E.G.S. PILLAY ENGINEERING COLLEGE (Autonomous)

Approved by AICTE, New Delhi | Affiliated to Anna University, Chennai| NAGAPATTINAM – 611 002

B.E ELECTRICAL AND ELECTRONICS ENGINEERING <u>Full Time Curriculum and Syllabus</u>

Second Year – Third Semester

Correct Code	Comme Norma	т	Т	Р	С	Max	imum N	Aarks
Course Code	Course Name	L	1	r	C	CA	ES	Total
Theory Course								
2301MA305	Engineering Mathematics-III (Transforms & Optimization)	3	2	0	4	40	60	100
2302EE301	Electrical Machines-I	3	2	0	4	40	60	100
2302EE302	Analog Electronics	3	0	0	3	40	60	100
2302EE303	Digital Electronics	3	0	0	3	40	60	100
Theory Cum L	aboratory Course							
2302EE304	Measurements & Instrumentation	3	0	2	4	50	50	100
2301GEX07	Environmental Science and sustainability	1	0	2	2	50	50	100
Laboratory Co	urse							
2302EE351	Electrical Machines–I Laboratory	0	0	2	1	60	40	100
2302EE352	Analog and Digital Electronics Laboratory	0	0	2	1	60	40	100
2304GE301	Professional Development Course – I	0	0	2	1	100	0	100
2301LS301	Life Skills - III	0	0	0	0	0	0	0
Total		16	04	10	23	480	420	900

L – Lecture | T – Tutorial | P – Practical | CA – Continuous Assessment | ES – End Semester

2301MA305			EN	IGINE	EERIN	G MA	THE	ATI	CS – I	I			L	Т	Р	C
													3	2	0	4
PREREQUIS	SITE:															
	1	T /		1	1											
	1. 2.			n calcu al calcu												
	Ζ.	DIII	lerentia	al calc	uius.											
COURSE OF	BJECT	IVES	5:													
									ne appl							
	2								ch as	Fourie	r trans	sforms	and	1 Z-	Trans	sforn
	3	rec	quirea	for dig	gital sig	of way	ocessir	ig. ieorv a	and to	illustra	te the	1150 0	f way	velet	nroc	essit
		fo	r wave	form s	tudy, d	lata co	mpress	ion an	d noise	e suppr	ression		i wa	verei	i proc	05511
	4	. Тс	o impa	irt kno	wledge	e on t	heory	of op	timizat	ion ar	nd con	dition	s for	op	timali	ty f
		un	constr	aint an	d cons	traint o	optimiz	ation	probler	ns.						
COURSE OU	JTCO	MES:														
	ne succ															
C01:						_			nt perio							
CO2:									nultipli	city of	Engine	eering	situa	atior	ns.	
<u>CO3:</u>	Solve	diffe	rential	equati	ons by	using	Z trans	sforms		• • • • • • •		- 4 4	<u> </u>			
<u>CO4:</u> CO5:									s and d given o						:	
005.	comp	iy net	Lessary	anu s	uniciei		unions		given o	punnza	ation p	TODIEI		υρι	iiiiaiit	.у.
COs Vs POs	s MAP	PINC	;													
Γ	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12		
	CO1	3	2	1	-	-	-	-	-	-	-	-	-			
		3	2	1	-	-	-	-	-	-	-	-	-			
_		3	2	1	-	-	-	-	-	-	-	-	-			
-	CO4 CO5	3	$\frac{2}{2}$	1	-	-	-	-	-	-	-	-	-			
	05	3	2	1	-	-	-	-	-	-	-	-	-			
COs Vs PSC)s MA	PPIN	[G :													
							O1PS		03							
						01 1			·							
						O2 1			-							
						O3 1										
						O4 1										
					C	O5 1	1	-	•							
		NTS:														
COURSE CO	JNIEP														0 TT	urc
		IIDII	7 D CF 1	DIEC											Y HM	
MODULE I	FO		E R SE l		ier ser	es _ ()dd an	d eve	1 funct	ione	Half -	rance	sine		9 Ho	
MODULE I Dirichlet"s co	FO ondition	ns – C	Genera	l Four					n funct	ions –	Half	range	sine			
COURSE CO MODULE I Dirichlet"s co range cosine s MODULE II	FO ondition series –	ns – C Parse	Genera eval"s i	l Four identit	y – Hai	rmonic			n funct	ions –	Half	range	sine	seri		Half
MODULE I Dirichlet"s co	FO ondition series – FO	ns – C Parse URIH	Genera eval"s E R TR	l Four identity ANSF	y – Hai ORMS	rmonic	e analys	sis.						seri	es – I	Half

MODULE III Z – TRANSFORMS	9 Hours
Z- transforms - Elementary properties – Inverse Z - transform (using partial fra	
Convolution theorem - Formation of difference equations – Solution of difference transform.	equations using $Z =$
MODULE IV INTRODUCTION TO WAVELETS TRANSFORMS	9 Hours
The origins of wavelets, Wavelets and other wavelet like transforms, Continuous Wave	let Transform.
Continuous time-frequency representation of signals, Properties of wavelets used in cor	
transform, Continuous versus discrete wavelet transform. Discrete Wavelet Transform:	
functions and function spaces, Translation and scaling of $\phi(t)$.	Than scanng
MODULE V INTRODUCTION TO OPTIMIZATION	9 Hours
Introduction to Optimization: Engineering applications of Optimization – Statemen	-
problem – Optimal Problem formulation – Classification of Optimization proble	
concepts: Definition of Global and Local optima – Optimality criteria – Review of bas	ac calculus concepts –
Global optimality.	
TOTAL:	45 + 15 = 60 HOURS
REFERENCES:	
1. Grewal B.S., 41st Edition, 2011, "Higher Engineering Mathematics", Khanna Pub	olishers, New Delhi.
2. Ramana B.V., 11th Reprint, 2010, "Higher Engineering Mathematics", Tata McGro	aw Hill
Co. Ltd., NewDelhi	
3. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Del	
4. K. P. Soman, K. I. Rmachandran, N. G. Resmi, "Insight into Wavelets: From Theor Edition)", PHI Learning Pvt. Ltd., 2010.	y to Practice, (Third
5. C. S. Burrus, Ramose and A. Gopinath, Introduction to Wavelets and Wavelet Trans	sform, Prentice
Hall Inc.	
6. Rao S. S 'Engineering Optimization, Theory and Practice' - New Age Internation	ional Publishers - 2012 -
4th Edition.	11: 2004
 Arora J 'Introduction to Optimization Design' - Elsevier Academic Press, New De 8. http://www.nptelvideos.in/2012/12/probability-random-variables.html 	2111 - 2004
6. http://www.npietvideos.in/2012/12/probability-random-variables.nimi (Link for NPTEL/SWAYAM/MOOC Courses)	
9. https://matlabacademy.mathworks.com/details/introduction-to-symbolic-math-with-	·matlab/symbolic
(Link for modern tool usage)	•
10. Grewal B.S., 41st Edition, 2011, "Higher Engineering Mathematics", Khanna Public	lishers, New Delhi.
11. Ramana B.V., 11th Reprint, 2010, "Higher Engineering Mathematics", Tata McGra Co. Ltd., NewDelhi	aw Hill
Co. Liu., IvewDelili	

2302EE301				EL	ECTF	RICAI	L MAC	HINE	ES - I				L I	-		С
												3	2	()	4
PREREQUI	ISITE	:														
	1. E	lectric	circui	t analy	sis											
				j												
COURSE O	BJEC	TIVE	S:													
	1.	Fo und	erstand	the co	oncept	ofeled	ctrome	chanic	al ener	gy con	versio	n syste	m in I	DC ma	chir	nes
					_							ameters				
		nachir														
	3.	l'o deli	berate	the wo	orking	of sing	gle and	three p	bhase t	ransfo	rmers.					
COURSE O	UTCO	OMES	:													
	.1	6	1	1	6.1		. 1	. ••	11 1 1	1 .						
<u>CO1:</u>	Repo	cessfu ort the	ii com behav	vior of	OI the DC of the OI t	course renerat	e, stude	nts wi	ii be at	omeno	on suc	h as a	rmatu	re rea	ctio	n
	com	mutati	on.		_				_			us a				,
CO2:							teristics									
CO3: CO4:	Com	pute the	he effic	ciency and a	and reg	gulatio	n of De	C macl	hines b	y cono	lucting	g variou iit and l	us test			
<u> </u>	Unde	erstand	the of	peratio	n. appl	icatior	$\frac{1}{10}$ s of th	ree pha	ase and	1 speci	al puri	pose tra	ansfor	ners.		
COs Vs PC)s MA	PPIN	G:													
[COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10) PO11	PO12	2		
	CO1	-	2	1	-	1	-	-	-	-	-	-	-			
	CO2 CO3		2	1 2	- 1	1	-	-	-	-	-	-	-	_		
·	CO3		3	2	1	-	-	-	-	-	-	-	-			
	CO5		2	1	-	-	-	-	-	-	-	-	-			
COs Vs PS																
	US M	APPI	NG:													
					С	Os PS	O1PS	O2PS	03							
						01 3										
						02 3		1	L							
						03 3 04 3										
						04 3 05 3										
					Ū	00 3										
COURSE C	ONTI	ENTS:														
	D	GEN	JERA'	FOR										12 H	Iou	rs
MODULE I					<u> </u>	11		•				D · ·	1 0			
Fundamental		-				-	•		-			-		-		
constructiona commutation			-			-		-	• •		-					
studies on D			mpro	ving e	ommu	unon,	0000	ind for	ia chu	uctern	, 100, 1	ippiica		onna	uno	
MODULE I	-	CMO	ГOR											12 H	Iou	rs
Principle of	operat	tion -	Signif	icance	of ba	ck EM	IF; Tor	que e	quation	ns and	powe	r deve	loped	by ar	mati	ure
~1									*		-			•		
Characteristi on DC motor		DC mo	otor; sta	arters;	Speed			-	-	tions c	of DC 1		-	lation	stuc	dies

MODULE III TESTING OF DC MACHINES

Losses and efficiency in DC machine - Condition for maximum efficiency; Testing of DC Machines-Brake test, Swinburne's test, Hopkinson's test, Field test, Retardation test, Separation of core losses.

MODULE IV SINGLE PHASE TRANSFORMER

Construction and principle of operation- EMF equation- Equivalent circuit- ; Phasor diagrams- Testing of transformer - Polarity test, Open and short circuit tests, Sumpners test, Efficiency and regulation, All day efficiency; Parallel operation; Applications of single-phase transformer.

MODULE V THREE PHASE & SPECIAL PURPOSE TRANSFORMERS

12 Hours

12 Hours

12 Hours

Three phase transformer – Construction-Connection; Zig-Zag Transformer; Autotransformer - Copper saving; Power transformer - Types; Distribution transformer- Construction- Roles; Instrument transformer - Role of CT & PT in power system protection; Welding Transformers, Traction Transformers, Pulse Transformers, Energy efficient transformer.

TOTAL: 60 HOURS

REFERENCES:

1. D. P. Kothari and I. J. Nagrath, Electric Machines, Tata McGraw Hill Publishing Company Ltd, 2010.

2. J.B. Gupta, Theory & Performance of Electrical Machines, Kataria, S. K., & Sons, 2013.

3. Edward Hughes, Electrical and Electronic Technology, 12th edition, Pearson, 2016.

4. P. S. Bimbhra, Electrical Machinery, Khanna Publishers, 7th edition, 2011.

5.B. L. Theraja and A. K. Theraja, —Text Book of Electrical Technology: AC & DC Machines (Volume-2), S.Chand& Company Ltd., New Delhi, 2008.

6. M.N.Bandyopadhyay, Electrical Machines Theory and practice, PHI Learning Pvt. Ltd, New Delhi 2007. 7.http://nptel.ac.in/courses/117106086/

302EE302				AN	ALO	G ELE	CTRO	NICS				I		P	C
													8 0	0	3
REREQUI	ISITE:														
	1.	Phys	sics												
COURSE O	BJEC	TIVE	S:												
	1.	To u	ndersta	and the	e struct	ture and	d opera	ation o	f electr	onic d	evices				
	2.					n and c	1								
	3.	To a	nalyze	the BJ	T and	FET b	ased a	nplifie	er circu	its.					
OURSE O		MES	•												
OURSE O			•												
	the suc										0 1. 1				
CO1:	Expla diode		e struc	ture, \	/-1 Ch	aracter	ristics	and ap	oplicati	ons of	t diode	es& op	eration	ot sp	eci
CO2:			e V-I	charact	teristic	s of B.	JT in C	B,CE	& CC	config	uratior	ns also	able to	design	ı ar
	analy	ze am	plifier	circuit	s conta	aining	BJT as	a devi	ice.	-				U	
<u>CO3:</u>	Discu	iss the	struct	ure, op	eration	n and V	$\frac{1}{1}$ Cha	racteri	stics of	FET a	& MO	SFET.		4	. 1
CO4:			e need and Po				differe	ntial a	mplifie	ers, po	wer ar	nplifie	rs able	to ana	aly
CO5:						scillato	rs to fi	nd out	freque	ncy of	oscilla	ations.			
COs Vs PC)s MA	PPIN	G:												
[COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
•	CO1	3	3	-	-	-	-	-	-	-	-	-	-		
	CO2	3	3	-	-	-	-	-	-	-	-	-	-		
	CO3		3	-	-	-	-	-	-	-	-	-	-		
	CO4	3	3	-	-	-	-	-	-	-	-	-	-		
l	CO5	3	3	1	-	-	-	-	-	-	-	-	-		
COs Vs PS	Os M	APPIN	NG:												
					C	Os PS	O1 PS	O2PS	03						
					С	- 01	. 3	; -							
					C	- 02	. 3	; -							
					C	03 -	. 3	; -							
					C	- 04	. 3	; -							
					C	-05	. 3	; -							
OURSE C	ONTE	NTS:													
COURSE C						~~								0.11	
10DULE I	CC	NVE.	NTIO			CIAL								9 Hou	
10DULE I N Junction	CC n Diode	NVE	NTIO	Opera	tion a	nd V-I	charac	teristic	-			ct – Di			
IODULE I	CC n Diode	NVE	NTIO	Opera	tion a	nd V-I	charac	teristic	-			ct – Di			

Special Function Diodes: Structure and operation of LED, Tunnel diode, Schottky diode and Photodiode.

MODULE II BIPOLAR JUNCTION TRANSISTOR AND CIRCUITS

BJT: Structure- Operation- Biasing circuits; V-I characteristics in common base, common emitter and common collector configurations; DC and AC load line analysis- Determination of Q point; Small signal model; Analysis and comparison of CB, CE and CC amplifiers.

MODULE III FIELD EFFECT TRANSISTOR AND CIRCUITS

9 Hours

9 Hours

9 Hours

JFET: Structure- Operation - n channel and p channel; V-I characteristics and biasing circuits of JFET.

MOSFET: Structure and operation of D-MOSFET & E-MOSFET; V-I characteristics- Biasing circuitssmall signal model; Analysis of common source and common drain amplifiers. 9 Hours

MODULE IV DIFFERENTIAL AND POWER AMPLIFIERS

Differential Amplifier: Common mode and difference mode analysis of BJT based differential amplifier.

Power Amplifiers: Class A, class B, class C and class AB Amplifiers.

MODULE V OSCILLATORS

Basics about feedback, Barkhausen criterion; RC oscillators – RC phase shift and Wien bridge oscillators; LC oscillators – Hartley, Colpitts and Clapp; Crystal oscillators – Miller and Pierce crystal oscillators. **TOTAL: 45 HOURS**

REFERENCES:

Milman, Halkias and Satyabrata Jit, Electronic Devices and Circuits, McGraw Hill Education (India) 1. Private Ltd., 4th Edition, 2015. Robert L. Boylestad and Louis Nashelsky, Electronic Devices and Circuit Theory, PHI Ltd., 11th 2. Edition, 2015. 3. David A. Bell, Electronic Devices and Circuits, Oxford University Press, 5th Edition, 2008. Thomas L. Floyd, Electronic Devices, An Imprint of Mc Millan publishing company, 10th Edition, 4. 2017. 5. Prof.A.N.Chandorkar, IIT Bombay online lecture series on Analog Electronics http://nptel.ac.in/courses/117101106/ 6. Prof. S.Karmalkar, IIT Madras, online lecture series on Solid State Devices. http://nptel.ac.in/courses/117106091/ Albert Malvino and David Bates, Electronic Principles, 8th Edition, 7. https://onlinecourses.nptel.ac.in/noc24_ee69/preview 8. 9. https://onlinecourses.swayam2.ac.in/nou24 ec04/preview 10. http://vlabs.iitkgp.ac.in/psac/newlabs2020/vlabiitkgpAE/exp6/index.html

				DI	GITA	L ELF	ECTRO	ONICS	5					P	0
													3 0	0	3
REREQU	ISITE	:													
	1.	App	lied Pł	nysics f	for Eng	gineers	5								
	2.	Elec	etric Ci	rcuit A	nalysi	S									
OURSE O	DIEC	TIME	C.												
OURSE U	DJEU	IIVE	. 3:												
	1	. To	study	the fun	damer	ntals of	f digita	l syste	ms, pro	gramr	nable l	ogic d	evices a	nd log	gic
			nilies.					-	Î	-					
							l syster		0	1	· ·	. 1 1	•••••	•	
	1	3. To	apply	the dig	ital sir	nulatio	on tech	niques	for ap	olicatio	on orie	nted d	igital ci	rcuits.	
OURSE O	UTCO	OMES	:												
							e, stude				1	1	• •		1
CO1:	Solve algeb	e digi	tal sys 1 Karn:	augh N	roblem Ian	is usin	ıg nun	iber sy	/stems,	binar	y code	es, log	gic gate	s, Bo	olea
CO2:	Cons	struct c	combin	ational	llogic		ts using								
CO3:			chrono	us seq	uential	l logic	circu	its usi	ng exe	citation	ı table	, stab	le table	and	sta
CO4:	diag		asunal	ronoll		ontial	logia	oiroui	ta main	g flor	v tobl	a tran	sition t	abla	ete
CU4.	assig	nment	t and st	tate red	uction	techn	iques	circui	is usin	g nov	v tauto	z, iiai		aute,	510
CO5:	Impl	ement	Boole	an funo	ctions a	and co	mbinat	tional l	ogic ci	rcuits	using 1	nemor	ies, pro	gramr	nab
	logic	devic	es and	logic f	àmilie	S									
COs Vs PC)s MA	PPIN	G:												
						T									
	COs CO1	PO1 3	PO2 2			PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
			$\frac{2}{2}$	1	1	- 3	-	-	-	-	-	-	-		
				1	1	-	-	-	-	-	-	-	-		
	CO2 CO3		2												
	CO3 CO4	3 3	2	1	1	-	-	-	-	-	-	-	-		
	CO3	3 3		1 1	1 1	- 3	-	-	-	-	-	-	-		
TOs Vs PS	CO3 CO4 CO5	3 3 3	2 2	1	1	- 3	-	-	-	-	-	-	-		
COs Vs PS	CO3 CO4 CO5	3 3 3	2 2	1	1	- 3	-	-	-	-	-	-	-		
COs Vs PS	CO3 CO4 CO5	3 3 3	2 2	1	1		- - 501 PS			-	-	-	-		
COs Vs PS	CO3 CO4 CO5	3 3 3	2 2	1	1 C C	Os PS O1	. 3	- O2 PS 3 -	03	-	-	-	-		
COs Vs PS	CO3 CO4 CO5	3 3 3	2 2	1	1 C C	Os PS 01 - 02 -	- 3	- O2 PS 3 - 3 2	03	-	-	-	-		
COs Vs PS	CO3 CO4 CO5	3 3 3	2 2	1	1 C C C C	Os PS 01 - 02 - 03 -		- CO2 PS 3 - 3 2 3 -	- 	-	-	-	-		
COs Vs PS	CO3 CO4 CO5	3 3 3	2 2	1	1 C C C C C C C	Os PS 01 - 02 - 03 - 04 -	-	- O2PS 3 - 3 2 3 - 3 -		-	-	-	-		
COs Vs PS	CO3 CO4 CO5	3 3 3	2 2	1	1 C C C C C C C	Os PS 01 - 02 - 03 -				-	-	-			
COs Vs PS	CO3 CO4 CO5	3 3 3	2 2		1 C C C C C C C	Os PS 01 - 02 - 03 - 04 -	-	- O2PS 3 - 3 2 3 - 3 -		-	-	-	-		
	CO3 CO4 CO5	3 3 3 APPIN	2 2 NG:		1 C C C C C C C	Os PS 01 - 02 - 03 - 04 -	-	- O2PS 3 - 3 2 3 - 3 -		-	-	-			
OURSE C	CO3 CO4 CO5 SOs M	3 3 APPIN	2 2 NG:	1	1 C C C C C C C	Os PS 01 - 02 - 03 - 04 - 05 -		- O2 PS 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3		-	-	-			
COs Vs PS	CO3 CO4 CO5 SOs M.	3 3 APPIN	2 2 NG:	1 STEM	1 C C C C C C C C	Os PS 01 - 02 - 03 - 04 - 05 -	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	- O2 PS 3 - 3 2 3 - 3 - 3 1 1 LOGI				-		9 Hot	
OURSE C	CO3 CO4 CO5 SOs M. SOS M. CONTE em; En	3 3 3 APPII ENTS: JMBE Tor de	2 2 NG: CR SYS tection	STEM	1 C C C C C C C C C C S ANI ctions	Os PS O1 - O2 - O3 - O4 - O5 -	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	- O2 PS 3 - 3 - 3 - 3 - 3 - 3 - 1 LOGI version		lean al	gebra-			theor	

AODULE II COMBINATIONAL LOGIC CIRCUIT	9 Hours
Design of adders, subtractors, comparators, code converters, encoders, decoders, multip	lexers and de
nultiplexers. Function realization using multiplexers; Booth multiplier and Array Multiplier	r; Simulation o
imple logic circuits.	
AODULE III SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS	9 Hours
atches- Operation of SR and gated SR latch; Flip flops - Method of edge triggering, SR, JI	K, Master Slave
K, D and T flip flops; Important signals of FF. Design of Synchronous sequential circuits- M	Iodel Selection
tate transition diagram- State synthesis table - Design equations-State reduction	technique and
mplementation; Binary counters-4 bit UP, DOWN and UP/DOWN counters; BCD counters,	Ring counters
ohnson counters, shift registers.	
ANDULE IV ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS	9 Hours
Design of asynchronous sequential circuits-Design steps- State transition diagram- State tabl	e- FF transition
able- K-map based Primitive table- State reduction techniques- State assignment and design e	quations; Race
nd hazards.	
AODULE V MEMORY DEVICES, PROGRAMMABLE LOGIC DEVICES AND VHDL	9 Hours
rogrammable Logic Devices - PLA, PAL, PLD; Memories: ROM, PROM, EPROM; Intro	oduction to V
IDL-Digital design process flow using HDL- Basic VHDL Programming.	
TOTAL	: 45 HOURS

1. M. Morris Mano, -Digital Logic and Computer Design, Prentice Hall of India, 4th edition, 2013.

2. A.Anandkumar, —Fundamentals of digital circuits^{II}, 3rd Edition, PHI Learnings Pvt. Ltd, 2014.

3. Malvino and Leach, Digital Principles and Applications, Tata McGraw Hill, New Delhi, 7th edition, 2011. 4. Floyd, Digital Fundamentals, Pearson Education, 10th edition, 2011.

5. John F.Wakerly, Digital Design Principles and Practice, Pearson Education, 4th edition, 2008.

6.http://nptel.ac.in/courses/117106086/

2302EE304			MEA	SURI	EMEN	TS AN	ND INS	STRU	MENT	ATIO	N		LT	Р	C
												3	0	2	4
REREQUI	SITE:														
	1	Flee	tric Ci	rouit A	nolvei	2									
	1.		ineerin												
	۷.	Liigi		g Expi	014101	.1									
COURSE O	BJEC	TIVE	S:												
													44.00		
	1.						ment cl	naracte	eristics	and al	so to c	alcula	te diffe	rent	
	2.		meters				stand t	ne woi	·king o	felect	rical ec	minm	ent use	d in	
	۷.		yday li			under	stanu ti	lie woi	King 0			Juiping	ent use	u III	
	3.				orking	princi	ple, se	lectior	criter	a and	applica	ations	of vari	ous	
							ent syst				11				
OUDSE O	UTCC	MES													
COURSE O	UICC	JMES	:												
On t	the suc	cessfu	l com	oletion	of the	course	, stude	nts wi	ll be al	ole to					
CO1:	Desc	ribe t	he bas	sic fur	nctiona	l elen	nents o	of mea	asuring	; instr	ument	s and	the en	rrors in	n th
000			ents sys		1 1	• ,•	C		• • •		1	<u> </u>	<u> </u>		
CO2: CO3:	Disci	iss the	e opera	tion an	d appl	1cation	$\frac{15 \text{ of } m}{100 \text{ or } ind}$	easurii	ng insti	rument	under	typica	al envii	onment	t. toh
003.		je circi		JWII VC	inues of	1 105151	01, 1110		inu cap	action	or give		work us	sing sui	lau
CO4:	Expla	ain the	e consti	ruction	and w	orking	g princi	ple of	variou	s stora	ge and	displa	ay devi	ces.	
CO5:	Make	e use o	of sense	or and	transdu	ucers i	n meas	uring	ourpos	e using	g data a	acquisi	ition sy	stem.	
COs Vs PC		DDIN	C۰												
	7 5 1 7 1 7 1		0.												
		PO1			PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	l PO12	,	
	CO1	3	3	3	-	-	-	-	-	-	-	-	3	_	
-	CO2		23	2 2	-	-	-	-	-	-	-	-	3	_	
-	CO3 CO4	<u> </u>	3	$\frac{2}{2}$	-	3	-	-	-	-	-	-	2	-	
-	CO4	3	3	3	_	-	_	-	-	-	-	-	2	-	
L															
COs Vs PS	Os M	APPIN	NG:												
					C		O1 PS	0100	03						
						$\frac{0818}{013}$									
						01 3 02 3									
						01 3 03 3									
						04 3									
						05 3									
							1	1							
COURSE C	ONTE	NTS:													
COURSE C MODULE I	IN	ΓROI	DUCT											9 Hou	
MODULE I Elements of	IN' a gene	FROE eralize	DUCT	surem										n elem	ent,
IODULE I	IN a gene nipula	FROE eralize tion e	DUCT d mea	surem t, dat	a tran	ismissi	on an	d pre	esentati	on el	ement	; Stat	ic and	n elemo l dyna	ent mic

MODULE II ELCTRICAL AND ELECTRONIC INSTRUMENTS

Measuring instruments- Classification of measuring instruments- Essential requirements of an instrument; Construction and Working Principle of PMMC, MI type instruments, Electro-dynamometer type Wattmeter, Energy Meter; Instrument transformers (CT & PT); Phase sequence indicators; Power factor meters.

Digital meters: Electronic multi-meter, Digital voltmeter, Vector Voltmeter.

MODULE III DC AND AC BRIDGES

DC bridges –Wheatstone bridge, Kelvin bridge, and their merits and demerits, AC bridges-Maxwell bridge, Anderson bridge, Schering bridge and their merits and demerits; Transformer ratio bridge; Self balancing bridge.

Display devices- LED and LCD display, Comparison between LED and LCDs; Recorders- Strip chart recorders, Single point and Multi-point recorders, X-Y recorders, Magnetic tape recorders; Oscilloscope-CRO, Digital CRO and CRO measurements.

Signal Analysis: Wave Analyzer, Spectrum Analyzer& Application of Spectrum Analyzer

MODULE V TRANSDUCERS AND DIGITAL DATA ACQUISITION

Transducers- Classification, Characteristics and Selection factors; Passive transducers-Strain cage, RTD and Thermistors transducers; Active transducers-Piezo electric, Hall effect and Thermo electric transducers; A/D and D/A converters; Smart sensors.

Digital Data Acquisition System: Interfacing transducers to Electronics Control and Measuring System. Instrumentation Amplifier, Isolation Amplifier.

TOTAL: 45 HOURS

LIST OF EXPERIMENTS:

- 1. Measure the given low resistance using Kelvin's Double Bridge.
- 2. Calibration of single Phase Energy Meter
- 3. Experiment on Temperature/Pressure/Displacement/flow sensors.
- 4. Perform signal conditioning by using ADC and DAC.
- 5. Study the displacement transducer using LVDT and obtain its characteristic
- 6. Simulation Experiment on
- 7. Measurement of self-inductance by Maxwell's bridge.

TOTAL: (45+15) 60 HOURS

REFERENCES:

1. A.K. Sawhney and Puneet Sawhney, "A Course in Electrical, Electronic Measurements & Instrumentation", DhanpatRaiandCo., 2012

2. J.B.Gupta, "ACoursein Electronic and Electrical Measurements", S.K.Kataria & Sons, Delhi, Jan 2012.
3. H.S.Kalsi, "ElectronicInstrumentation", TataMcGrawHill, 2^{na} Edition, 2018.

4. Alan.S.Morris, "Principles of Measurements and Instrumentation", 2nd Edition, Prentice Hallof India, 4. 2003.

5. MurthyD.V.S., "TransducersandInstrumentation", PrenticeHallofIndia, 13thPrinting, 2018.

6. https://nptel.ac.in/courses/108/105/108105064//

9 Hours

9 Hours

9 Hours

9 Hours well bridg

2301GEX07		EN	VIRO	NMEN	TAL	SCIEN	NCES A	AND S	SUSTA	INAF	BLITY	r i	L 1	T O	P 2	C 2
PREREQUIS													1	U	2	2
F KEKEQUG	511E;															
	1	. Bas	sic env	ironme	ental st	udies										
COURSE OF	BJEC	TIVES	5:													
							and ho									
							esource				it affeo	ct the	qua	ality	of lif	e and
		st	imulate	e the qu	lest for	r susta	inable	develo	pment	•						
COURSE OU	UTCO	MES	8													
On th		ressfu	l comp	letion	of the	course	, studei	nte wil	l he ah	le to						
CO1:			ne impo						1 00 00							
CO2:							ssues a	nd its	preven	tion.						
CO3:							es and				l to cor	nserve	it.			
CO4:							on of t									
CO5:	Inves	stigate	the di	fferent	types	of poll	ution a	nd its	effects	•						
COs Vs POs	s MAl	PPINO	J:													
Г	<u> </u>	DO1	DO	DOJ		DO5	DOC	DOT	DOO	DOG			1 DC	110		
-	COs CO1		PO2	POS	PO4	P05	PO6	PO7 3	PO8	PO9	PO10	POL	IPC)12		
-	$\frac{CO1}{CO2}$		1	-	-	-	-	3	-	-	-	-	-			
-	CO2		2	1	1	1	1	3	2	2	2	3	2)		
	CO4		2	1	1	1	1	3	2	2	2	3	2			
-	CO5		2	1	1	1	1	3	2	2	2	3	2	2		
	-															
COs Vs PSC	JS MA	APPIN	IG:													
					C	Os PS	O1PS	O2PS	03							
					С	01 ·			-							
					С	02 -			-							
					C	03 -			-							
					С	04 -			-							
					C	05 -			-							
COURSE CO	ONTE	NTS:														
MODULE I	E	COSY	STEN	1											8 Hou	urs
Concept of an																
Introduction,												st eco	syste	em (ł	o) gras	ssland
ecosystem (c)	1	-								ceans)	•				- T	
MODULE II							ND SC					9	1		7 Hou	ars
Current Envi Solutional 12										bal wa	rming,	Gree	nhou	ise et	fect	
Solutions: 12 MODULE II	-	-	VERSI		istry-r	am wa	ater nar	vestin	g.						10 Ho	
Introduction to					necies	and ec	osveter	n dive	rsity	value	of bio	livere	itv. a			
productive us																
habitat loss, j																
		0		,												

conservation of biodiversity.	
MODULE IV NATURAL RESOURCES	10 Hours
Forest resources: Use and over-exploitation, deforestation- timber extraction, mining, dams and the	neir effects on
forests and tribal people – Water resources: Use and over utilization of surface and ground	
benefits and problems – Mineral resources: Use and exploitation, environmental effects of extract	
mineral resources - Food resources: World food problems, changes caused by agriculture and	0 0
effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity-Energy resour	
energy needs, renewable and nonrenewable energy sources, use of alternate energy sources. Energy	
processes Biogas - production and uses, anaerobic digestion - Land resources: Land as a r	
degradation, man induced landslides, soil erosion and desertification - role of an individual in co	onservation of
natural resources – Equitable use of resources for sustainable lifestyles.	
MODULE V ENVIRONMENTAL POLLUTION	10 Hours
Definition - Source, causes, effects and control measures of: (a) Air pollution (b) Water pollu	tion(c) Soil
pollution - soil waste management: causes, effects and control measures of municipal solid w	vastes – (d)
Marine pollution (e) Noise pollution –(f) Nuclear pollution (g) Thermal pollution role of an ir	ndividual in
prevention of pollution.	
TOTAL: 4	5 HOURS
LIST OF EXPERIMENTS:	
MINI PROJECT ADDITIONAL TOPICS	
Soil Science	
1. Effects of climate change on soil erosion.	
2. The role of land management in maintaining soil health.	
3. Effects of salinity in coastal region Agricultural activity.	
4. The effects of climate change on agriculture.	
Urban Ecology	
1. How road construction impacts biodiversity and ecosystems.	
2. The effects of urbanization and city planning on water cycles.	
3. Impacts of noise pollution on human health.	
Pollution and Bio-remediation	
1. The role of bio-remediation in removing "forever" chemicals from the environment.	
2. Impacts of air pollution on human health.	
3. How to improve plastic recycling processes?	
4. Individual measures to reduce consumption and creation of micro plastics.	
General Topics	
1. Impact of Urbanization on Local Biodiversity	
2. Renewable Energy Options for Sustainable Living.	
3. Waste Management Strategies in Urban Areas	
4. Climate Change and Its Effects on Local Ecosystems	
5. Air Quality Monitoring in Urban centers	
6. Water Quality Assessment in Local Water Bodies	
7. Green Roof Technology and Its Environmental Benefits	
8. Impact of Plastic Pollution on Marine Life.	
9. Eco-friendly Practices in Agriculture:	
10. The Role of Community Gardens in Urban Sustainability	
11. Alternate energy sources for community Development.	
12. E-Waste Management.	
13. Energy Audit of a building.	
14. Rainwater harvesting system.	
15. Population growth variation among nations.	
16. Population explosion.	
17. Family welfare programme.	

 18. Women welfare programme.

 19. Child welfare programme.

20. Environmental impact analysis.

21. Role of information technology in environmental protection and human health.

TOTAL: 15 HOURS

REFERENCES:

- 1. Trivedi.R.K., "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards", Vol. I and II, Enviro Media, 3rd edition, BPB publications, 2010.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, "Environmental Encyclopedia", Jaico Publ., House, Mumbai, 2001.

3. Dharmendra S. Sengar, "Environmental law", Prentice hall of India PVT LTD, New Delhi, 2007.

4. Rajagopalan, R, "Environmental Studies-From Crisis to Cure", Oxford University Press, 2005.

5. Benny Joseph, "Environmental Science and Engineering", Tata McGraw-Hill, New Delhi, 2006

6. https://en.wikipedia.org/wiki/Carbon_capture_and_storage

7. Ravikrishnan "Environmental Science and Engineering" Sri Krishna Hi-tech Publishing Company Pvt.

2302EE351			ELE	CTRIC	CAL M	IACHI	INES –	I LAB	ORAT	ORY				P 2	
												0	0	2	1
REREQUI	SITE:														
		1 1	VIL												
		1. N	NIL												
COURSE O	BJEC	TIVE	S:												
							a given								
										ous ele	ectrical	machi	nes.		
		3. Ev	valuate	e the pe	erforma	ance of	transf	ormer.							
OURSE O		MFS	•												
			•												
							, stude								
CO1		-	ate the	e perfo	rmance	e chara	cteristi	$\cos \operatorname{of} a$	a DC g	enerat	or by $\overline{\mathbf{c}}$	conduct	ing $O\overline{C}$	C and	l loa
		st.	. the c	nonction	a hah-	vion of		otore -	mdar -			no 000 -	litiona		
<u>CO2</u> CO3												ng cond		luctin	αO
		nd SC			cun p	aranici		single	/ unce	-pnase	/ 11/11/51		by cond	ucting	g O
CO4	l: C	omput	te the	curre	nt div	vision	of tra	ansforr	ner by	y usii	ng par	rallel o	operatio	n of	tw
	tr	ansfor	mers.						-		-				
CO5	5: R	eport	the usa	ige of r	noderr	tools	in DC	motors	s.						
COs Vs PO		DDIN	c.												
	5 IVIA		G.												
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12		
	CO1	2	2	1	1	-	-	-	-	3	3	2	-		
	CO2	3	3	3	3	1	-	-	-	3	3	3	-		
	CO3		3	3	3	1	-	-	-	3	3	3	-		
	CO4	3	3	3	3	-	-	-	-	3	3	3	-		
	CO5		2	2	1	-	-	-	-	2	2	2	2		
	CO6	2	2	1	1	-	-	-	-	3	3	2	-		
	<u> </u>														
COs Vs PS	Os MA	APPI	NG:												
					C	Os PS	O1 PS	O2PS	03						
						01 3									
						O2 3		1							
						03 3									
						O4 3									
						O5 2		-							
					С	O6 3	3 -	-							
IST OF EX	KPERI	IMEN	TS:												
			-				~ .								
1 0	011011	it and						gener	ator.						
1. Open		1		est on I	JC shu	int mot	tor.								
2. Swin	burne'														
2.Swin3.Load	burne ⁶ test of	n DC	series 1		otor										
2.Swin3.Load4.Load	burne ⁶ test o test o	n DC n DC	series 1 compo	und m		eld cor	ntrol &	Armet		ntrol p	rethod)			
 Swin Load Load Load Speed 	burne ⁶ test o test o d cont	n DC n DC rol of	series 1 compo DC shi	und mo unt mo	tor (Fi	eld cor	ntrol &	Armat	ure con	ntrol n	nethod).			

- 7. Load test on single-phase / three-phase transformer.
- 8. Parallel operation of single-phase transformers.

9. Simulation on Speed control of DC shunt motor (Field control &Armature control method).

10. PLC based DC drives.

TOTAL: 30 HOURS

REFERENCES:

1. Kothari.D.P & Umre.B.S "Laboratory manual for electrical machines", I.K international Publishing House (P)Ltd. 2nd Edition, 2017

2302EE352		ANAI	LOG A	ND D	IGITA	L EL	ECTR	ONIC	S LAI	BORA	TORY			Г 0	P 2	C 1
	SITE.													0	4	-
REREQUI	511E:															
			Analog													
		2. I	Digital	Electro	onics											
			0													
COURSE O	BJEC	TIVE	S:													
		1.	To im	plemer	nt and	charac	terizing	the c	ircuit b	ehavio	or with	digita	land	ana	log I	C's.
				-			ogic ga					0			0	
							istics o				ecial I	Diodes	•			
							sed am terizing					digita	land	0100	log I	C'_{α}
		5.	10 III	piemer	it and (charac	terizing	g the c	ircuit d	enavio	or with	digita	i and	ana	10g I	CS.
COURSE O	UTCC	OMES	:													
	haana	agafu	1	lation	oftha	001100	, stude	nto mil	11 ha ak	la to						
CO1																
CO2	2: D	Determine voltage gain from CE and CB configurations. Determine the frequency and gain value of various types of oscillators and amplifiers.														
<u>CO3</u>		Use simplification techniques to design a combinational hardware circuit. Design and implement combinational and sequential circuits.														
<u> </u>							onal an d ampl				8.					
	• 11	ppiy v	unous	types	01 0105	ing an	a ampi		Jiiigui	ation.						
COs Vs PO	s MA	PPIN	G:													
Г	COs	DO1	PO2	PO3	PO4	PO5	PO6	PO7	DOQ	DOO		PO11		2		
-	CO1	3	FO2	P05	P04	P05	PO0	P0/	PU8	3	3	3	- FUI	4		
	CO1	3	3	3	3	_	-	-	_	3	3	3	-			
	CO3		3	3	3	-	-	-	-	3	3	3	-			
	CO4	3	2	2	1	-	-	-	-	3	3	3	-			
	CO5	3	-	-	-	-	-	-	-	3	3	3	2			
COs Vs PS			NC.													
	US 1412		10.													
					С	Os PS	O1 PS	O2PS	03							
						O1 1										
						O2 1										
						03 1 04 1										
						04 1 05 1										
					U			<u> </u>								
IST OF EX	(PER)	IMEN	TS:													
1 (-11	· · .·	(D		. 1.	1	1.77	1' 1								
			cs of P				d Zene	r diode	е.							
							uit usir	ng Zen	er diod	e.						
							Oscill									
5. I	Design	and v	erify tl	ne freq	uency	respon	se of s	ingle s								
							ind PIF				ing Fli	p-flops	s.			
							Adder/									
8. I	Jesign	and 11	nplem	entatio	n of M	ultiple	exer and	a De-n	nuitiple	exer us	ing log	gic gat	es.			

9. Design and implementation of encoder and decoder using logic gates.

10. Design and implementation of code converters using logic gates

TOTAL: 30 HOURS

REFERENCES:

1.	Mr.K.Nandakumar, and Mr.V.Yokeswaran "Analog and Digital Integrated Circuits Manual", 2022.
	D Roy Choudhury and SheilB.Jani, "Linear Integrated Circuits" 4th Edition, New Age International, New Delhi, 2014.
3.	RamakantA.Gayakward, "Op-amps and Linear Integrated Circuits", 4thEdition, PHI Learnings, 2003.
4.	Mr.V. Yokeswaran, and Mr.K.Gokulraj — Analog Electronics – Lab Manual 2022.
5.	Milman, Halkias and Satyabrata Jit, -Electronic Devices and Circuits 4th Edition, Mc Graw Hill
	Education (India) Private Ltd, 2015.
6.	Integrated circuits: Solution manual: Analog digital circuits and systems manual by Jacob Millman