coding, Huffman Coding, LZ Coding– Channel capacity – Shannon-Hartley law – Shannon's limit-Error control Codes.

MODULE VSPREAD SPECTRUM AND MULTIPLE ACCESS9+3 HoursPN sequences – properties – m-sequence –DSSS –Processing gain, Jamming – FHSS –<br/>Synchronization and tracking - Multiple Access – FDMA, TDMA, CDMAFHSS –

#### **TOTAL: 45+15=60 HOURS**

9+3hours

9+3Hours

#### **REFERENCES:**

1. Bernard Sklar, "Digital Communication, Fundamental and Application" Pearson Education Asia, 2nd Edition, 2001

Wayne Tomasi, "Advanced Electronic Communication Systems", Pearson Education, 6<sup>th</sup> edition,
 Simon Haykin, "Communication Systems", John Wiley & Sons, 4<sup>th</sup> edition, 2004.

4. H.Taub, D L Schilling and G Saha, "Principles of Communication", Pearson Education, 3<sup>rd</sup> edition, 2007.
5. B. P.Lathi, "Modern Analog and Digital Communication Systems", Oxford University Press, 3<sup>rd</sup> edition, 2007.

6. R.S.Khandpur, 'Handbook of Bio-Medical instrumentation', Tata McGraw Hill Publishing Co Ltd., 3<sup>rd</sup> edition, 2014.

| 02BM403        |                          | BIO       | MEDI         | CAL S                                 | SIGNA        | LS AN      | ND SY      | STEM       | IS         |                 | Ι        |          | P      | (   |
|----------------|--------------------------|-----------|--------------|---------------------------------------|--------------|------------|------------|------------|------------|-----------------|----------|----------|--------|-----|
|                |                          |           |              |                                       |              |            |            |            |            |                 | 3        | 1        | 0      | 4   |
| EREQUI         | CITE.                    |           |              |                                       |              |            |            |            |            |                 |          |          |        |     |
| LKEQUI         | SIIE.                    |           |              |                                       |              |            |            |            |            |                 |          |          |        |     |
|                | 1. Nil                   |           |              |                                       |              |            |            |            |            |                 |          |          |        |     |
|                |                          |           |              |                                       |              |            |            |            |            |                 |          |          |        |     |
| <b>DURSE O</b> | BJECTIVES                | S:        |              |                                       |              |            |            |            |            |                 |          |          |        |     |
|                |                          |           |              |                                       |              |            |            |            |            |                 |          |          |        |     |
|                | 1. To study              |           |              | the con                               | ntinuou      | is and o   | liscret    | e-time     | signals    | s and s         | ystems   | , their  | proper | tie |
|                | and represe              |           |              |                                       |              |            |            |            |            |                 |          |          |        |     |
|                | 2. To have 1             |           |              |                                       |              |            |            |            |            | sis cor         | ncepts a | as they  | relate | to  |
|                | difference e             |           |              |                                       |              |            |            |            |            |                 |          |          | ā      |     |
|                | 3. To famili             |           |              |                                       | of frequ     | uency-o    | lomaiı     | n repres   | sentati    | on and          | analys   | sis usin | g four | ier |
|                | analysis too             |           |              |                                       | - f (1       |            |            |            | 1 1        |                 |          |          |        |     |
|                | 4. To under problems     | stand t   | ne con       | cepts (                               | of the s     | amplin     | ig proc    | ess and    | u 10 10    | entity a        | and sol  | ve engi  | meerir | ıg  |
|                | 5. To analyz             | ze the    | system       | s hv e                                | xamini       | ng thei    | r innut    | and o      | itpiit s   | ignals          |          |          |        |     |
|                | 5. To unury              |           | <i>ystem</i> |                                       | <u>annin</u> | ing thei   | mput       | und of     | aiput s    | <u>1511015.</u> |          |          |        |     |
| OURSE O        | UTCOMES                  | :         |              |                                       |              |            |            |            |            |                 |          |          |        |     |
|                |                          |           |              |                                       |              |            |            |            |            |                 |          |          |        |     |
|                | r completion             |           |              |                                       |              |            |            |            |            |                 |          |          |        |     |
| CO1:           | 1. Analyze               |           |              |                                       |              |            |            |            |            |                 |          |          |        |     |
| CO2:           | 2. Apply La              |           |              |                                       |              |            |            |            |            |                 |          |          |        |     |
| CO3:           | 3. Analyze               | continu   | ious ti      | $\frac{\text{me L'I}}{1 \text{ DTE}}$ | T syste      | ms usu     | ng Fou     | rier an    | d Lapl     | ace Tr          | anstori  | ns.      |        |     |
| CO4:<br>CO5:   | 4. Apply Z<br>5. Analyze |           |              |                                       |              |            |            |            | crete t    | ime sig         | gnais.   |          |        |     |
| 005.           | J. Allalyze              | uisciei   | e time       |                                       | ystems       | using A    |            | 101111.    |            |                 |          |          |        |     |
| COs Vs PO      | s MAPPINO                | <b>J:</b> |              |                                       |              |            |            |            |            |                 |          |          |        |     |
|                |                          |           |              |                                       |              |            |            |            |            |                 |          |          |        |     |
|                | COs PO1                  |           | PO3          | PO4                                   | PO5          | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10            | PO11     | PO12     |        |     |
|                | CO1 3                    | 2         | -            | -                                     | -            | -          | -          | -          | -          | -               | -        | -        |        |     |
|                | CO2 3                    | 2         | 1            | 1                                     | -            | -          | -          | -          | -          | -               | -        | -        |        |     |
|                | CO3 3<br>CO4 3           | 2         | 1            | -                                     | 1            | -          | -          | -          | -          | -               | -        | -        |        |     |
|                | CO4 3<br>CO5 2           | 2         | 1            | -                                     | -            | -          | -          | -          | -          | -               | -        | -        |        |     |
|                | 205 2                    | I         | -            | -                                     | -            | -          | -          | -          | -          | -               | -        | -        |        |     |
| Os Vs PS       | Os MAPPIN                | IC.       |              |                                       |              |            |            |            |            |                 |          |          |        |     |
|                |                          |           |              |                                       |              |            |            |            |            |                 |          |          |        |     |
|                |                          |           |              | C                                     | COs PS       | O1PS       | O2 PS      | 03         |            |                 |          |          |        |     |
|                |                          |           |              | C                                     | <b>CO1</b> 2 | 2 1        |            |            |            |                 |          |          |        |     |
|                |                          |           |              | C                                     | <b>CO2</b> 2 | 2 1        |            |            |            |                 |          |          |        |     |
|                |                          |           |              | C                                     | <b>CO3</b> 3 | 3 1        |            |            |            |                 |          |          |        |     |
|                |                          |           |              | C                                     | <b>CO4</b> 3 | 3 2        | 2 -        |            |            |                 |          |          |        |     |
|                |                          |           |              | C                                     | <b>CO5</b> 3 | 3 3        | ; -        |            |            |                 |          |          |        |     |
|                |                          |           |              |                                       |              |            |            |            |            |                 |          |          |        |     |
|                |                          |           |              |                                       |              |            |            |            |            |                 |          |          |        | _   |
| OURSE CO       | ONTENTS:                 |           |              |                                       |              |            |            |            |            |                 |          |          |        |     |
| OURSE CO       |                          |           |              | <b>AR</b> ~=                          | <u></u>      | <u>a</u> = |            |            |            |                 |          |          | 9+3H   | -   |

and Sinusoidal signals. Classification of Systems: Continuous time systems - Discrete time systems - Linear system - Time Invariant system – causal system - BIBO system - Systems with and without memory - LTI system Classification of Systems.

#### MODULE II ANALYSIS OF CONTINUOUS TIME SIGNALS

Fourier series analysis -Trigonometric Fourier series, Cosine Fourier series, Exponential Fourier series, Fourier Spectrum of continuous time signals, Fourier transform analysis, Laplace transform, Analysis of electrical network using Laplace transform.

#### MODULE III LTI CT SYSTEM

Analysis of differential equation -Transfer function-Impulse response - Frequency response - Convolution integral - Fourier Methods - Laplace transforms analysis - Block diagram representation - State variable equation and Matrix. 9+3 Hours

#### MODULE IV ANALYSIS OF DISCRETE TIME SIGNALS

Spectrum of DT signals - Discrete Time Fourier Transform (DTFT) - Properties of discrete time Fourier transform - Discrete Fourier Transform (DFT) - Properties of DFT - Z-transform in signal analysis -Properties of Z - transform - Inverse Z - transform.

#### MODULE V LTI DISCRETE TIME SYSTEMS

Analysis of differential equation - Transfer function - Impulse response - Convolution sum - Analysis and characterization of DT system using Z transform Difference Equations-Block diagram.

#### TOTAL: 45+5 HOURS

9+3 Hours

9+3Hours

9+3 Hours

#### **REFERENCES:**

1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, "Signals and Systems", Pearson, 2007.

2. B. P. Lathi, "Principles of Linear Systems and Signals", Second Edition, Oxford, 2009.

3. R.E.Zeimer, W.H.Tranter and R.D.Fannin, "Signals & Systems - Continuous and Discrete", Pearson, 2007.

4. Hwei. P.Hsu, Schaum's Outlines: Signals and Systems, Pearson Education, 2002.

5. Bimal K. Bose, "Modern Power Electronics and AC Drives", 1<sup>st</sup> Edition, Pearson Education, 2015.

6. Anand Kumar A, "Signals and Systems", PHI learning Pvt. Ltd., Second edition, 2012.

7. Simon Haykin and Barry Van Veen, "Signals and Systems", John Willey & Sons, Inc., Second edition, 2004.

| 2302BM404       | DIAGNOSTIC AND THERAPEUTIC<br>EQUIPMENT - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L      | Т        | Р     | C     |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|-------|-------|
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2      | 0        | 4     | 4     |
| PREREQUI        | SITE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |       |       |
|                 | 1. Biosciences in Medical Engineering.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |          |       |       |
|                 | 2. Human Anatomy and Physiology.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |       |       |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |          |       |       |
| OURSE O         | BJECTIVES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |       |       |
|                 | 1.Understand the medical equipment used in the measurement of parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ers re | lated    | to    |       |
|                 | cardiology.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |          |       |       |
|                 | 2. Discuss the equipment used in neurology.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |          |       |       |
|                 | 3. Demonstrate EMG recording unit and its uses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |          |       |       |
|                 | 4. Explain diagnostic and therapeutic devices related to respiratory param                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |       |       |
|                 | 5. Understand the various sensory measurements that hold clinical import                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ance.  |          |       |       |
| OURSE O         | UTCOMES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |          |       |       |
| Afte            | r completion of the course, Student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |          |       |       |
| C01:            | 1. Describe the working and recording setup of all essential cardiac equip:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ment.  |          |       |       |
| CO2:            | 2. Understand the working and recording of all essential neurological equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ipmeı  | nt.      |       |       |
| CO3:            | 3. Discuss about muscular and biomechanical measurements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |          |       |       |
| CO4:            | 4. Explain about respiratory measurement system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |       |       |
| CO5:            | 5. Describe the measurement techniques of sensory responses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |          |       |       |
|                 | s MAPPING:           COs         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO           CO1         3         2         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - |        | -<br>-   |       |       |
|                 | <b>CO2</b> 3 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | -        |       |       |
|                 | CO3     3     2     1     -     -     -     -     -     -       CO4     3     2     1     -     -     -     -     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | -        |       |       |
|                 | CO4     3     2     1     -     -     -     -     -     -       CO5     3     2     1     -     -     -     -     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | -        |       |       |
| <u> </u>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |          |       |       |
| COs Vs PS       | Os MAPPING:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |          |       |       |
|                 | COs PSO1 PSO2 PSO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |          |       |       |
|                 | CO1 - 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |          |       |       |
|                 | CO2     -     1     -       CO3     -     1     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |          |       |       |
|                 | $\frac{CO3}{CO4} - \frac{1}{1} - \frac{1}{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |          |       |       |
|                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |       |       |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |          |       |       |
| COURSE CO       | ONTENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |          |       |       |
| <b>IODULE I</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |          | 9 Hoi |       |
|                 | graph, Normal and Abnormal Waves, Heart rate monitor, Holter Monitor,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |       |       |
|                 | e maintenance and troubleshooting, Cardiac Pacemaker Internal and E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | xterr  | nal Pa   | icema | ker-  |
| satteries, AC   | and DC Defibrillator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | <u> </u> | 9 Hot |       |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |          | U HAT | irc   |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1 P   |          |       |       |
|                 | ficance of EEG, Multi-channel EEG recording system, Epilepsy, Evoke<br>Somatosensory, MEG (Magneto Encephalo Graph). EEG Bio Feedback I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | tentia   | l– Vi | sual, |

#### MODULE III MUSCULAR AND BIOMECHANICAL MEASUREMENTS

Recording and analysis of EMG waveforms, fatigue characteristics, Muscle stimulators, nerve stimulators, Nerve conduction velocity measurement, EMG Bio Feedback Instrumentation. Static Measurement – Load Cell, Pedobarograph.

#### MODULE IV RESPIRATORY MEASUREMENT SYSTEM

Instrumentation for measuring the mechanics of breathing – Spirometer -Lung Volume and vital capacity, measurements of residual volume, Pneumotachometer – Airway resistance measurement, Apnoea Monitor. Types of Ventilators – Pressure, Volume, and Time controlled. Flow, Patient Cycle Ventilators, Humidifiers, Nebulizers, Inhalators. 9+3 Hours

#### MODULE V SENSORY MEASUREMENT

Psychophysiological Measurements – polygraph, basal skin resistance (BSR), galvanic skin resistance (GSR), Sensory responses - Audiometer-Pure tone, Speech, Eye Tonometer, Applanation Tonometer, slit lamp, auto refract meter.

#### TOTAL: 45+3 HOURS

9 Hours

9 Hours

#### **REFERENCES:**

1. Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw Hill, New Delhi, 2003.

2. Leslie Cromwell, "Biomedical Instrumentation and Measurement", Prentice Hall of India, New Delhi, 2007.

3. John G. Webster, "Medical Instrumentation Application and Design", John Willey and Sons, 2006. 4. Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", Pearson Education, 2004.

5. Richard Aston "Principles of Biomedical Instrumentation and Measurement", Merril Publishing Company, 1990.

6. L.A Geddas and L.E.Baker "Principles of Applied Biomedical Instrumentation" 2004.

7. John G. Webster, "Bioinstrumentation", John Willey and sons, New York, 2004.

| 2302BM405        |            |                     | BI       | OMEL    | DICAL    | . INST                     | RUM      | ENTA       | TION    |         |         | I        | T       | Р       | C       |
|------------------|------------|---------------------|----------|---------|----------|----------------------------|----------|------------|---------|---------|---------|----------|---------|---------|---------|
|                  |            |                     |          |         |          |                            |          |            |         |         |         | 2        |         | 4       | 4       |
| PREREQUI         | SITE       |                     |          |         |          |                            |          |            |         |         |         |          |         |         |         |
| <u>inini qui</u> | SIIL.      |                     |          |         |          |                            |          |            |         |         |         |          |         |         |         |
|                  | 1. Hur     | nan A               | natomy   | y and F | Physiol  | ogy.                       |          |            |         |         |         |          |         |         |         |
| COURSE O         | BIEC       | TIVES               |          |         |          |                            |          |            |         |         |         |          |         |         |         |
|                  | DULC       |                     |          |         |          |                            |          |            |         |         |         |          |         |         |         |
|                  |            |                     |          |         |          | entials                    |          |            |         | s to un | derstai | nd the   | differe | nt type | es of   |
|                  |            |                     |          |         |          | for vari<br>arious p       |          |            |         | incoor  | nd anal | vzo dit  | Forant  | maaan   | romoi   |
|                  |            |                     |          |         |          | gical pa                   |          |            | Tecoru  | ings ai | iu anai | yze un   | lerent  | measu   | Temer   |
|                  | 3. To      | Summ                | narize o | liffere | nt bioc  | hemica                     | al meas  | sureme     | ents.   |         |         |          |         |         |         |
| COURSE O         | UTCO       | MES                 |          |         |          |                            |          |            |         |         |         |          |         |         |         |
| <u>JOURSE O</u>  |            | WIE5.               | •        |         |          |                            |          |            |         |         |         |          |         |         |         |
|                  | he suce    |                     |          |         |          |                            |          |            |         |         |         |          |         |         |         |
| CO1:             | 1. Ca      | tegoriz<br>cteristi | ze dif   | ferent  | bio j    | potenti                    | al ele   | ctrode     | s base  | ed on   | its c   | origin,  | propa   | gation  | s and   |
| CO2:             | 2. Ap      | ply dif             |          | bio-po  | otentia  | l measu                    | uremer   | nts tech   | nnique  | s and a | nalyze  | e the ch | naracte | ristics | of bio  |
| CO3:             | signal     |                     |          | Diag    | anal     | conditi                    | onina    | toohn      |         |         |         |          |         | thad    | m Di    |
| 005:             |            | proce               |          | DIOSI   | gnar (   | conditi                    | oning    | techn      | iques   | as a    | pre-pro | JCessin  | ig me   | linou   | .11 D10 |
| <b>CO4:</b>      | 4. Ap      | ply va              | rious te | echniq  | ues for  | non-e                      | lectrica | al phys    | iologic | cal mea | asurem  | ents.    |         |         |         |
| CO5:             | 5. An      | alyze t             | he per   | formar  | nce of 1 | biochei                    | mical s  | ensors     | and bi  | ochem   | nical m | easure   | ment t  | echniq  | ues.    |
| COs Vs PO        | s MAI      | PPINO               | <b>.</b> |         |          |                            |          |            |         |         |         |          |         |         |         |
| 000 1020         |            |                     |          |         |          |                            |          |            |         |         |         |          |         | _       |         |
|                  |            | PO1                 | PO2      |         | PO4      |                            |          | <b>PO7</b> | PO8     | PO9     | PO10    | PO11     | PO12    | 2       |         |
|                  | CO1<br>CO2 | 1<br>2              | 2        | 3       | -        | 1 2                        | 1        | -          | -       | -       | -       | -        | -       |         |         |
|                  | CO2<br>CO3 |                     | 2        | 2       | _        | 3                          | 1        | -          | -       | -       | -       | -        | -       | -       |         |
|                  | <b>CO4</b> | 4                   | 2        | 2       | -        | 2                          | 1        | -          | -       | -       | -       | -        | -       |         |         |
|                  | CO5        | 5                   | 2        | 3       | -        | 2                          | 1        | -          | -       | -       | -       | -        | -       |         |         |
| COs Vs PS        | Os MA      | PPIN                | G:       |         |          |                            |          |            |         |         |         |          |         |         |         |
|                  |            |                     |          |         |          |                            |          |            |         |         |         |          |         |         |         |
|                  |            |                     |          |         |          | Os PS                      |          | O2 PS      | 03      |         |         |          |         |         |         |
|                  |            |                     |          |         |          | <b>01</b> 1<br><b>02</b> 1 |          | · -        | -       |         |         |          |         |         |         |
|                  |            |                     |          |         |          | $\frac{02}{03}$ 1          |          | 2          |         |         |         |          |         |         |         |
|                  |            |                     |          |         |          | <b>O</b> 4 1               |          | . 2        |         |         |         |          |         |         |         |
|                  |            |                     |          |         |          | 05 1                       | -        | . 2        |         |         |         |          |         |         |         |
|                  |            |                     |          |         |          |                            |          | •          | 1       |         |         |          |         |         |         |
| COURSE C         | ONTE       | NTS:                |          |         |          |                            |          |            |         |         |         |          |         |         |         |
| MODULE I         | BIC        | OPOT                | ENTL     | AL EL   | ECTE     | RODES                      | 5        |            |         |         |         |          |         | 9 Ho    | urs     |
| Drigin of bio    |            |                     |          |         |          |                            |          | rolyte     | interfa | ce, ele | ctrode  | -skin i  | nterfac |         |         |
| ootential, Co    | ontact     | imped               | lance,   | polari  | zation   | effect                     | ts of    | electro    | ode-no  | n pola  | rizabl  | e elec   | trodes. | Тур     | es of   |
| electrodes su    |            |                     |          |         |          | des and                    | d their  | equiv      | alent c | ircuits | . Reco  | rding    | proble  | ms- m   | otion   |
| rtifacts, mea    |            |                     |          |         |          |                            |          |            |         |         |         |          |         | 0 77    |         |
| <b>IODULE I</b>  | I BI(      | JPOT.               | ENTI     | AL MI   | EASU     | REME                       | INTS     |            |         |         |         |          |         | 9 Ho    | urs     |

Bio signals characteristics-frequency and amplitude ranges. ECG-Einthoven's triangle, standard 12 lead system, Principles of vector cardiography. EEG-10-20 electrode system, unipolar, bipolar and average mode. EMG-unipolar and bipolar mode. Recording of ERG, EOG and ECG.

#### MODULE III BIOSIGNAL CONDITIONING

9 Hours

Need for bio-amplifier-single ended bio-amplifier, differential bio-amplifier, impedance matching circuit, isolation amplifiers- transformer and optical isolation- isolated DC amplifier and AC carrier amplifier, power line interference, Right leg driven ECG amplifier, Band pass filtering.

MODULE IV MEASUREMENT OF NON- ELECTRICAL PARAMETERS 9 Hours

Temperature, respiratory rate and pulse rate measurements. Blood Pressure: indirect methods- Auscultatory method, oscillometric method, directs methods: electric manometer, pressure amplifiers, systolic, diastolic, mean detector circuit. Blood flow and cardiac output measurement: Indicator dilution, thermal dilution and dye dilution method, Electromagnetic and ultrasound blood flow measurement.

MODULE VBIOCHEMICAL MEASUREMENT AND BIOSENSORS9 HoursBiochemical sensors- pH, pO2 and pCO2, Ion selective Field Effect Transistor (ISFET), Immunologically<br/>sensitive FET(IMFET), Blood glucose sensors, Blood gas analyzers- colorimeter, Sodium Potassium<br/>Analyser, spectrophotometer, blood cell counter, auto analyzer (simplified schematic description)-<br/>Biosensors-Principles-amperometric and voltometric techniques, Electrophoretic techniques.

TOTAL: 45 HOURS

### **REFERENCES:**

1. Joseph J. Carr and John M. Brown, —Introduction to Biomedical Equipment Technology<sup>II</sup>, Pearson education, 2012.

2. Leslie Cromwell, "Biomedical Instrumentation and Measurement", Prentice Hall of India, New Delhi, 2007 3. L.A Geddes and L.E.Baker, "Principles of Applied Biomedical Instrumentation", John Wiley and Sons, 3rd Edition, Reprint 2008.

4. Myer Kutz, "Standard Handbook of Biomedical Engineering & Design", McGraw-Hill Publisher, 2003.

| 301HSX01       |                  | U             | NIVE       | RSAL     | HUM        | AN V          | ALUE       | S AN       | ) ETH   | IICS     |         | Ι        | L T                           | Р       | С    |
|----------------|------------------|---------------|------------|----------|------------|---------------|------------|------------|---------|----------|---------|----------|-------------------------------|---------|------|
|                |                  |               |            |          |            |               |            |            |         |          |         | 1        | 0                             | 2       | 2    |
| REREQUI        | SITE:            |               |            |          |            |               |            |            |         |          |         |          |                               |         |      |
|                | 1 D f            |               | -1 E41     | •        |            |               |            |            |         |          |         |          |                               |         |      |
|                | 1. Prof          | ession        | iai Eur    | ics.     |            |               |            |            |         |          |         |          |                               |         |      |
| OURSE O        | BJECT            | TIVES         | 5:         |          |            |               |            |            |         |          |         |          |                               |         |      |
|                | 1 Rei            | nstate        | India'     | s rich a | cultura    | l legac       | v and l    | niman      | values  | s of wh  | uich we | e are th | e custo                       | dians   |      |
|                |                  |               |            |          |            |               |            |            |         |          |         |          | indesira                      |         | tion |
|                | integra          | ated          | citizen    | s.       |            |               |            |            |         |          |         |          | on to cro                     |         |      |
|                | 4. Lay<br>stakeh |               |            | ler gui  | delines    | s of hu       | man va     | lues a     | nd ethi | cs for   | interna | ıl and e | external                      |         |      |
| OURSE O        | UTCO             | MES:          | :          |          |            |               |            |            |         |          |         |          |                               |         |      |
| On t           | he succ          | cessful       | comp       | letion   | of the a   | course        | stude      | nts wil    | l be ah | le to    |         |          |                               |         |      |
| CO1:           |                  | eate su       | ch an      | enviro   |            |               |            |            |         |          | usion o | of the l | earning                       | ; proce | ss f |
| <b>CO2:</b>    | 2. Cre           | ate su        | ch an e    | enviror  | nment,     | it is es      | sential    | to ens     | ure the | e inclu  | sion of | impec    | cable g                       | govern  | anco |
| CO3:           | 3. Cre<br>manag  |               |            | enviro   | onment     | , it is       | essenti    | al to e    | ensure  | the ind  | clusior | n of eff | fective                       | institu | tior |
| CO4:           | 4. Cre<br>reward | eate su       | uch an     |          | onmen      | t, it is      | essen      | tial to    | ensure  | e the in | nclusio | on of v  | vell-lai                      | d syst  | em   |
| CO5:           | 5. Cre           | eate su       | ich an     | envire   | onmen      | t, it is      | essent     | ial to     | ensure  | the in   | nclusio | on of in | nstitutio                     | onal c  | lima |
| COL            | where            | "righ         | ts" are    | encou    | raged      | and "w        | rongs'     | ' are di   | scoura  | iged.    |         | <u> </u> |                               | 1.      |      |
| CO6:           | and co           | ommu          | nities     | that ha  | ave the    | e poter       | ntial to   | devel      | lop the | e capad  | city of | indivi   | ard-loo<br>duals,<br>l equity | source  | the  |
|                |                  |               |            |          | aiues, a   |               | suie tii   |            | action  | is chat  | ne jusi |          | i equity                      | 10 all  |      |
| COs Vs PO      | os MAP           | PPINC         | <b>j:</b>  |          |            |               |            |            |         |          |         |          |                               |         |      |
|                |                  |               | PO2        |          | <b>PO4</b> | PO5           | <b>PO6</b> | <b>PO7</b> |         | PO9      | PO10    | PO11     | PO12                          |         |      |
|                | CO1              | 2             | 1          | 2        | -          | -             | 1          | 1          | 3       | 1        | -       | -        | 1                             |         |      |
|                | CO2<br>CO3       | 2<br>2        | 1          | 22       | -          | -             | 1          | 2          | 22      | 1        | -       | -        | 1                             |         |      |
|                | CO4              | $\frac{2}{2}$ | 1          | 2        | -          | -             | 1          | 1          | 2       | 1        | -       | -        | 1                             |         |      |
|                | CO5              | 2             | 1          | 2        | -          | -             | 1          | 2          | 3       | 1        | -       | -        | 1                             |         |      |
|                | CO6              | 2             | 1          | 2        |            |               | 1          | 2          | 2       | 2        | -       | -        | 1                             |         |      |
| COs Vs PS      | Os MA            | PPIN          | <b>G</b> : |          |            |               |            |            |         |          |         |          |                               |         |      |
|                |                  |               |            |          |            | 0 50          | 04.00      |            |         |          |         |          |                               |         |      |
|                |                  |               |            |          |            | Os PS<br>01 - | O1 PS      |            | 03      |          |         |          |                               |         |      |
|                |                  |               |            |          |            | 02 -          |            |            |         |          |         |          |                               |         |      |
|                |                  |               |            |          | С          | 03 -          |            |            |         |          |         |          |                               |         |      |
|                |                  |               |            |          | С          | <b>O4</b> -   |            |            |         |          |         |          |                               |         |      |
|                |                  |               |            |          | C          | 05 -          |            | -          |         |          |         |          |                               |         |      |
| OURSE C        | ONTE             | NTS:          |            |          |            |               |            |            |         |          |         |          |                               |         |      |
|                |                  |               |            |          |            |               |            |            |         |          |         |          |                               | 0.77    |      |
| <b>ODULE I</b> | Intr             | oduct         | tion to    | India    | n Etho     | S             |            |            |         |          |         |          |                               | 8 Hou   | irs  |

Meaning of ethos and cultural essence of India – Scriptures as the base of the Indian Knowledge System (IKS) – Integrating the two methodologies: interiorization process for self-exploration, and exterior scientific pursuit for the prosperity of world – The Law of Karma and Nishkama Karma (The Law of action and selfless action).

**Practical**: Five hours of Yoga practice per week, Ethics through Music and Indian Poetry, Community Engagement.

MODULE IIHuman Values and Ethics9 Hoursthe Self and the universal values that we stand for - This is self-enquiry & self-discovery – Background<br/>conversations and deep listening - recognizing the assumptions that we make - the biases we have - and the<br/>implications for ethical action – Self-identity: distinguishing and embracing oneself (and others) four profiles<br/>(inner-potential, social, professional, personality) – Distinguish ideology, perspectives beliefs from embodying<br/>values.

Practical: Self-discovery, self-enquiry and Mindfulness, Yama & Niyama of Ashthang Yoga.

Values embedded in the Preamble of the Indian Constitution Integration of Human Rights and duties – Directive principles and responsibilities as citizens of India – Sensibility and responsibilities towards global environment, Loksangraha and Vasudhaiva Kutumbakam.

**Practical:** Debates and Theatre on diversity and plurality, research on similarities and differences in the ethos of different countries.

MODULE IV Values and Skills for Youth

Designing to make a difference through strategies using the Conscious Full Spectrum Response model – Listening for commitment behind complaints to transform contentious arguments and create a space for listening and change – Distinguishing judgement from discernment – Being assertive and confident (assertiveness incorporates self-confidence).

**Practical:** Development of concentration among students through music, fine arts, mathematics, sports, yoga and mindfulness.

MODULE V Integrated Personality and Well-being

The three gunas (qualities of sattva—purity and harmony, rajas —activity and passion, tamas —darkness and chaos), the four antah-karanas (inner instruments), and panchkosha (five sheaths) – Stress management: meditated personality and agitated personality – Oneness, non-duality, and equanimity – Physical, mental, social, and spiritual well-being.

Practical: Talks on importance of the Ayurvedic concept of well being and nutrition, sports activities

TOTAL: 45 HOURS

#### **REFERENCES:**

*1.* 1. Blanchard, Kenneth and Peale, Norman Vincent. 1988. *The Power of Ethical Management*. New York: William Morrow and Company, Inc.

2. Gandhi, Mohandas Karamchand. 1971. *Pathway to God* compiled by MS Deshpande. Ahmedabad: Navajivan Mudranalaya, Navjivan Trust.

3. https://fdp-si.aicte-india.org/UHV-II%20Class%20Note.php.

9 Hours

9 Hours

10 Hours

| 2302BM451    | B    | IOSF   | ENSO               | RS Al    | ND M     | EASU              | JREM            | IENT    | S LAI      | BORA     | TOR       |          |          | P       | C    |
|--------------|------|--------|--------------------|----------|----------|-------------------|-----------------|---------|------------|----------|-----------|----------|----------|---------|------|
|              |      |        |                    |          |          |                   |                 |         |            |          |           | 0        | 0        | 3       | 2    |
| REREQUISI    | TE:  |        |                    |          |          |                   |                 |         |            |          |           |          |          |         |      |
|              | 1.   | Bios   | ensors             | and tra  | ansduc   | er lab.           |                 |         |            |          |           |          |          |         |      |
|              | 2.   | Bion   | nedical            | instru   | menta    | tion la           | b.              |         |            |          |           |          |          |         |      |
|              |      |        |                    |          |          |                   |                 |         |            |          |           |          |          |         |      |
| OURSE OBJ    | EC   | ΓΙΥΕ   | S:                 |          |          |                   |                 |         |            |          |           |          |          |         |      |
|              | 1.   |        |                    |          |          |                   | nd wo<br>nd RTE |         | princip    | les of   | tempe     | rature   | transdu  | cers 1  | ike  |
|              | 2.   | To a   |                    | the p    |          |                   |                 |         | ent sen    | sors s   | uch as    | LVDT     | and c    | apacit  | ive  |
|              | 3.   |        |                    | and the  |          | ing pr            | inciple         | s and a | applica    | tions o  | of strain | n gaug   | es for s | tress a | ınd  |
|              | 4.   |        | lemons<br>DSO.     | strate t | he ope   | eration           | and fu          | unctior | nality o   | of mea   | suring    | instru   | nents 1  | ike Cl  | RO   |
|              | 5.   |        | evaluat<br>ication |          | charact  | teristic          | s of pr         | essure  | senso      | rs for   | industr   | rial and | l envir  | onmer   | ıtal |
|              | 6.   | To d   | levelop            |          |          | lls in ŀ          | nandlin         | g and a | analyzi    | ng vai   | rious tra | ansduc   | ers use  | d in    |      |
|              |      |        |                    |          |          |                   |                 |         |            |          |           |          |          |         |      |
| OURSE OUT    | rco  | MES    | :                  |          |          |                   |                 |         |            |          |           |          |          |         |      |
| After co     | mple | tion o | f the co           | ourse, S | Student  | will b            | e able t        | 0       |            |          |           |          |          |         |      |
| CO1:         | 1.   |        | yze th<br>RTDs.    | e chara  | acterist | ics of            | temper          | ature t | ransdu     | cers lil | ther      | mistors  | , therm  | ocoup   | les, |
| <b>CO2:</b>  | 2.   | Eval   |                    |          | rmance   | e of dis          | placem          | ent and | d press    | ure sen  | isors lik | ke LVD   | T and o  | capacit | ive  |
| CO3:         |      |        |                    |          |          |                   |                 |         |            | uges f   | or stres  | s measu  | urement  | i.      |      |
| <u>CO4:</u>  |      |        |                    |          |          |                   | ing CR          |         |            | • ,•     |           | C        |          |         |      |
| CO5:         | 5.   |        | nine t             |          | aracter  | ISTICS            | or cap          | acitive | and        | resisti  | ve sen    | isors f  | or mea   | isurem  | ent  |
| CO6:         | 6.   |        |                    |          | skills i | n hand            | ling an         | d analy | zing va    | arious t | ransdu    | cers.    |          |         |      |
|              |      |        | <u> </u>           |          |          |                   | -               |         | -          |          |           |          |          |         |      |
| COs Vs POs 1 | VIAI | TIN    | <b>u:</b>          |          |          |                   |                 |         |            |          |           |          |          |         |      |
| C            | Os   | PO1    |                    |          |          | PO5               | PO6             |         | <b>PO8</b> | PO9      | PO10      | PO11     |          |         |      |
|              | 01   | 3      | 3                  | 3        | 3        | -                 | -               | 2       | -          | -        | -         | -        | 3        |         |      |
|              | 02   | 3      | 3                  | -        | 3        | -                 | -               | -       | -          | -        | -         | -        | -        |         |      |
|              | 03   | 3      | 3                  | 3        | 3        | -                 | -               | -       | -          | -        | -         | -        | -        |         |      |
|              | 04   | 3      | 3                  | -        | 3        | -                 | -               | 2       | -          | -        | -         | -        | 3        |         |      |
|              | 05   | 3      | 3                  | 3        | 3        | -                 | -               | 2       | -          | -        | -         | -        | -        |         |      |
| C            | 06   | 3      | 3                  | 3        | 3        | -                 | -               | 2       | -          | -        | -         | -        | 3        |         |      |
| COs Vs PSOs  | MA   | PPIN   | NG:                |          |          |                   |                 |         |            |          |           |          |          |         |      |
|              |      |        |                    |          |          |                   | •               |         |            |          |           |          |          |         |      |
|              |      |        |                    |          |          |                   | O1 PS           |         | 03         |          |           |          |          |         |      |
|              |      |        |                    |          |          | $\frac{01}{02}$ - | · 3             |         |            |          |           |          |          |         |      |

**CO2** 

**CO3** 

3

3

3

3

-

-

| <b>CO4</b> | 3 | 3 | - | 1 |
|------------|---|---|---|---|
| CO5        | 3 | 3 | - | 1 |
| CO6        | - | - | 3 | 1 |

#### LIST OF EXPERIMENTS:

1. Characteristic analysis of thermistor in temperature transducers.

2. Characteristic analysis of thermocouple in temperature transducers.

3. Characteristics analysis of LVDT (Linear variable differential transformer)

4. Characteristic analysis of strain gauge.

5. Demonstration of CRO & DSO.

6. Characteristic analysis of Capacitive transducer (Linear and angular).

7. Characteristic analysis of Pressure sensor.

8. Characteristics analysis of RTD (Resistance temperature detector).

**TOTAL: 30 HOURS** 

#### **REFERENCES:**

1. Principles of applied Biomedical Instrumentation by La Geddes and L.E. Baker.

2. Biomedical Instrumentation and Measurement by Leslie Cromwell, Fred. J. Weibell and Pfeiffer.

3. Principles of Biomedical Instrumentation and Measurement, Richard Aston, Merril Publishing Co., Columbus, 1990.

| 2302BM452                                              | I                          | DIAGN                | OSTIC   |          |                                         | RAPE<br>RATOI |               | EQU     | [PME]  | NT      | ]    |     | Т  | Р | C |
|--------------------------------------------------------|----------------------------|----------------------|---------|----------|-----------------------------------------|---------------|---------------|---------|--------|---------|------|-----|----|---|---|
|                                                        |                            |                      |         |          |                                         |               |               |         |        |         |      | 0   | 0  | 4 | 2 |
| PREREQUISI                                             | TE:                        |                      |         |          |                                         |               |               |         |        |         |      |     |    |   |   |
|                                                        | 1                          |                      |         |          |                                         |               |               |         |        |         |      |     |    |   |   |
|                                                        | 1.NIL                      |                      |         |          |                                         |               |               |         |        |         |      |     |    |   |   |
|                                                        |                            | <b>-</b> a           |         |          |                                         |               |               |         |        |         |      |     |    |   |   |
| COURSE OBJ                                             | ECTIV                      | ES:                  |         |          |                                         |               |               |         |        |         |      |     |    |   |   |
|                                                        | 1. To de                   | monstra              | te reco | rdina a  | nd ana                                  | lycic of      | differ        | ent Rio | notent | iale    |      |     |    |   |   |
|                                                        | 2. To an                   |                      |         | -        |                                         |               | unien         |         | potent | 1415.   |      |     |    |   |   |
|                                                        | <b>3</b> . To e            | -                    |         |          | -                                       |               | ties          |         |        |         |      |     |    |   |   |
|                                                        | 4. To u                    |                      |         |          | -                                       |               | 105.          |         |        |         |      |     |    |   |   |
|                                                        | 5.To M                     | leasure v            | arious  | physio   | logical                                 | signals.      |               |         |        |         |      |     |    |   |   |
|                                                        |                            |                      |         | 1, 510   | - 0. 241                                |               |               |         |        |         |      |     |    |   |   |
| COURSE OUT                                             | COME                       | S:                   |         |          |                                         |               |               |         |        |         |      |     |    |   |   |
| 0.1                                                    |                            | 1 '                  |         | 6.4      |                                         | , 1           | ,             | 1 1 1   |        |         |      |     |    |   |   |
| CO1:                                                   | uccessfu<br>Measur         | l compl<br>e differe |         |          |                                         |               |               |         |        |         |      |     |    |   |   |
| <u>CO1:</u><br>CO2:                                    |                            | differen             |         |          |                                         |               |               |         |        | Iologie | \$   |     |    |   |   |
| CO3:                                                   |                            | te vario             |         |          | 1                                       |               | 0             |         | methoe | 1010510 | 5.   |     |    |   |   |
| <b>CO4:</b>                                            |                            | ne the ele           |         |          |                                         |               |               | 1       |        |         |      |     |    |   |   |
| CO5:                                                   | Analyz                     | e the dif            | ferent  | bio sigi | nals us                                 | ing suit      | able to       | ols.    |        |         |      |     |    |   |   |
| COs Vs POs I                                           | Os PO1                     | -                    | PO3     | PO4      | PO5                                     | PO6           | PO7           | PO8     | PO9    | PO10    | PO11 | PO1 | 12 |   |   |
|                                                        | <b>O1</b> 3                | 3                    | -       | -        | -                                       | -             | 2             | 1       | 1      | 1       | -    | 1   |    |   |   |
|                                                        | <b>O2</b> 3                | 3                    | -       | 3        | -                                       | -             | 2             | 1       | 1      | 1       | -    | 1   |    |   |   |
|                                                        | <b>O3</b> 3                | 3                    | -       | 3        | -                                       | -             | 2             | 1       | 1      | 1       | -    | 1   |    |   |   |
|                                                        | <b>O4</b> 3<br><b>O5</b> 3 | 3                    | -       | 3        | -                                       | -             | 22            | 1       | 1      | 1       | -    | 1   |    |   |   |
|                                                        | <b>O5</b> 3<br><b>O6</b> 3 | 3                    | -       | 3        | - 3                                     | -             | $\frac{2}{2}$ | 1       | 1      | 1       | -    | 1   | _  |   |   |
| C                                                      | 00 5                       | 5                    |         | 5        | 5                                       | -             | 2             | 1       | 1      | 1       | _    | 1   |    |   |   |
| COs Vs PSOs                                            | MAPPI                      | NG:                  |         |          |                                         |               |               |         |        |         |      |     |    |   |   |
|                                                        |                            |                      |         |          |                                         |               |               |         |        |         |      |     |    |   |   |
|                                                        |                            |                      |         |          |                                         | O1 PS         |               | 03      |        |         |      |     |    |   |   |
|                                                        |                            |                      |         |          | $01 \cdot 02$                           | - 3           |               | -       |        |         |      |     |    |   |   |
|                                                        |                            |                      |         |          |                                         | 3 3<br>3 3    |               | -       |        |         |      |     |    |   |   |
|                                                        |                            |                      |         |          |                                         | 3 3           |               |         |        |         |      |     |    |   |   |
|                                                        |                            |                      |         |          |                                         | 3 3           |               |         |        |         |      |     |    |   |   |
|                                                        |                            |                      |         |          | <b>06</b> ·                             |               |               | 3       |        |         |      |     |    |   |   |
|                                                        |                            |                      |         |          |                                         |               |               |         |        |         |      |     |    |   |   |
| LIST OF EXP                                            | ERIME                      | NTS:                 |         |          |                                         |               |               |         |        |         |      |     |    |   |   |
| 1 14                                                   |                            | 1 7                  | 1 .     |          |                                         |               |               |         |        |         |      |     |    |   |   |
| 1. Measurement                                         |                            | -                    | -       |          | .4                                      |               |               |         |        |         |      |     |    |   |   |
| 2. Galvanic sking<br>3. Study of shore                 |                            |                      |         |          |                                         |               |               |         |        |         |      |     |    |   |   |
| <ol> <li>Study of shor</li> <li>Measurement</li> </ol> |                            |                      |         |          |                                         | t hiotal      | emetry        |         |        |         |      |     |    |   |   |
| 5. Study of hem                                        |                            |                      | nogica  | i signal | is using                                | 5 DIOLEI      | enneu y       | •       |        |         |      |     |    |   |   |
| 5. Electrical safe                                     | -                          |                      |         |          |                                         |               |               |         |        |         |      |     |    |   |   |
| 7 Measurement                                          | -                          |                      |         |          | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |               |               |         |        |         |      |     |    |   |   |

7. Measurement of Respiratory parameters using spirometry.

8. Study of medical stimulator.

#### **TOTAL: 30 HOURS**

#### **REFERENCES:**

1. John G. Webster, —Medical Instrumentation Application and Design<sup>II</sup>, 4th edition, Wiley India PvtLtd,New Delhi, 2015

2. Joseph J. Carr and John M. Brown, —Introduction to Biomedical Equipment Technology, Pearson education, 2012.

*3.* Leslie Cromwell, —Biomedical Instrumentation and measurement<sup>||</sup>, 2nd edition, Prentice hall of India, New Delhi, 2015.

| 2302BM453                       |                       | BI                                                                     | OMEI            | DICAL    | INST    | RUMI         | ENTAT   | FION 1     | LABO    | RATO    | RY          |       | L<br>0 | T<br>0 | P<br>4 | C<br>2 |
|---------------------------------|-----------------------|------------------------------------------------------------------------|-----------------|----------|---------|--------------|---------|------------|---------|---------|-------------|-------|--------|--------|--------|--------|
|                                 |                       |                                                                        |                 |          |         |              |         |            |         |         |             |       | 0      | Ŭ      | •      |        |
| PREREQUIS                       | ITE:                  |                                                                        |                 |          |         |              |         |            |         |         |             |       |        |        |        |        |
|                                 | 1                     | NIL                                                                    |                 |          |         |              |         |            |         |         |             |       |        |        |        |        |
|                                 | 1.                    | INIL                                                                   |                 |          |         |              |         |            |         |         |             |       |        |        |        |        |
| COURSE OB                       | E TF C'               | TIVE                                                                   | S.              |          |         |              |         |            |         |         |             |       |        |        |        |        |
|                                 | JLC                   |                                                                        | 5.              |          |         |              |         |            |         |         |             |       |        |        |        |        |
|                                 | 1. '                  | To pro                                                                 | vide ha         | unds on  | trainii | ng on N      | leasure | ement o    | of phys | iologic | al para     | meter | s.     |        |        |        |
|                                 | 2. '                  | 2. To study about blood flow and blood measurement.                    |                 |          |         |              |         |            |         |         |             |       |        |        |        |        |
|                                 |                       |                                                                        | derstar         |          |         |              |         |            |         |         |             |       |        |        |        |        |
|                                 |                       |                                                                        |                 |          |         | -            |         |            |         |         |             |       |        |        |        |        |
| COURSE OU                       | TCC                   | <b>MES</b>                                                             | :               |          |         |              |         |            |         |         |             |       |        |        |        |        |
|                                 | _                     |                                                                        |                 |          |         |              |         |            |         |         | _           |       |        |        |        |        |
| 001                             |                       | n the successful completion of the course, students will be able to    |                 |          |         |              |         |            |         |         |             |       |        |        |        |        |
| C01:                            | 1.1                   | Desigr                                                                 | n the ar        | nplifier | for Bi  | o signa      | l meas  | uremer     | nts.    |         |             |       |        |        |        |        |
| CO2:                            | Ζ.                    | . Measure heart rate and heart sounds.                                 |                 |          |         |              |         |            |         |         |             |       |        |        |        |        |
| CO3:                            | 5.1                   | 3. Record and analyze pulse rate and respiration rate.                 |                 |          |         |              |         |            |         |         |             |       |        |        |        |        |
| CO4:                            | 4. ]                  | 1. Measure blood pressure and blood flow.                              |                 |          |         |              |         |            |         |         |             |       |        |        |        |        |
| CO5:                            | 5.                    | 5. Analyse the functions of various components of the Baby Ventilator. |                 |          |         |              |         |            |         |         |             |       |        |        |        |        |
|                                 |                       |                                                                        | <u>a</u>        |          |         |              |         |            |         |         |             |       |        |        |        |        |
| COs Vs POs                      | MA                    | PPIN                                                                   | G:              |          |         |              |         |            |         |         |             |       |        |        |        |        |
|                                 | COs                   | <b>PO1</b>                                                             | PO2             | PO3      | PO4     | PO5          | PO6     | <b>PO7</b> | PO8     | PO9     | <b>PO10</b> | PO1   | 1 P    | 012    |        |        |
|                                 | CO1                   | 3                                                                      | 2               | 1        | 1       | 1            | -       | -          | -       | -       | -           | 1     |        | 1      |        |        |
|                                 | C <b>O2</b>           | 3                                                                      | 2               | 1        | 1       | 1            | -       | -          | -       | -       | -           | 1     |        | 1      |        |        |
|                                 | C <b>O3</b>           | 3                                                                      | 2               | 1        | 1       | 1            | -       | -          | -       | -       | -           | 1     |        | 1      |        |        |
|                                 | C <b>O4</b>           | 3                                                                      | 2               | 1        | 1       | 1            | -       | -          | -       | -       | -           | 1     |        | 1      |        |        |
|                                 | C <b>O5</b>           | 3                                                                      | 2               | 1        | 1       | 1            | -       | -          | -       | -       | -           | 1     |        | 1      |        |        |
| COs Vs PSO                      |                       | A DDIN                                                                 |                 |          |         |              |         |            |         |         |             |       |        |        |        |        |
|                                 | <b>5</b> IVI <i>E</i> |                                                                        | 10.             |          |         |              |         |            |         |         |             |       |        |        |        |        |
|                                 |                       |                                                                        |                 |          | С       | Os PS        | O1 PS   | O2PS       | 03      |         |             |       |        |        |        |        |
|                                 |                       |                                                                        |                 |          |         | 01 -         | . 3     |            |         |         |             |       |        |        |        |        |
|                                 |                       |                                                                        |                 |          |         | <b>O2</b> 3  |         |            |         |         |             |       |        |        |        |        |
|                                 |                       |                                                                        |                 |          |         | 03 3         |         |            |         |         |             |       |        |        |        |        |
|                                 |                       |                                                                        |                 |          |         | 04 3<br>05 3 |         |            |         |         |             |       |        |        |        |        |
|                                 |                       |                                                                        |                 |          | C       | 05 3         | 5 3     |            |         |         |             |       |        |        |        |        |
| LIST OF EXI                     | PERI                  | IMEN                                                                   | TS:             |          |         |              |         |            |         |         |             |       |        |        |        |        |
|                                 |                       |                                                                        |                 |          |         |              |         |            |         |         |             |       |        |        |        |        |
| 1. ECG signal                   |                       |                                                                        |                 |          | on.     |              |         |            |         |         |             |       |        |        |        |        |
| 2. Simulation                   |                       |                                                                        |                 |          |         |              |         |            |         |         |             |       |        |        |        |        |
| 3. Simulation                   |                       |                                                                        |                 |          |         |              |         |            |         |         |             |       |        |        |        |        |
| 4. Measureme                    |                       |                                                                        |                 |          |         | 14           |         | nor - 1-   | 007     |         |             |       |        |        |        |        |
| 5. Measureme                    |                       |                                                                        |                 |          | -       |              |         |            | cer.    |         |             |       |        |        |        |        |
| 6. Measureme<br>7. Study the cl |                       |                                                                        |                 |          | 0 1 1   | - U          | anome   | eler.      |         |         |             |       |        |        |        |        |
| 8. Measureme                    |                       |                                                                        |                 |          |         |              |         |            |         |         |             |       |        |        |        |        |
| 0. measurenne                   | 111 01                | iryuit                                                                 | - <u>5</u> 0110 | 4.5111   | 5 PII I | ,10101.      |         |            |         |         |             | TO    | ГАІ    | L: 30  | HOU    | RS     |
|                                 |                       |                                                                        |                 |          |         |              |         |            |         |         |             |       |        |        |        |        |

### **REFERENCES:**

1. Medical Instrumentation – Application and Design" by John G Webster.

2. "Transducers for Biomedical Measurements: Principles and Applications" by Richard S C Cobbold.

3.Measurement Systems, Application and Design" by Ernest O Doeblin 4. https://bmi-iitr.vlabs.ac.in/List%20of%20experiments.html.