B.E – Mechanical Engineering | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2023 Approved in 10th Academic Council Meeting held on 30.06.2023

E.G.S. PILLAY ENGINEERING COLLEGE

(Autonomous)

NAGAPATTINAM - 611 002.

(Affiliated to Anna University, Chennai | Accredited by NAAC with 'A++' Grade

Accredited by NBA | Approved by AICTE, New Delhi)

REGULATIONS - R2023

B.E. / B.Tech. – THIRD SEMESTER CURRICULUM

SL ·	COURSE CODE	COURSE TITLE	CATE GORY	l Pl	PERI ER W	ODS EEK	CREDIT
NO				L	Т	Р	S
		Theory Courses					
1.	2301MA303	Transforms and Partial Differential Equations	BSC	3	2	0	4
2.	2302ME301	Engineering Thermodynamics	PCC	3	0	0	3
3.	2302ME302	Fluid Mechanics and Machinery	ESC	3	0	0	3
4.	2301GEX07	Environmental Sciences and Sustainability	BSC	2	0	0	2
5.	2302ME303	Manufacturing Technology I	PCC	3	0	0	3
6.		Engineering Mechanics	ESC	3	0	0	3
		LABORATORY COUR	SES		•		
7.	2302ME351	Computer Aided Machine Drawing	ESC	0	0	4	2
8.	2302ME352	Manufacturing Technology Laboratory I	PCC	0	0	2	1
9	2302ME353	Fluid Mechanics and Machinery Laboratory	ESC	0	0	2	1
10.	2304GE301	Professional Development course 1 ^{\$}	EEC	0	0	2	1
11.		Life skill course 3 [#]	MC	0	0	0	-
	·	TOTAL		-	-	-	24

2301MA3	03		T DIF	RANS FERF	SFORI ENTIA	MS AN LEOI	ND PA JATI(RTIA DNS	L			L	Т	Р	С
200101110	00		(Comn	non to	Mech	anical	& Civ	il)					•	U
												3	1	0	4
PREREQU	ISITE:											÷			
	1	Basi	c Calci	11110											
 	1.	Segu	iences	and Se	ries										
		~ - 1													
COURSE ()BJEC	TIVES	5:												
1.	To	develo e series	op the l	Fourier	series	in (0,2	2π),odo	l and e	ven fu	nction	s and H	Half rang	ge cos	sine an	nd
2.	То	famili	arize th	ne stud	ents w	ith Fo	urier T	ransfo	rms an	d Inve	rse Tra	ansforms	8		
3.	To diff	famili erentia	arize th	ne stud	ent wit f secor	th form nd orde	nation er with	of part	ial dif	ferenti	al equa	ations, li	near p	artial	
4.	То	make	the stu	dents u	inderst	and St	eady s	tate sol	ution	of two	dimen	sional e	quatio	n of h	eat
	con	duction	n.				5						1		
5.	То	acquai	int the	studen	t, Inve	rse Z -	transf	orm (u	sing pa	rtial f	raction	and resi	idues)		
	Sol	ution o	of differ	rence e	equatio	ns usir	ng Z - t	ransfo	rm.						
COURSE (DUTCC	MES:													
On	the suc	cessful	compl	letion of	of the c	ourse,	studer	nts will	be abl	e to					
	$\begin{array}{c c} \mathbf{L} & \mathbf{D} \mathbf{e} \mathbf{c} \\ \mathbf{L} & \mathbf{E} \mathbf{v} \mathbf{a} \\ \mathbf{L} & \mathbf{E} \mathbf{v} \mathbf{a} \end{array}$	luate F	ourier	Transf	orms	Tall Ta Inverse	Eouri	er Trai	usform	s and (Convo	lution th	eorem	1	
	Con	npute]	Linear	partia	l diffe	rential	equat	ions o	f seco	nd an	d high	ner orde	r with	n con	stant
CO.	coef	ficient	s of bo	th hom	nogene	ous an	d non-	homog	eneou	s types	5.				
CO4	4: Solv	e one	dimens	sional v	wave a	nd hea	t equat	ions.							
CO	5: For	nation	of diff	erence	equati	ons –	Solutio	on of di	fferen	ce equ	ations	using Z	- trans	sform	
COs Vs P	Os MA	PPINC	j:												
Г	COa	DO1	DO1	DO2	DO4	DO5	DOC	D07	DOP	DOO	DO1 0		011		
	$\frac{COs}{CO}$	3	PO2	PUS	P04	PUS	PUo	PU/	PUð	PO9	POIU	POILE	2012		
	1	5	2	1											
	CO	3	2	1											
-	2 CO	3	2	1											
	<u> </u>	3	2	1											
-	4 CO	3	2	1											
	5			_											
COs Vs P	SOs MA	APPIN	G:												
					CC)s PS()1 1	D1 PSC	D2 PSC)3						
					C) 2 1									
					CC)3 1									
					CC)4 1									
					CC)5 1									
COUDSE		NTC.													
COURSE (JUNIE	a n 1 5:													

B.E – Mechanical Engineering | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2023 Approved in 10th Academic Council Meeting held on 30.06.2023

MODULE I FOURIER SERIES	9 Hours
Dirichlet's conditions - General Fourier series - Odd and even functions - Hal	lf range sine series – Half
range cosine series – Parseval's identity – Harmonic analysis.	
MODULE II FOURIER TRANSFORMS	9 Hours
Statement of Fourier integral theorem – Fourier transform pair – Fourier sine	and cosine transforms –
Properties – Transforms of simple functions – Convolution theorem – Parseval's	identity
MODULE III PARTIAL DIFFERNTIAL EQUATIONS	9 Hours
Formation of partial differential equations – Singular integrals Solutions of star	ndard types of first
order partial differential equations - Lagrange"s linear equation Linear partial d	ifferential equations
of second and higher order with constant coefficients of both homogeneous and n	on-homogeneous
types	
MODULE IV APPLICATION OF PARTIAL DIFFERENTIAL EQUATIO	NS 9 Hours
Classification of PDE - Solutions of one dimensional wave equation - One din	nensional equation of heat
conduction - Steady state solution of two dimensional equation of heat conduction	n.
MODULE V Z TRANSFORMS AND DIFFERENCE EQUATIONS	9 Hours
Z- Transforms - Elementary properties – Inverse Z - transform (using partial	fraction and residues) –
transform.	1 ·45+15- 60 HOURS
	11.43+13= 00 1100KS
REFERENCES:	
1. Veerarajan. T., "Transforms and Partial Differential Equations", Second	reprint, Tata
McGraw Hill Education Pvt. Ltd., New Delhi, 2012.	
2. Grewal. B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna	Publishers
Delhi,2012.	
3.Narayanan.S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced	d Mathematic
for Engineering Students" Vol. II & III, S.Viswanathan Publishers Pvt I	Ltd. 1998.
4.Bali.N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 7	th Edition, Laxmi
Publications Pvt Ltd , 2007.	
5. Ramana.B.V., "Higher Engineering Mathematics", Tata Mc-GrawHill Pa	ublishing Company Limited
New Delhi, 2008.	
6 Glyn James "Advanced Modern Engineering Mathematics" 3rd Edition	n Pearson Education 2007

Datta.K.B., "Mathematical Methods of Science and Engineering", Cengage Learning India Pvt Ltd,

7.

2302ME301]	ENGI	NEER	ING T	HERN	MODY	NAM	ICS]	T	Р	C
													3 2	0	4
PREREQUI	ISITE	:													
	1		uiu a M	. 41 0 0 000 0	tian I	0- TT									
	1. Er	igineei	ring M	atnema	atics I	& II									
COURSE O	BJEC	TIVE	S:												
	1. Im	ipart k	nowlec	lge on	the bas	sics an	d appli	ication	of zero	oth and	l first l	aw of	thermo	lynam	ics.
	2. Im	ipart ki ermal d	nowiec	ige on	the sec	cond la	iw of th	nermoc	iynami	cs in a	narysn	ng the	perform	ance	IO
	3. Im	part k	nowled	Ige on	availa	bility a	nd app	olicatio	ns of s	econd	law of	therm	odynam	nics	
	4. Te	each th	e vario	us pro	perties	of stea	am thro	ough st	team ta	bles a	nd Mol	llier ch	art.		
	5. Im	ipart ki	nowled	lge on	the ma	crosco	pic pro	opertie	s of ide	eal and	l real g	ases.			
COURSE O	UTCO	OMES	:												
On	the suc	cessfu	l comp	oletion	of the	course	stude	ents wil	ll be ab	le to					
	Unde Utili [,]	erstand	t law of	pts and f therm	a princ podvna	iples o mics f	or clos	nodyna ed and	open s	vstem	s				
CO2:	Uses	second	l law of	f therm	odyna	mics f	or heat	t Engin	e, heat	pump	and re	frigera	tor.		
CO4:	Expl	ain the	ermody	namic	proper	rties of	pure s	substan	ices and	d its pl	nase ch	ange p	rocesse	es.	
<u>CO5:</u>	Dete	rmine	proper	ties of	gas mi	ixtures	· • •	1.							
C06:	Make	e use c	of psyc	nometi	nc proj	perties	in Air	condit	ioning	proces	SS.				
COs Vs PC)s MA	PPIN	G:												
	CO	DO1	DO1	DO2		DO5		DO7	DOQ	DOO		DO11	DO12		
	COs CO1	2	PO2	-	- -	-	- PU0	- PO/	- PU8	- -	-	- POII	2		
				1	1			1					2		
	001	2	2			-	-		_	_		-			
	CO2	3	2	1	1			1	-	-	-		2		
	CO2 CO3	3	2 2	1	1	-	-	1	-	-	-	-	2		
	CO2 CO3 CO4	3 3 2	2 2 1	1 1 -	1	-	-	1	- 2	-	-	-	2 2 2		
	CO2 CO3 CO4	3 3 2 2	2 2 1	1 -	1 -	-	-	1 1 -	- 2	-	-	-	2 2 2 2 2		
	CO2 CO3 CO4 CO5	3 3 2 2	2 2 1 1	1 - -	1 - -	-	-	1 1 - -	- 2	-		-	2 2 2 2		
	CO2 CO3 CO4 CO5 CO6	3 3 2 2 3	2 2 1 1 2	1 - - 1	1 - - 1	-	- - - 1	1 1 - - 1	- 2 - 2	-		-	2 2 2 2 2 2		
	CO2 CO3 CO4 CO5 CO6	3 3 2 2 3	2 2 1 1 2	1 - - 1	1 - - 1	-	- - - 1	1 - - 1	- 2 - 2	-	-	-	2 2 2 2 2		
COs Vs PS	CO2 CO3 CO4 CO5 CO6	3 3 2 2 3 APPIN	2 2 1 1 2 VG:	1 - - 1	- - 1	-	1	1 - - 1	- 2 - 2	-		-	2 2 2 2 2		
COs Vs PS	CO2 CO3 CO4 CO5 CO6	3 3 2 2 3 APPIN	2 2 1 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2	1 - - 1	1 - - 1	- - - - Os PS	- - 1 01 PS	1 - - 1 O2 PS	- 2 - 2 03	-		-	2 2 2 2 2		
COs Vs PS	CO2 CO3 CO4 CO5 CO6	3 3 2 2 3 APPIN	2 2 1 2 2 7 7 8 7 8 7 8	1 - - 1	1 - 1 1 C C	- - - Os PS 01	- - 1 01PS	1 - 1 02 PS	- 2 - 2 03	-	-	-	2 2 2 2 2		
COs Vs PS	CO2 CO3 CO4 CO5 CO6	3 2 2 3 APPIN	2 2 1 2 7 8 7 8	1 - - 1	1 - - 1 C C C	- - - Os PS O1 1 02 2	- - 1 01 PS	1 - - 1 02 PS	- 2 - 2 03	-		-	2 2 2 2 2		
COs Vs PS	CO2 CO3 CO4 CO5 CO6	3 3 2 2 3 APPIN	2 2 1 2 2 2 2 2 2 2 7 7 8 7 8	1 - - 1	1 - - 1 C C C	- - - - - - - - - - - - - - - - - - -	- - 1 01 PS	1 - 1 02 PS	- 2 - 2 03	-	-	-	2 2 2 2 2		
COs Vs PS	CO2 CO3 CO4 CO5 CO6	3 3 2 3 APPIN	2 2 1 2 7 7 7 8	1 - 1	1 - 1 1 C C C C C	- - - - - - - - - - - - - - - - - - -	- - 1 01 PS	1 - 1 02 PS	- 2 - 2 - 2	-	-	-	2 2 2 2		
COs Vs PS	CO2 CO3 CO4 CO5 CO6	3 2 2 3 APPIN	2 2 1 1 2 NG:	1 1	1 - - 1 C C C C C C	- - - - - - - - - - - - - - - - - - -	- - - 1 01 PS 2 2 3 2 3	1 - - 1 02 PS 3 3	- 2 - 2 03	-	-	-	2 2 2 2 2		
COs Vs PS	CO2 CO3 CO4 CO5 CO6	3 3 2 3 APPIN	2 2 1 2 1 2 8 8	1 1	1 - 1 - 1 C C C C C C C C C C C C	- - - - - - - - - - - - - - - - - - -	- - 1 01PS 2 3 2 3 3 4 3	1 1 - 1 - 1 02 PS 3 3 3 3 3 3	- 2 - 2 03	-	-	-	2 2 2 2		

COURSE CONTENTS:	
MODULE I INTRODUCTION AND ZEROTH LAW OF THERMODYNAMICS	12 Hours
Macroscopic and Microscopic approaches, Definitions and concepts- heat, work, therm equilibrium, system and types, surroundings, Properties- intensive and extensive properties,	odynamic Path and
cycle, State postulate, Zeroth law of thermodynamics- temperature scale, perfect gas scale.	esses and
MODULE II FIRST LAW OF THERMODYNAMICS	12 Hours
First law of thermodynamics, I law for Closed systems - constant pressure process, constant	nt volume
process, constant temperature process, adiabatic process, polytropic process, throttling process. open systems - Steady state flow processes, Steady flow energy equation (SFEE), Application	I law for of SFEE-
turbines and compressors, nozzles and diffusers, throttling valves, heat exchangers.	
MODULE III SECOND LAW OF THERMODYNAMICS	12 Hours
statements, Heat Engine, heat pump and refrigerator, Reversibility and irreversibility- irrever reversible processes, Carnot's principles, Carnot cycle, Carnot engine, Thermodynamic tempera Clausius inequality, Entropy- principle of entropy increase, Availability & irreversibility – In about third law of thermodynamics.	rsible and ture scale, troduction
MODULE IV PROPERTIES OF PURE SUBSTANCES	12 Hours
Thermodynamic properties of fluids. Pure substance-phases - Phase change processes, Property d pressure-volume (P-v), pressure-temperature (P-T), temperature volume (T-v), temperature entr and enthalpy-entropy (h-s) diagrams. Steam tables - Problems on flow and non-flow processes.	liagrams - copy (T-s)
MODULE V GAS MIXTURES AND PSYCHROMETRIC PROPERTIES	12 Hours
Thermodynamics of ideal gas mixture- mixture of ideal gas, mixture of perfect gases, Daltor partial pressure, Amagat's law, Thermodynamics properties, Ideal gas – equation of state, Van equation and compressibility chart. Psychrometric properties and processes – Psychrometric chart.	ı's law of der Waals
TOTAL: 60	HOURS
REFERENCES:	

2302ME302	2]	FLUIE) MEC	HAN	ICS A	ND M.	ACHI	NERY		L	Т	P	С
												2	2	0	3
PREREQUIS	SITE:														
	1. Eı	nginee	ring M	athem	atics I	& II									
			~												
COURSE OF	BJEC	LIVE	S:												
1	. To ii	ntrodu	ce the	studen	ts abou	ıt prop	erties o	of the f	luids,	oehavi	our of	fluids u	nder st	atic	
	con	ditions	s to the	onnlig	tions	of the		votion	lorra ta	a) fla			nto h) f	lowth	
2	pipe	xpose es (bot	h lami	nar and	d turbu	lent)	conserv	ation	laws to	o a) 110	w mea	sureme	itts D) I	low th	oug
3	. To e	xpose	the stu	idents 1	to basi	c princ	iples o	f work	ing of	hydrau	ilic ma	achinerie	es and	to desi	gn
	Pelt	onwhe	eel, Fra	ancis a	nd Kaj	olan tu	rbine, o	centrifi	igal an	d recij	procati	ng pum	ps.		
COURSE OU	JTCO	MES	•												
On th	ne suc	cessfu	l comp	letion	of the	course	, stude	nts wil	l be ab	le to					
C01:	Exp	lain va	arious	proper	ties of	fluids	and flo	w mea	asurem	ents.					
<u>CO2:</u>	Cal	culate	the end	ergy lo	sses in	pipes.									
	Exp	ermine	the p	ensiona	al analy	ysis of baracte	fluids.	of hyd	raulic	turbing	20				
CO4:	Cal	culate	the per	rforma	nce ch	aracter	ristics of	of hydr	aulic p	umps.					
			1					5	1	1					
COs Vs POs	s MA	PPINO	;												
Ľ	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	CO1	3	1	1	1	-	2	1	-	-	-	-	1		
	CO2	3	2	-	2	-	1	-	-	-	-	-	1		
-	CO3	3	2	-	1	2	-	-	1	1	-	2	-		
_	CO4	3	2	1	2	-	2	2	1	1	-	-	1		
-	CO5	3	2	1	2	-	2	2	1	1	-	-	1		
COs Vs PSC)s M/	APPIN	IG:												
					C	Os PS	O1PS	O2 PS	03						
					C	01 2	2 -	2	2						
					С	O2 2	2 -	2	2						
					C	O3 1	1 -								
					C	04 2	2 -								
						05									
					Ľ										
COURSE CO)NTF	NTS:													
MODULE I	IN	NTRO	DUC	FION	ГО FI	LUID A	AND F	LUID	MOTI	ON				9 Ho	urs

Fluid-Fluid mechanics - LawsofFluidMechanics-PropertiesoffluidanditsApplication-Typesoffluid- Types of fluid Flow-Measurement of Pressure-U-tube and differential manometer-Measurement of velocity using Discharge –Flow characteristics-Momentum –continuity equation.

 MODULE II
 FLUID DYNAMICS AND FLUID FLOW OVER CONDUITS
 9 Hours

 Forces acting on a fluid element- Eulers and Bernoulli theorem Application in internal and external flows measuring instruments- Major losses and Minor losses in pipes using standard charts and tables pipes in series and pipes in parallel.-Darcy Weisbach equation. Identification of laminar and turbulent flow in closed conduits, flow in circular pipe.
 9 Hours

MODULE III DIMENSIONAL AND MODEL ANALYSIS

Need for dimensional analysis - dimensional analysis using Buckingham pi theorem – Similitude - types of similitude - Dimensionless parameters- application of dimensionless parameters - Model analysis through Reynolds and Froudes Model law.

MODULE IV HYDRAULIC TURBINES

Definition of turbine - Classification -Types of head and efficiencies of turbine-Impulse turbine - Reaction turbine-Francis turbine, Kaplan turbine - working principles and velocity triangle- Work done by water on the runner Specific speed - unit quantities performance curves.

MODULE V HYDRAULIC PUMPS

Definition -Centrifugal pump Classification Construction working principle and velocity Triangle Definition of heads-Losses and efficiencies - Multistage Centrifugal pump-Specific speed - Priming and cavitation effects of centrifugal pump. Reciprocating pump Classification Working Principle Coefficient of discharge and slip- Indicator diagram (Descriptive treatment only).

TOTAL: 45 HOURS

9 Hours

9 Hours

9 Hours

REFERENCES:

1.R.K.Bansal, A Textbook of Fluid Mechanics and Machinery, Laxmi Publications Ltd., New Delhi, Revised Tenth edition, 2018.

2.Modi P.N. and Seth, S.M. Hydraulics and Fluid Mechanics, Standard Book House, New Delhi, 22nd edition (2019)

3. Jain A. K. Fluid Mechanics including Hydraulic Machines, Khanna Publishers, New Delhi, 2014..

4.Kumar K. L., Engineering Fluid Mechanics, Eurasia Publishing House(p) Ltd. New Delhi, 2016

5.Fox W.R. and McDonald A.T., Introduction to Fluid Mechanics John-Wiley and Sons, Singapore, 2011. 6.Pani B S, Fluid Mechanics: A Concise Introduction, Prentice Hall of India Private Ltd, 2016.

7.Cengel Y A and Cimbala J M, Fluid Mechanics, McGraw Hill Education Pvt. Ltd., 2014

8.5 K Som; Gautam Biswas and S Chakraborty, Introduction to Fluid Mechanics and Fluid Machines, Tata McGraw Hill Education Pvt. Ltd., 2012.

9.https://archive.nptel.ac.in/courses/112/105/112105171/#

2301GEX07	7	ENVI (C	RONN COMM	MENT	AL SO	CIENC	CESAN	ND SU S OF E	STAI B.E/ B.	NABII TECH	LITY)	L	Т	Р	С
												1	0	2	2
COURSE O	BJEC	TIVE	S:											1 1	
	(Re	alize tł	ne inter	rdiscip	linary	and ho	listic n	ature o	of the e	nviron	ment.			
		• Un	derstar	nd how	/ natura	al reso	urces a	nd env	vironm	ent aff	ect the	quality	y of life	and	
		stii	mulate	the qu	est for	sustai	nable d	levelop	oment.						
<u>JOURSE O</u>	UICO	JMES	<u>:</u>												
On t	he suc	cessfu	l comr	letion	of the	course	stude	nts wi	ll he al	le to					
C01:	Desc	ribe th	ie impo	ortance	e of eco	osvsten	<u>, stude</u> n.	1105 111	n oe uc						
CO2:	Desc	ribe th	ie vario	ous env	vironm	ental i	ssues a	nd its	preven	tion.					
CO3:	Orga	nise v	arious	natura	l resou	rces ar	nd the i	mmed	iate ne	ed to c	onserv	e it.			
CO4:	Sele	ct the v	various	ways	of con	servati	on of b	oiodive	ersity.						
CO5:	Inve	stigate	the dif	fferent	types	of poll	ution a	nd its	effects	•					
COs Vs PO)s MA	PPIN	G:												
Γ	COs	PO1	PO2	PO3	P O4	PO5	PO6	PO7	PO8	POQ	PO10	PO11	PO12		
-	CO1	2	102	105	104	105	100	3	100	10)	1010	1011	1012		
	001	2	1					5							
	CO2	2	1					3							
-	CO3	2	2	1	1				2			2			
	UUJ					1	1	2	• • •	()	2		2		
		3	2	1	1	1	1	3	2	2	2	3	2		
-	CO4	3	2	1	1	1	1	3	2	2	2 2	3	2		
-	CO4	3	2	1	1	1	1	3	2 2	2	2 2	3	2		
-	CO4 CO5	3	2 2 2	1 1 1	1 1 1	1 1 1	1 1 1	3 3 3	2 2 2 2	2 2 2	2 2 2	3 3 3	2 2 2		
-	CO4 CO5	3 3	2 2 2	1 1 1	1 1 1	1 1 1	1 1 1	3 3 3	2 2 2 2	2 2 2	2 2 2	3 3 3	2 2 2		
COs Vs PS	CO4 CO5 Os M	3 3 3 APPIN	2 2 2 NG:	1 1 1	1 1 1	1 1 1	1 1 1	3 3 3	2 2 2 2	2 2 2	2 2 2	3 3 3	2 2 2		
COs Vs PS	CO4 CO5 Os M	3 3 3 APPIN	2 2 2 NG:	1 1 1	1 1 1	1 1 1	1 1 1	3 3 3	2 2 2	2 2 2	2 2 2	3 3 3	2 2 2		
COs Vs PS	CO4 CO5 Os M	3 3 3 APPIN	2 2 2 NG:	1 1 1		1 1 1 0s PS	1 1 1 01 PS	3 3 3 02 PS	2 2 2 03	2 2 2	2 2 2	3 3 3	2 2 2		
COs Vs PS	CO4 CO5 Os M	3 3 APPIN	2 2 VG:	1		1 1 0s PS 01 3	1 1 01 PS	3 3 3 02 PS	2 2 2 03	2 2 2	2 2 2	3 3 3	2 2 2 2		
COs Vs PS	CO4 CO5 Os M	3 3 APPIN	2 2 VG:	1		1 1 0s PS 01 3 02 3	1 1 01 PS	3 3 02PS	2 2 2 03	2 2 2	2 2 2	3 3 3	2 2 2		
COs Vs PS	CO4 CO5 Os M	3 3 APPIN	2 2 VG:	1		1 1 0s PS 01 3 02 3 03 3 04 2	1 1 01 PS	3 3 02 PS	2 2 2 03	2 2 2	2 2 2	3 3 3	2 2 2		
COs Vs PS	CO4 CO5 Os M	3 3 APPIN	2 2 VG:	1		1 1 0s PS 01 3 02 3 03 3 03 3 04 3 05 3	1 1 01 PS 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 02 PS	2 2 2 03	2 2 2	2 2 2	3 3 3	2 2 2		

COURSE CONTENTS:

MODULE I ECOSYSTEM

Concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers. Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, rivers, oceans) MODULE II ENVIRONMENT AL ISSUES AND SOLUTIONS 7 Hours

MODULE IIENVIRONMENT AL ISSUES AND SOLUTIONS7 HouCurrent Environmental Issues: Acid rain, Ozone layer depletion, Global warming, Green house effect

Solutions: 12 principles of green chemistry-Rain water harvesting.

MODULE III BIODIVERSITY

10 Hours

Introduction to biodiversity -genetic, species and ecosystem diversity – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – conservation of biodiversity: In-situ

8 Hours

and ex-situ conservation of biodiversity.	
MODULE IV NATURAL RESOURCES	10 Hours
Forest resources: Use and over-exploitation, deforestation- timber extraction, mining, dams and	their effects
on forests and tribal people - Water resources: Use and over utilization of surface and ground w	vater, dams-
benefits and problems - Mineral resources: Use and exploitation, environmental effects of exit	tracting and
using mineral resources - Food resources: World food problems, changes caused by agri	culture and
overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, saling	ity– Energy
resources: Growing energy needs, renewable and nonrenewable energy sources, use of alter	nate energy
sources. Energy Conversion processes Biogas - production and uses, anaerobic digestion - Lan	d resources:
Land as a resource, land degradation, man induced landslides, soil erosion and desertification -	– role of an
individual in conservation of natural resources - Equitable use of resources for sustainable lifestyle	es.
MODULE V ENVIRONMENTAL POLLUTION	10 Hours
Definition - Source, causes, effects and control measures of: (a) Air pollution (b) Water pollution	on(c) Soil
pollution - soil waste management: causes, effects and control measures of municipal solid wa	stes – (d)
Marine pollution (e) Noise pollution -(f) Nuclear pollution (g) Thermal pollution role of an ind	ividual in
prevention of pollution	

TOTAL: 45 HOURS

MINI PROJECT ADDITIONAL TOPICS

Soil Science

- 1. Effects of climate change on soil erosion.
- 2. The role of land management in maintaining soil health.
- 3. Effects of salinity in coastal region Agricultural activity.
- 4. The effects of climate change on agriculture.

Urban Ecology

- 1. How road construction impacts biodiversity and ecosystems.
- 2. The effects of urbanization and city planning on water cycles.
- 3. Impacts of noise pollution on human health.

Pollution and Bio-remediation

- 1. The role of bio-remediation in removing "forever" chemicals from the environment.
- 2. Impacts of air pollution on human health.
- 3. How to improve plastic recycling processes.
- 4. Individual measures to reduce consumption and creation of microplastics.

General Topics

- 1. Impact of Urbanization on Local Biodiversity
- 2. Renewable Energy Options for Sustainable Living.
- 3. Waste Management Strategies in Urban Areas
- 4. Climate Change and Its Effects on Local Ecosystems
- 5. Air Quality Monitoring in Urban centers
- 6. Water Quality Assessment in Local Water Bodies
- 7. Green Roof Technology and Its Environmental Benefits
- 8. Impact of Plastic Pollution on Marine Life.
- 9. Eco-friendly Practices in Agriculture:

- 10. The Role of Community Gardens in Urban Sustainability
- 11. Alternate energy sources for community Development.
- 12. E-Waste Management.
- 13. Energy Audit of a building.
- 14. Rainwater harvesting system.
- 15. Population growth variation among nations.
- 16. Population explosion.
- 17. Family welfare programme.
- 18. Women welfare programme.
- 19. Child welfare programme.
- 20. Environmental impact analysis.
- 21. Role of information technology in environmental protection and human health.

REFERENCES:

- **1.** Trivedi.R.K., "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards", Vol. I and II, Enviro Media, 3rd edition, BPB publications, 2010.
- **2.** *Cunningham, W.P. Cooper, T.H. Gorhani, "Environmental Encyclopedia", Jaico Publ., House, Mumbai, 2001.*

3. Dharmendra S. Sengar, "Environmental law", Prentice hall of India PVT LTD, New Delhi, 2007.

4. Rajagopalan, R, "Environmental Studies-From Crisis to Cure", Oxford University Press, 2005.

Benny Joseph, "Environmental Science and Engineering", Tata McGraw-Hill, New Delhi, 2006
 https://en.wikipedia.org/wiki/Carbon_capture_and_storage

7. Ravikrishnan "Environmental Science and Engineering" Sri Krishna Hi-tech Publishing Company Pvt

8. Trivedi.R.K., "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards", Vol. I and II, Enviro Media, 3rd edition, BPB publications, 2010.

2302ME303				Ν	IANU	FACT	URIN	G TEO	CHNO	LOGY	ℓ – I	I		P 0	C 3
												•	, 0	U	5
PREREQUI	ISITE:														
	1.Wc	orkshoj	p Pract	ice La	borato	ry									
	2. Fu	Indame	entals o	of Mec	hanica	l Engi	neering	5							
COUDSEO	PIEC	TIVE	c.												
COURSEO	DJEU		5:												
	1.To	impar	t know	ledge	about t	he met	thods o	of manu	ıfactur	ing pro	cess.(Casting	g, Mou	ding	
	,forg	ing an	d sheet	metal	operat	ions)				01				U	
	2.To	impar	t know	ledge	about t	he met	tal join	ing pro	ocess.						
	3.To	impar	t know	ledge	about t	he ope	ration	of lath	e macł	nine.					
COURSEO		MFS	•												
COURSEO		JNIES	•												
On	the suc	cessfu	l comp	oletion	of the	course	, stude	nts wil	ll be at	le to					
CO1:	Prod	uce sir	nple co	ompon	ents us	sing sa	nd cast	ting pr	ocess,	mould	ing ma	chines	, melti	ng fur	naces
002	also a	advanc	ced tec	hnique	s to m	anufac	ture pla	$\frac{\text{astic co}}{1}$	ompon	ents.	D '		0.11	• 、	
$\frac{\text{CO2:}}{\text{CO3:}}$	Use v	various	s metal	l joinin	g proc	esses (Arc we	elding,	Gas w	elding	, Brazi	ng and	Solder	ing).	
<u> </u>	Prod	uce sir	nnle st	is met	at 10111	nng pro	nte usi	s (roig ng shee	nig, Ko et mets	onnig, d opera	Diawi	ng anu	EXUUS	1011)	
CO4:	Expl	ain lat	he mac	thine a	nd thei	r opera	ation	ing shee			uions				
						<u> </u>									
COs Vs PC)s MA	PPIN	G:												
	<u> </u>	DO1	DOA	DOA	DO 4		DOC		DOG	DOA	DO1	DO11			
	COS	2 POI	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	209 2	POIO	POII	PO12		
	COI	3	Z	1	-	Z	-	-	-	Z	-	-	1		
	CO2	2	2	1	-	-	-	-	-	-	-	-	1		
	CO3	3	2	1	3	2	-	-	-	2	-	-	1		
	CO4	2	1	-	-	-	-	-	-	-	-	-	1		
	CO5	3	2	-	3	2	-	-	-	2	-	-	1		
COs Vs PS	Os M	APPIN	NG:												
					C				03						
						01	- 3	3	-						
					Ŭ	<u> </u>		-							
					C	O2	- 2	2 .	-						
					C	03	- 3	3.	-						
					C	04	- 2	2 -	-						
					C	05	- 3	3.	-						
COUDEE O	ONTE	NTC-			L	l	I	1	1						
COURSE C	UNIE	71 N T 9:													

MODULE I CASTING PROCESSES AND FORMING OF PLASTIC

9 Hours

Introduction to production processes and its classifications - Pattern - Types, Materials and Allowances. Moulding sand - Types, Properties and Testing. Moulding machines and its types. Melting furnaces – Cupola , Electric and Induction.. Sand casting defects. Special casting processes - Shell moulding, Die casting, Centrifugal casting and Investment casting - Introduction to plastics - Blow moulding, Rotational moulding, Thermoforming and Extrusion. Moulding of Thermosets - Principle and applications of Compression moulding.

MODULE II METAL JOINING PROCESSES

Introduction to welding processes and its classifications - Principle of Gas welding and its flames -Principle of arc welding - Electrodes, Fluxes and filler materials. Principle of Resistance welding - Spot, butt and seam. Principle of Gas metal arc welding, Submerged arc welding, Tungsten Inert Gas welding, Plasma arc welding, Thermit welding, Electron beam welding and Friction welding - Weld defects -Brazing and soldering.

MODULE III | BULK DEFORMATION PROCESSES

Introduction - Hot and cold working of metals - Forging processes - Open and close die forging, Forging equipment and operations. Rolling - Types of Rolling mills, shape rolling operations, Tube piercing and Defects. Principle of Extrusion and its types. Principle of rod and wire drawing.

MODULE IVSHEET METAL FORMING AND SPECIAL FORMING PROCESSES9 Hours

Introduction - Shearing, bending and drawing operations - Stretch forming operations - Principle of special forming processes - Hydro forming, Rubber pad forming, Metal spinning, Explosive forming, Magnetic pulse forming, Peen forming and Super plastic forming.

MODULE V LATHE, SEMI AUTOMATS AND AUTOMATS

V/f and self-control of synchronous motor drive; Margin angle control and Power factor control; VSI and CSI fed synchronous motor drive; Permanent magnet synchronous motor - Construction, Types, BLPM DC motor and BLPM AC motor.

TOTAL: 45 HOURS

REFERENCES:

- 1. P. N. Rao, Manufacturing Technology vol. I, Tata McGraw-Hill Publishing Company rivate Limited, New Delhi, 2010.
- 2. J. P. Kaushish, Manufacturing Processes, Prentice Hall of India Learning Private Limited, New Delhi, 2013
- 3. P.C. Sharma, Manufacturing Technology I, S Chand and Company Private Limited, New Delhi, 2010
- 4. S K Hajra Choudhury, Elements of Workshop Technology Vol. I, Media Promoters & Publishers Private Limited, Mumbai, 2013.
- 5. Serope Kalpakjian, Steven R. Schmid, Manufacturing Engineering and Technology, Pearson Education Limited, New Delhi, 2013
- 6. S. K. Hajra Choudhury, Elements of Workshop Technology. Vol. II, Media Promoters & Publishers Private Limited., Mumbai, 2013.
- 7. http://nptel.ac.in/courses/112107144/1.

9 Hours

9 Hours

9 Hours

2302MI	E 304			ENG	INEI	ERI	NG M	1EC	HA	NICS				L	Т	P	С
														3	0	0	3
PRERE	OUISIT	'E:															
	NIL																
Course C	Objectiv	e															
To develo	op capac	ity to pr	edict the	effect of	of for	ce ar	nd mo	otion	ı in tl	he cou	rse c	of carryi	ng o	ut the	e desig	n func	tions
of engine	ering.	5 1										5	0		U		
MODU	LEĬ	BASIC	CONC	EPTS A	AND	FO	RCE	SYS	STE	M					(09 Ho	ours
Introduc	tion to	mechani	cs - idea	lization	of m	necha	anics	- lav	ws o	f mech	anic	s - prin	ciple	of t	ransmi	ssibili	ty -
vector -	addition	, subtra	ction and	l produc	t. Foi	ce-1	types	- svs	stem	of for	ces -	· resulta	nt fo	rces	- comp	ositio	n of
forces -	resolutio	on of for	ce-free b	odv dia	gram	for	real v	vorlo	d svs	tems.					1		
MODU	LE II	STAT	ICS OF	PÁRTI	CLE	SA	ND F	OR	CÉS	SYSTI	EM				(09 Ho	ours
Equilibr	ium of	particle	in space	e. mom	ent o	f co	uple-	eaui	libra	nt Mo	men	t about	poi	nt an	nd spec	ific a	xis-
moment	at coup	le- simp	lification	of forc	e and	cou	ple sy	vster	ns.				P				
MODU		STAT	ICS OF	RIGID	BOI	DIES	5	/~								09 Ha	ours
Equilibr	ium of	rigid bo	dies in	two and	1 thre	ee di	imens	sions	s - t	eams	- tv	pes of	loads	s. su	pports	and t	heir
reaction	s Two a	nd three	force M	embers-	Statio	c det	ermir	nacy			-)	r		·, ···,	FF		
MODU	LE IV	PROP	ERTIES	S OF SI	JRFA		S AN	ID S	OLI	DS					(09 Ha	ours
Determi	nation o	f centro	id of are	as. volu	mes a	and r	nass ·	- Pat	ppus	and G	uldi	nus the	orem	s - m	oment	of ine	ertia
of plane	and an	eas Para	llel axis	theorer	n rad	ins o	of gv	ratio	on of	area-	pro	duct of	iner	ia- r	nass m	omen	t of
inertia	und un	ous ruru		lineorer	11 144	140	or 87	14110) II 01	ureu	pro	auer or	men		114.55 111	omen	. 01
MODU	LEV	FRIC	ΓΙΟΝ													09 Ha	ours
Introduc	$\frac{1}{100}$ - $\frac{1}{100}$	rechanis	m of fri	rtion_tvi	nes -1	aws	of fr	ictio	n - f	riction	on	horizor	ntal a	nd ir	nclined	nlane	
ladder a	nd weda	e frictio	n - rollir	a resist	ance	aws	01 11	ictio	/11 - 1	neuon	i on	nonzon	itai a	nu n	lenneu	pian	<i>.</i> .,
lauuel a	nu weug	c meno	11 - 101111	ig iesisu	ance.												
													r	гот	AT · 45	HOI	IRS
COURS	SE OUT	COME	c.													mo	
COUN		COME	0.														
On the s	uccessfi	il compl	etion of	the cour	·ce ct	uder	nte wi	ill be	able	e to							
	Determi	ne vario	us force	s using f	ree h	odv	diagr	ame		2 10							
CO2	Calculat	te mome	ont of a c	ounle al	nee o	nv s	necifi	ied a	area l	w sim	nlifi	cation o	of col	inle s	system		
<u>CO3</u> .	Measure	various	s loads a	nd their	react	ions	in he	am	iica	Jy SIII	piiii	cation o		ipic :	system.		
CO4·	Measure	e momer	t of iner	tia and i	radius	s of o	ovrati	on o	of var	rious s	urfa	res and	solid	c			
CO5.	Determi	ne the fi	riction a	nd the ef	fects	$\frac{501}{bv}t$	be lay	ws o	f frid	rtion	urray		sonu	.5			
	Determ				itetts	byt		ws 0	1 11 1								
COs Vs	POs M	APPIN	G:														
000 10	100101																
COs	PO1	PO2	PO3	PO4	PC)5	PO	5	PO7	PC)8	PO9	PO	10	PO11	PO	12
CO1	3	3	2	2	1									-		1	
CO2	3	3	2	2	1								1			1	
CO3	3	3	2	2	1								1			1	
CO4	3	3	2	3	1								1			1	
CO5	3	2	2	3	1								1			1	\neg
					<u>. </u>											<u> </u>	1
COs Vs	PSOs N	APPIN	NG:														
				С	Os	PS	01	PSO	02 1	PSO3							
				Č	01					3	1						
				C	02					3	1						
				Ċ	03					3	1						
				C	04					3	1						
				С	05					3	1						

REFERENCES:

- 1. F.P. Beer, and Jr. E.R Johnston, Vector Mechanics for Engineers Statics and Dynamics, Tata McGraw-Hill Publishing Company, New Delhi, 2007.
- 2. N.H. Dubey, Engineering Mechanics- Statics and Dynamics, Tata McGraw-Hill Publishing Company, New Delhi, 2013

3. Irving H. Shames, Engineering Mechanics - Statics and Dynamics, Pearson Education Asia Pvt. Ltd., 2006.

4. R.C. Hibbeller, Engineering Mechanics: Combined Statics & Dynamics, Prentice Hall, 2009.

5. D. P. Sharma, Engineering Mechanics, Dorling Kindersley (India) Pvt. Ltd., New Delhi, 2010.

6. <u>https://nptel.ac.in/courses/112/106/112106286/</u>

2302ME351		COMP	UTER	R AIDI	ED MA	ACHIN	NE DR	AWI	NG LA	BORA	ATOR	Y L	Т	Р	C
												0	0	4	2
PREREOU	ISITE	•											•		•
		•													
	1	. Engi	neerin	g Grap	hics										
	2	. CAD	Labor	atory											
COURSE O	BJEC	CTIVE	S:												
		1. T	lo prov	vide kn	owledg	ge on r	reading	of ma	chine of	lrawin	g with	Geom	etric D	imensi	oning
		a	nd Tol	eranci	ng (GE) & T)									
		$\frac{2.}{2}$	o imp	art the	signifi	cance	of sect	ional v	views a	nd its 1	represe	ntatior	<u>in dra</u>	wings	
		<u>3.</u> 1	o fam	liarize	the re	presen	tation (of vari	ous ma	chine	elemer	it draw	ings		
		4. 1 5 T	o prov	lop ak	ill to d	ge on a		ny urav	vings ($\frac{1}{2}$ of m	nanica	tool or	orting c	ompon mobile	ents
		J. 1	ompor	op sk	III to u	law ui		nory u	lawing	s or m	achine	1001 ai	iu auto	moone	>
		C	ompon	lents											
COURSE O	UTC	OMES	:												
Ont	the su	ccessfu	l comp	oletion	of the	course	, stude	nts wi	ll be at	ole to					
CO	1: I	Describ	e the b	asics c	of mach	nine dr	awing	and G	D&T.						
CO2	2: E	Explain	the co	ncept	of secti	ional v	iews ir	n draw	ings.						
CO	3: h	Represe	ent the	machi	ne elen	nents 11	n indus	strial d	rawing	s.					
	4: L 5. C	Draw th	e secti	onal v	lews of	t mech	anical	suppor	ting co	ompon	ents.		4.0		
	5: 5	sketch t	the asso	embly	arawir	igs of i	machin	e tool	and au	tomob	ne con	nponer	its.		
COs Vs PC)s MA	PPIN	G:												
005 1510	0 1011		0.												
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	CO1	2					1		2		2				
	CO	2					2		2		2				
	CO2								2		2				
	CO3	2					2		2		3				
	CO4	2					2		2		2				
	004	5					5		5		5				
	CO5	3					3		3		3				
	<u> </u>	2					1		2		2				
							1								
				-											
COs Vs PS	SOs M	APPIN	NG:												
							01 00		01						
					C		01PS	O2PS	03						
					C	\mathbf{OI}		. 2							
					С	O2 2	2 2	2 2	2						
						01 0									
					C	03 2	2	<i>,</i> 2	2						
					С	O4 2	2 2	2 2	2						
					~	07 7									
					C	$\cup 5 2$	2 2	2	2						

CO6	2	2	2	

COURSE CONTENTS:

MODULE I

Limit System- Tolerance, Limits, Deviation, Actual Deviation, Upper Deviation, Lower Deviation, Allowance, Basic Size, Design Size, Actual Size. Fits- Types, Tolerances of Form and Position- Form and Position Variation, Geometrical Tolerance, Tolerance Zone, Indicating Geometrical Tolerances. Indication of Surface Roughness, Standard Abbreviations and Symbols used in industries.

MODULE II

Sections- Hatching of Sections, Cutting Planes, Revolved or Removed Section, Sectional Views- Full Section, Half Sections and Auxiliary Sections- Conventional Representation-One-view, Two-view and three view Drawings.

MODULE III

Drawing standards and Designation of Bolts, nuts, screws, keys, pins, Rivets, Welded Joints-Dimensioning of Welds, Belt Driven Pulleys, Chain and Gears Drives.

MODULE IV

Preparation of manual parts drawing and assembled sectional views from orthographic part drawings, Automobile components - stuffing box, Machine Tool Parts – Plummer block, Joints – knuckle joints, Couplings – Protected type flanged coupling, Bearings – swivel bearing.

MODULE V

Preparation of manual parts drawing and assembled sectional views from real time products- Internal combustion engine parts - connecting rod, couplings – universal coupling, machine tool parts – tailstock, Automobile components – screw jack, stuffing box - Commercial products - Preparation of Bill of materials and tolerance data sheet.

TOTAL: 30 Hours

REFERENCES:

1. N.D. Bhatt, Machine Drawing, Charotar Publishing House Pvt. 51st Edition 2022.

2. P.S. Gill, A Textbook of Machine Drawing, Katson books, 2023.

3. R.K. Dhawan, A Textbook of Machine Drawing, S. Chand, 2012.

4. K.C. John, Textbook of Machine Drawing, PHI Learning Pvt. Ltd., 2009.

5. http://nptel.ac.in/syllabus/112106075/

2302ME352	MANUFACTURING TECHNOLOGY- I LAB										P 2	C 1			
PREREOIUS	UTE.	,										U	U	2	1
INEREQUIS	, 11 ,	•													
	1.	Wor	kshop	Practic	e Labo	oratory	7								
COURSE OB	JEC	TIVE	S:												
	1	Toin	nnart th	ne know	wladaa	about	the be	sic on	aration	of lat!	10				
	2.	2. To impart the knowledge about the basic operation of welding machines.													
	3.	To in	npart tl	ne knov	wledge	about	stir ca	sting p	process						
COURSE OU	TCC	MES	:												
On th	0.6110	cossfu	ul comr	lation	of the	001180	o studo	nto wi	11 bo ol	ala to					
CO1:	U	se lath	ne mac	hine fo	or manu	ufactui	ing va	rious c	peration	one to					
CO2:	U	se vai	rious n	nachine	e tools	for fi	nishing	g opera	ation o	f simp	le step	turnin	g in ca	pstan	lathe
CO3:	ar Jo	na turr Din the	et lathe	e. ials bv	weldi	ng mad	chines	Gas. A	Arc. TI	G and	MIG).				
CO4:	Μ	Ianufa	cture t	he sim	ple cor	npone	nt by u	sing S	tir cast	ing ma	chine.				
CO5:	C	alcula	te the c	cutting	force	of lath	e mach	ine.							
COs Vs POs	MA	PPIN	G:												
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	CO1	3	2	3	-	-	2	-	3	3	-	-	-		
	C O2	3	2	3	-	-	2	-	3	3	-	-	-		
	C O 3	3	2	3	-	-	2	-	3	3	-	-	-		
	C O 4	3	2	3	_	_	2	_	3	3	_	_	_		
	CO5	3	2	3	_	_	2	_	3	3	_	_	-		
	CO5	3	2	3			2		3	3					
		3	Z	5	-	-	2	-	5	5	-	-	-		
COs Vs PSO)s M	APPI	NG:												
					C				502						
					C	05 PS 01	3	<u>02PS</u> 3	-						
					C	02	3	3	-						
					C	03	3	3	-						
						04	3	3	_						
						05	3	3							
						00	2 . 2	2	-						
					C	Ub	3	3	-						
LIST OF EXI	PERI	IMEN	TS:												

• Make a Taper turning.	
• Make a External Thread cutting.	
• Make a Internal Thread cutting.	
• Make a Eccentric turning.	
• Process Simple turning using capstan lathe.	
• Process Step turning using turret lathe.	
• Join the given metal using Spot Welding.	
• Join the given metal using Arc Welding.	
• Join the given metal using Gas Welding.	
• Join the given metal using TIG Welding.	
Manufacture simple component by using Stir Case	sting.
• Reduce the thickness of the metal by Two-High	roll mill.
• Produce the simple component by using Water H	lammer setup.
• Cutting force calculation using dynamometer in	athe machine.
	TOTAL: 30 HOURS

REFERENCES:

- 1. P. N. Rao, Manufacturing Technology vol. I, Tata McGraw-Hill Publishing Company Private Limited, New Delhi, 2010.
- 2. Serope Kalpakjian, Steven R. Schmid, Manufacturing Engineering and Technology, Pearson Education Limited, New Delhi, 2013.
- 3. J. P. Kaushish, Manufacturing Processes, Prentice Hall of India Learning Private Limited, New Delhi, 2013.
- 4. P.C. Sharma, Manufacturing Technology I, S Chand and Company Private Limited, New Delhi, 2010.
- 5. S K Hajra Choudhury, Elements of Workshop Technology Vol. I, Media Promoters & Publishers Private Limited, Mumbai, 2013.
- 6. http://nptel.ac.in/courses/112107144/1.

2302ME353			FLU	ID ME	CHAN	NICS A	ND M	IACHI	NERY	LAB				P 2	C
	GVER											0	U	2	1
PREREQUI	SITE														
	2.	. Fluid	l Mech	anics b	asics										
COURSEO	RIFC	TIVE	ç.												
COURSEO	DJLC		5.												
	1.	. 1. To	verify	the p	rinciple	es stud	ied in	fluid n	nechan	ics and	mach	inery th	neory b	у	
		perfo	orming	experi	iments	in labo	oratory								
COURSE O	UTCO	OMES	:												
On t	he suc	cessfu	1 comr	letion	of the	course	stude	ents wi	ll be al	ole to					
CO1	CO1: Understand the various basic experiences in flow of measurements.														
CO2	2: N	leasur	the the	najor	and m	inor l	osses	associ	ated ir	n a pip	e flow	1			
		xperii	nental	verifi	catior	of Be	ernoul	lis the	orem	in a pi	pe flo	W.			
C04		Perform the characteristics study on impulse, reaction and axial turbine.													
CO6	· · ·	erforn	n the c	harac	teristic	es stud	ly on g	pear of	il num	<u>p.</u>	valei	pumps			
		CITOIN		marae	<i>conserv</i>	o stat	.9 011 8	Sour of	n puin	P •					
COs Vs PO	s MA	PPIN	G:												
Γ	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	CO1	3	2	1	1	-	-	-	-	-	-	-	1		
	CO2	3	2	1	2	-	-	-	-	-	-	-	1		
_	CO3	3	2	1	1	-	-	-	-	1	-	-	-		
-	CO4	3	2	1	2		_	_	_	1		_	1		
-	CO1	3	2	1	2					1			1		
_	C05	3	2	1	2	-	-	-	-	1	-	-	1		
	CO6	3	2	1	1	-	-	-	-	-	-	-	1		
COs Vs PS	Os M	APPIN	NG.												
05 1515	05 111		10.												
					C	Os PS	O1 PS	O2PS	03						
					C	01 2	2 -		•						
					C	O2 2	-	. .	-						
					С	03 1	-	. .							
					С	O4 2									
					C	05 2	; -	. .							
					C	O6 2	; -	. .							
LIST OF EX	KPER	IMEN	TS:												
1 Error		tal var	ificatio	nofD	ornoul	1; ** a + h -	oram	in o ni	ne flor	7					

	TOTAL: 30 HOURS
	flow rates.
11.	Determination of loss of head in different pipes (major loss) and fittings (minor loss) for various
10.	Performance test on submersible pump.
9.	Performance test on centrifugal pump.
8.	Performance characteristics of a gear pump.
7.	Performance characteristics of a reciprocating pump.
6.	Performance test on reaction (Kaplan) turbine against constant head.
5.	Performance test on Francis turbine against constant head.
4.	Performance test on tangential flow impulse (Pelton wheel) turbine against constant head.
3.	Measurement of flow rate using orifice meter and calculate the coefficient of discharge
2.	Measurement of flow rate using venturimeter and calculate the coefficient of discharge.
0	

2304GE301	Professional Development Courses - I	L	Т	Р	С				
		0	0	2	1				
COURSE OUTO	COMES:								
On the s	uccessful completion of the course, students will be able to								
CO1:	CO1: Learners should be able to understand number and solving problems least time using variou								
	shortcuts								
CO2:	Solve problems on averages; compare two quantities using ratio and proportion.								
CO3:	Calculate concept of percentages, implement business transactions using profit and loss								
CO4:	: Have idea about recruitment process & to have a positive social image								
CO5:	The students will learn the relevant application of different word with suitable meanings.								
CO6:	: Mastering the students on understanding the concept of vocabulary and the application of								
	vocabulary in finding the root words.								

COURSE CONTENTS:

MODULE I Introduction to Soft Skills

Introduction to placement - Training process, Interview process, Important terms related to placement, Resume Awareness, Etiquettes - Dressing etiquettes, Social etiquettes, Email etiquettes, Introduction etiquettes, Telephone etiquettes, Debate, Creative thinking, Team work.

MODULE II Numerical Ability

Basic Number System, Average, Percentage, Ratio and Proportion, HCF and LCM

MODULE III Verbal Ability

Word List (Synonyms and Antonyms), Identifying meaning from context, Sentence Completion, Cloze Test, Analogies, Relationships Explanation, One Word Substitutes, Idioms and Phrases, Spellings, Homonyms, Homophones, Odd Man out Series.

TOTAL: 30 HOURS

REFERENCES:

- 1. Arun Sharma, _How to Prepare for Quantitative Aptitude for the CAT', 7th edition, McGraw Hills publication, 2016.
- 2. R S Agarwal, _Quantitative Aptitude for Competitive Examinations', revised edition, S.Chand publication, 2017.
- *3.* Rajesh Verma, —Fast Track Objective Arithmeticl, 3rd edition, Arihant publication, 2018.
- 4. Objective General English by SP Bakshi.
- 5. A Modern approach to verbal and non verbal reasoning by R.S. Agarwal.
- 6. *Complete reference campus recruitment book.*
- 7. Grammar for IELTS by Hopkins.
- 8. English Grammar in use by Murphy.