E.G.S. PILLAY ENGINEERING COLLEGE (Autonomous)

Approved by AICTE, New Delhi

Affiliated to Anna University, Chennai | Accredited by NAAC with 'A++' Grade

Accredited by NBA (B.Tech-IT, B.E-CSE and ECE) (Tier-1)

NAGAPATTINAM-611002

B.E. ELECTRONICS AND COMMUNICATION ENGINEERING R2023 - SECOND YEAR CURRICULUM

SEMESTER III

COURSE		CATECODY	т	т	D	C	MAX. MARKS			
CODE	COURSE NAME	CATEGORI	L	I	r	C	CA	ES	TOTAL	
	THE	DRY COURS	ES							
2301MA302	Probability Theory and Stochastic process	BSC	3	1	0	4	40	60	100	
2302CS305	Program Paradigms (Data Structures & Algorithm)	ESC	3	0	3	4.5	50	50	100	
2302EC301	Signals and System	PCC	3	1	0	4	40	60	100	
2302EC302	Digital Electronics	PCC	3	0	0	3	40	60	100	
2302EC303	Electromagnetic Fields	PCC	3	0	0	3	40	60	100	
2301GEX07	Environmental Sciences and Sustainability	BSC	1	0	2	2	50	50	100	
	PRACT	ICAL COUR	SES							
2302EC351	Digital Electronics Laboratory	PCC	0	0	3	1.5	60	40	100	
	ОТН	ER COURSE	ËS							
2304GE301	Professional Development Course - I	EEC	0	0	2	1	100		100	
2301LS301	Life Skills - III	LS								
2304EC001	Value Addition Course	VAC	1	0	0	1	100		100	
	TOTAL				23	510	380	900		

COURSE		CATECODY	т	т	D	C	MAX. MARKS				
CODE	COURSE NAME	CATEGORI	L	I	r	C	CA	ES	TOTAL		
	ONE Cl	REDIT COUI	RSES								
2304EC002	Arduino Programming Autonomous	OCC	1	0	0	1	100		100		
	Systems with Sensors and Actuators										
2304EC003	Wireless Sensor Networks with	OCC	1	0	0	1	100		100		
	Arduino and NRF24L01										

2301MA302	PROBAB	ILITY	L	Т	Р	С								
											3	1	0	4
PREREOUIS	SITE													
	JIIE .													
	1. Advanced	1 multi	variate	differ	ential o	calculu	s and i	integra	l calcu	lus				
	2. Matrices													
COUDED OF		-												
COURSE OF	BJECTIVE	S:												
	1 To analy	ze the c	roncen	ts of n	rohahil	ity rar	dom v	variable	e and	distrih	ution fi	inction	15	
	2. To acqui	re skill	in han	dling s	ituatio	$\frac{ny, 1a}{n \text{ with}}$	more t	han on	e rand	om var	iable v	vith tir	ne fun	ction.
	3. To analy	ze the c	concep	ts of C	ovaria	nce and	l corre	lation.						
	4. To analy	ze the c	oncept	t of Ma	arkov p	process	•							
	5. To acquire skills in Linear systems with random inputs.													
COURSE OI	TCOMES	,												
COURSEOU		•												
On the succe	essful comple	etion of	the co	urse, s	student	s will t	be able	to						
CO1:	Apply prob	Apply probability techniques to analyze the performance of Electronic systems.(K3)												
CO2:	Apply stand	dard dis	stributi	ons in	descrit	oing rea	al life j	phenor	$\frac{(K2)}{(K2)}$	K3)				
CO3: CO4:	Make use o	f theore	ems rel	ated to	rando	m sign	als.(K	$\frac{11able}{3}$	(K3)					
CO5:	Interpret th	e respoi	nse of	randon	n input	to line	ar time	e invar	iant sy	stems.((K3)			
	interpret the response of random input to linear time invariant systems.(K3)													
COs Vs PO	s MAPPINO	; :												
	COs PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12]	
	CO1 3	2	1	-	-	-	-	-	-	-	-	-		
	CO2 3	2	1	-	-	-	-	-	-	-	-	-		
	CO3 3	2	1	-	-	-	-	-	-	-	-	-	_	
	CO4 3	$\frac{2}{2}$	1 1	-	-	-	-	-	-	-	-	-		
	CO3 3	2	1	-	-	-	-	-	-	-	-	-		
COs Vs PSC	Os MAPPIN	IG:												
					0 00	01 00		00						
				C	Os PS		02PS	03						
					$\frac{01}{02}$ -	1								
				C	03 -	. 1	-							
				С	O4 -	. 1	-							
				С	05 -	. 1	-							
COUDED OF														
COURSE CO	JNIENIS:													
MODULE I	PROBAI	BILITY	THE	ORY									9+3 E	Iours
Sets and set o	perations -P	robabili	ity- Co	ndition	nal pro	bability	y and E	Bayes t	heorer	n-Disci	rete and	d cont	inuous	
random varial	bles – Mome	ents – M	Ioment	gener	ating f	unction	ns –Re	al Tim	e Prob	lems.				
MODULE II	ONE -DI	MENS	IOAL	RAN	DOM Y	VARIA	ABLE		~				9+3 E	Iours
Joint distribut	ions – Marg	inal and	d condi	tional	distrib	utions	– Cova	ariance	– Cor	relation	n and L	linear	regres	sion-
	$\mathbf{T} \mathbf{T} \mathbf{W} \mathbf{O} = \mathbf{P}$	I VALLAD	SION		NDO	MIVAI	RIVE	LFS					Q_⊥2 T	Jours
Control struct	ure of dc dri	ve: Arr	nature	voltag	e and f	field co	ontrol o	of sena	ratelv	excited	l de me	otor dr	<u>ידי ד</u> ive: Tı	ransfer
function of secontroller.	structure of dc drive; Armature voltage and field control of separately excited dc motor drive; Transfer of separately excited dc motor and converter; Design of controllers- Speed controller and Current er.													

MODULE IV STOCHASTIC PROCESSES	9+3 Hours
Classification -Stationary process - Markov process - transition probabilities - Limiting dis	stributions –
Poissonprocess.	
MODULE V SPECTRAL DENSITIES AND LINEARSYSTEMS WITH RANDOM INPUTS	9+3 Hours
Auto correlation function - cross correlation function – Properties - power spectral density-ci	ross spectral
density- Properties - Linear time invariant system- system transfer function-Linear system v	vith random
inputs-Auto correlation and cross correlation functions of input and output.	
TOTAL: 45+15=	60 HOURS
REFERENCES:	
1. H. Stark and J. Woods, ``Probability and Random Processes with Applications to Signal Processing Edition, Pearson Education.	z," Third
2. A. Papoulis and S. Unnikrishnan Pillai, ``Probability, Random Variables and Stochastic Processes, Edition, McGraw Hill.	" Fourth
3. K. L. Chung, Introduction to Probability Theory with Stochastic Processes, Springer International.	
4. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability, UBS Publishers,	
5. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Stochastic Processes, UBS Publishers.	
6. S. Ross, Introduction to Stochastic Models, Harcourt Asia, Academic Press.	

7. www.indiastudychannel.com.

2302CS305		(DATA	PROGR	AM P. TURE	ARAD S & A	IGMS LGOF	; RITHN	/ D		Ι	T	Р	C	
			JINCO	ICILL	<u>.</u>	1001		_)		3	0	3	4.5	
PREREQU	ISITE:												-I	
	1. Introduction	n to Com	puter.											
	2. Programmi	ng in C												
COUDSEO	DIFCTIVES.													
LUUKSE U	DJECTIVE5:													
	1. To Learn li	inear dat	structu	res – li	st, stac	k, and	queue.							
	2. To underst	and and	apply no	onlinea	r data s	structu	res –Tı	ees.						
	3. To underst	and and	apply no	onlinea	r data s	structu	res –G	raphs.						
	4. To Learn t	he algori	hm anal	ysis teo	chnique	es.								
	5. To Become	e familia	with di	fferent	algorit	hm de	sign te	chniqu	les.					
COURSE O	UTCOMES:													
0 1	6.1 1.	C.1		. 1		1 11								
On the succ	essful complet	ion of the	e course,	studer	nts will	be abl	e to							
$\frac{\text{COI:}}{\text{CO2:}}$	Have a comp	mplement abstract data types for linear data structures. Have a comprehensive knowledge of Trees and their implementations												
<u> </u>	Learn advanc	<u>Have a comprehensive knowledge of Trees and their implementations.</u>												
<u>CO4:</u>	Analyze the t	Learn advanced data structures like Graphs and their implementations. Analyze the time and space complexity of algorithms												
CO5:	Design algori	Design algorithms for various computing problems and analyze the different algorithm design												
	Techniques f	for a give	n proble	m.	01			5			U		U	
<u> </u>														
COs Vs PC	DS MAPPING:	•												
	COs PO1 F	PO2 PO	3 PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
	CO1 2	1 3	2	1	2	-	-	-	-	-	-			
	CO2 2	1 3	2	2	2	-	-	-	-	-	-			
	CO3 2	1 3	2	2	2	-	-	-	-	-	-			
	CO4 3	$\frac{1}{1}$ 3	2	2	2	-	-	-	-	-	-			
	CO5 3	1 3	Z	Z	Z	-	-	-	-	-	-			
COs Vs PS	Os MAPPINO	J:												
					1									
			<u>C</u>	COs PS	O1PS	O2PS	03							
				$\frac{100}{100}$	l -									
				$\frac{102}{102}$		· -								
				$\frac{103}{104}$	L –	· -								
				04 1 05 1	L -									
			C	.05	-	-								
COURSE C	ONTENTS:													
				UDEC	TIC	D						0 110		
Introduction	Dete structur	JAIAS.	Data at		-LIS	L tions	Abotec	of Dot	a Ture				urs m	
	n, Data structur	tion -1 in	- Data St ked list i	mplem	entatic	uons -	AUSITE nolv li	nked 1	a 1 ype ists 2	s (AD) nulicat	18) - L	ist AD liete	' I -	
Polynomial	Manipulation	- Stack A	DT - OI	nipien nene A	DT - F	lvaluat	ing ari	thmeti	c expre	essions	10115 01	11515 -	-	
	I NON-LIN	EAR DA	<u></u>				ES	ineti	- enpre			9 Ho	urs	
General tre	es. Terminolog	v. Repres	entation	of tree	es. Tree	e trave	sal- Ri	inarv t	ree. Re	presen	tation	Expres	ssion	
tree,Binary	tree traversal.	Binary S	earch Tre	e: Cor	istructi	on, Sea	arching	g, Inse	rtion, I	Deletion	n, AVL	trees:		
Rotation, Ir	sertion, Deleti	on, B-Tre	es.					-	,		а. -			

MODULE III NON LINEAR DATA STRUCTURES – GRAPHS

9 Hours

Representation of Graphs - Breadth-first search - Depth-first search - Topological sort -	Minimum
SpanningTrees – Kruskal's and Prim's algorithm – Shortest path algorithm – Dijkstra'salgorithm.	
MODULE IV INTRODUCTION TO ALGORITHM	9 Hours
Notion of an Algorithm – Fundamentals of Algorithmic Problem Solving – Important Problem Typ	pes –
Fundamentals of the Analysis of Algorithm Efficiency – Analysis Framework – Asymptotic Nota	ations and
itsproperties – Mathematical analysis for Recursive and Non-recursive algorithms.	
MODULE V DIVIDE-AND-CONQUER AND DYNAMIC PROGRAMMING	9 Hours
Divide and Conquer Methodology — Binary Search — Merge sort — Quick sort — Heap Sort -	Knapsack
Problem-Finding Max & Min. Dynamic programming -Warshall's and Floyd' algorithm – Optim	nal Binary
Search Trees – 0/1 Knapsack Problem and Memory functions-Travelling Salesman Problem.	
TOTAL: 45	HOURS

LIST OF EXPERIMENTS:

1. Array and Linked list implementations of List ADTs	1 Hours
2. Array and Linked list implementation of Stack and Queue ADTs	2 Hours
3. Applications of List, Stack and Queue ADTs	2 Hours
4. Tree representation and traversal algorithms	1 Hours
5. Implementation of Binary Search Trees	1 Hours
6. Graph representation and Traversal algorithms	1 Hours
7. Implementation of single source shortest path algorithms	1 Hours
8. Implementation of minimum spanning tree algorithms	1 Hours
9. Implementation of Dijkstra's algorithms	2 Hours
10. Implementation of Searching and Sorting	2 Hours
11. Implementation of Travelling Salesman Problem.	1 Hours
TOTAL:	15 HOURS

REFERENCES:

1. H. Stark and J. Woods, ``Probability and Random Processes with Applications to Signal Processing," ThirdEdition, Pearson Education.

2. A. Papoulis and S. Unnikrishnan Pillai, ``Probability, Random Variables and Stochastic Processes," Fourth Edition, McGraw Hill.

3. K. L. Chung, Introduction to Probability Theory with Stochastic Processes, Springer International.

4. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability, UBS Publishers,

5. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Stochastic Processes, UBS Publishers.

6. S. Ross, Introduction to Stochastic Models, Harcourt Asia, Academic Press.

7. <u>www.indiastudychannel.com</u>.

2302EC301				SI	GNAL	S ANI	D SYS'	TEMS	5			1	Ĺ	Т	P	C
												3	3	1	0	4
PREREOU	ISITE	:														•
	1. Ma	thema	tics (O	ordinar	y Diffe	erential	equati	ions an	d Tran	sform	s)					
COURSE O	BJEC	TIVE	S:													
	1. To	o study	and a	nalyze	the co	ntinuo	us and	discret	te-time	signal	ls and s	system	s.			
	2. To	o make	the stu	udents	to hav	e know	vledge	in both	n time	domai	n and c	other tr	ans	form	n dom	ain
	re 3 Te	preser	lon ma	themat	ical sk	ills to	solve r	rohlen	ns invo	lving	convol	ution	Im	ามใจค	resno	nse
	5.10			themat	icai sk	1115 10	<u>50170 p</u>	1001011		nving (ution,	1111	Juise	respe	<i>mse.</i>
COURSE O	UTC(OMES	:													
On the succ	ressful	comp	letion (of the c	ourse	studer	nts will	be abl	le to							
CO1:	Analy	ze the	proper	ties of	signal	s & sys	stems.	00 001								
CO2:	Apply	ply Fourier Series and Fourier transform in Continuous time signal analysis.														
CO3:	Apply	ly Laplace transform in Continuous time signal analysis.														
CO4:	Analy	lyze continuous time LTI systems using Fourier and Laplace Transforms.														
CO5:	Apply	<i>y</i> Fourier transform and Z transform in Discrete time signal analysis.														
CO6:	Exami	ine dis	crete ti	ime LT	'I syste	ems usi	ing Z tı	ransfor	m.							
		DDIN	0													
COs Vs PC)s MA	PPIN	G:													
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P(012		
	CO1	3	2	-	-	-	-	-	-	-	-	-	1			
	CO2	3	3	2	-	-	-	-	-	-	-	-	1			
	CO3	3	3	2	-	-	-	-	-	-	-	-	1			
	CO4	3	3	2	1	-	-	-	-	-	-	-	1			
	CO5	3	3	2	-	-	-	-	-	-	-	-	1			
	CO6	3	3	2	1	-	-	-	-	-	-	-	1			
COs Vs PS	SOs M	APPI	NG:													
					C	Os PS	<u>01 PS</u>	O2PS	03							
					C	$\frac{01}{02}$	· 3	-								
						$\frac{02}{03}$	· 3									
						$\frac{03}{04}$. 3									
					C	05 -	. 3	-								
COURSE C	ONTI	ENTS:	:													
MODULEI	CI	ASSI	FICA	TION	OF SI	CNAL	SAN		TFM	2					9+31	Jours
Basic Opera	ation	on the	e sign	als- C	lassifi	cation	of S	ignals:	Cont	, inuous	5 Time	e and	D	iscre	te Ti	me-
Classificatio	n of sy	stems:	: Conti	nuous	Time s	ystem	s and I	Discrete	e Time	Syste	ms.		2			
MODULE I	I Ċ	ONTIN	NUOU	S TIM	E SIG	NAL .	ANAL	YSIS		v					9+3 I	Iours
Fourier Ser	ies rep	present	tation	of Pe	riodic	Signa	lsP	roperti	es-Cor	ntinuou	us Tin	ne Foi	urie	er T	ransfo	rm-
Properties, L	aplace	Trans	form –	- Prope	rties.											
MODULE I	II CO)NTIN	NUOU	S TIM	E SYS	STEM	ANAI	LYSIS							9+3 I	Iours
Continuous	Time	LTI sy	ystems	– Lap	lace 7	Fransfe	orm –	Region	n of C	onverg	gence -	– Prop	erti	ies -	- Ana	lysis
and characte	rizatio	n of L	11 syst	ems us	ing the	e Lapla	ice Tra	nsform	1.							

MODULE IV DISCRETE TIME SIGNAL ANALYSIS	9+3 Hours
Sampling Theorem – Reconstruction of a signal from its samples – Aliasing – Discrete Time Four	rier
Transform - Properties, Z Transform – Properties.	
MODULE V DISCRETE TIME SYSTEM ANALYSIS	9+3 Hours
Discrete Time LTI systems - Z-Transform - Region of Convergence - Properties - 1	Inverse Z
Transform-Analysis and characterization of LTI systems using the Z Transform.	
TOTAL: 60	HOURS
REFERENCES:	
1.Simon Haykin and BarryVanVeen, "SignalsandSystems", John Willey & Sons, Inc., Second Editio	n,

2004.

2. B.P. Lathi, "Principles of Linear Systems and Signals", Second Edition, Oxford, 2009.

3. Hwei.P.Hsu, Schaum, "Outlines: Signals and Systems, Pearson Education, 2002.

4. Rodger E.Ziemer, William H.Tranter and D.Ronald Fannin "Signals and Systems Continuous and Discrete", Fourth Edition.

5. <u>https://onlinecourses.nptel.ac.in/noc24_ee36</u>.

2302EC302				DI	GITA	L ELF	ECTRO	ONICS	5				L	T	P	C
													3	0	0	3
PREREQUIS	SITE:															
	1 D		1 1		•											
	I. Bas	sic kno	owledg	e in lo	gic gat	es and	numbe	er syste	ems.							
COURSE OB	BJEC"	TIVE	S:													
	1. To	prese	nt the	fundan	nentals	of dig	gital cir	cuits a	nd sim	plifica	tion m	ethod	s.			
	2. To	practi	ice the	design	n of var	ious c	ombina	ational	and se	quenti	al digi	tal cir	cuit	s usir	ıg logi	c
	ga 2 To	ites.	1100.00		ductor		miacom	d mmo o		h 1a 1a	aio dor					
	<u>3. 10</u> 4 To	practi	ice the	HDL 1	orograi	nming	for co	mbina	tional a	and sec	uentia	al circ	nits			
COURSE OU	UTCC	MES	:													
	6 1			6.1		. 1	11	1 11	1 .							
On the succe	Use I	compl	letion of	$\frac{\text{of the } c}{\frac{1}{2}}$	course,	studer	nts will	be ab	le to	mplify	Roola	on fu	notic	200		
CO1: CO2:	Cons	truct d	lifferer	ora, K	-map a binatio	nal cir	cuits u	sing lo	gic gat	mpni y es	DOOLE			5118.		
CO3:	Construct different combinational circuits using logic gates. Develop different sequential circuits using logic gates and flip flops.															
CO4:	Comp	Compare different semiconductor memory devices and build programmable devices using														
	logic	ogic gates.														
C05:	Develop Verilog program for combinational and sequential circuits.															
COs Vs POs	COs Vs POs MAPPING:															
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 P(012		
	CO1	3	2	1	-	-	-	-	-	-	-	-		1		
	$\frac{\text{CO2}}{\text{CO2}}$	3	2	1 1	-	-	-	-	-	-	-	-	_	1		
	$\frac{003}{004}$	3	$\frac{2}{2}$	1	-	-	-	-	-	-	-	-	_	1		
	$\frac{C04}{C05}$	3	2	1	-	- 3	-	-	-	-	-	-	_	1		
L	000	U	_	-		U								-		
COs Vs PSC	Os MA	APPIN	NG:													
					C	Os PS	$\frac{O1PS}{2}$	O2PS	03							
						$\frac{01}{02}$) - 2	· -	-							
						$\frac{02}{03}$	3		-							
					C	04 3	3 -									
					C	05 3	3 -		-							
COURSE CO	ONTE	NTS:														
MODILEI	Ы	CITA	T GVG	TENA	C 0. D/				DA						0 Hor	IFC
Review of N	Jumbe	er svst	tem-Bo	olean	expre	SSION	and m	LGED	KA vation-l	Logic	Gates	and	its	impl	ement	ns ation-
Simplification	n of B	oolean	n Funct	tions u	sing Bo	olean	algebr	a, Kari	naugh	Map ai	nd Tab	ulatic	on M	letho	1.	ution
							0			•					0 II or	-
Combinationa	I COMBINATIONAL CIRCUITS 9 Hours 9 Hours															
Conversion-D	Decode	ers/En	coders	–Mult	iplexer	sign i s/DE	mu	ltiplex	ers-Pai	rity	gener	ators	/che	ckers	-Magi	nitude
Comparator.					*			1		2	0				-8-	
MODULE II	I SE	QUE	NTIAI	CIR	CUITS									-	12 Ho	urs
Sequential lo	gic-B	asic 1	latch-F	lip-flo	ps (SI	R, D,	JK, 7	Γ and	Maste	er-Slav	e)-Mo	ore a	ind.	Mea	ly mo	odel-
Counters-Ripp Hazards	pie co	ounter	s-вср	and	ыnar	y-Sync	cnrono	us co	unters,	Kegi	sters-S	niit	regi	sters	·ĸeg1s	ters,

MODULE IV	MEMORY AND PROGRAMMABLE LOGIC	8 Hours
Classification o	f memories (RAM, ROM, PROM, EPROM, EEPROM)-Programmable Logic	c Devices
(PLA, PAL,FPO	GA)-Implementation of circuits using ROM, PLA, PAL.	
MODULE V	VHDL	7 Hours
Introduction –H sequential circui	ardware Description Language – HDL model for combinational circuits HDI ts.	L model for
	TOTAL: 45	HOURS

REFERENCES:

1.Nagrath I.J. and Gopal.M, Control Systems Engineering, 5th Edition, New Age International Publishers, New Delhi, 2008.

2. Kuo, B.C, Automatic Control Systems, 8th Edition, John Wiley and Sons, New York, 2003.

2302EC303				EI	ECTE	ROMA	GNET	IC FI	FLDS			I		Р	C
												3	0	0	3
PREREOUI	SITE:												Ŭ	Ů	
I ILLILL QUI															
	1.Elect Curre	tric an ent, M	id Mag lagnet	netic f sm, El	ields, (lectron	Gauss's nagneti	s law, A	Amper ction.	e's law	, and F	Faraday	's law,	Electr	ostatic	·,
COURSE O	BJECT	FIVE	S:												
	1. To i Law	mpart /s.	know	ledge	on the	basics	of stati	c elect	ric and	magn	etic fie	ld and	the ass	ociated	1
	2. To g	give in	nsight i	nto the	e propa	agation	of EM	l wave	s and a	lso to	introdu	ice the	method	1	
	3. To a	analyz	e the t	ime va	rving f	ields.									
	4. To i Law	mpart s.	know	ledge	on the	basics	of stati	c elect	ric and	magn	etic fie	ld and	the ass	ociated	1
COURSE O	UTCO	MES	:												
On the succ	essful c	compl	etion of	of the c	ourse,	studen	nts will	be abl	e to						
CO1:	Explai	n the	fundar	nentals	s of ele	ctroma	gnetic								
CO2:	Analyz	ze fiel	d pote	ntials o	lue to s	static c	hanges	and st	tatic m	agnetic	e fields	•			
CO3:	Explai	n how	mater	ials af	fect ele	ectric a	nd mag	gnetic	fields.						
CO4:	Analyz	ze the	relatio	n betw	veen th	e field	sunder	time v	varying	g situat	ions.				
CO5:	Discus	s the	princip	oles of	propag	gation of	of unifo	orm pla	ane wa	ves.					
COs Vs PC)s MAI	PPIN	G:												
Г	COa		DOJ	DO2	DO4	DO5	DOG	DO7	DOS				DO12		
-	CO1	3	<u>r02</u>	1	-	-	-	-	100	-	-	-	1		
-	CO2	3	2	1	_	_	-	-	_	-	_	-	1		
-	CO3	3	2	1	_	_	_	-	_	-	-	-	1		
-	CO4	3	2	1	-	-	-	-	-	-	-	-	1		
	CO5	3	2	1	-	-	-	-	-	-	-	-	1		
COs Vs PS	Os MA	PPIN	IG:												
					C	Os PS	O1 PS	O2PS	03						
					C	01 3	3 -								
					C	02	3 -								
					C	03 = 3	3 -								
					C	04 3	5 -								
					C	U5 3	5 -	-							

COURSE CONTENTS:

MODULE I STATIC ELECTRIC FIELDS

9 Hours

Co-ordinate system – Rectangular – Cylindrical and spherical co-ordinate system – Meaning of stokes theorem and divergence theorem – Coulomb's law in vector form – Definition of electric field intensity – Electric field due to charges distributed uniformly on an infinite and finite line – Electric field on the axis of a uniformly charged circular disc – Electric flux Density – Gauss law – Proof of gauss law – Applications.

B.E - Electronics And Communication Engineering | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2023 Approved in 10th Academic Council Meeting held on 30.06.2023

MODULE II STATIC MAGNETIC FIELDS	9 Hours
The Biot- Savart law in vector form – Magnetic field intensity due to a finite and infinite wire	e carrying a
current I – Magnetic field intensity on the axis of a circular and rectangular loop carrying a	current I –
Ampere's circuital law and simple applications – Magnetic flux density – The Lorentz force equ	ation for a
moving charge and applications - Force on a wire carrying a current I placed in a magnetic fie	eld.
MODULE III ELECTRIC AND MAGNETIC FIELDS IN MATERIALS	9 Hours
Poisson's and Laplace's equation– Electric polarization – Nature of dielectric materials – Definit	ion of
capacitance – Electrostatic energy and energy density – Boundary conditions for electric	fields –
Electric current – Current density-Continuity equation for current – Definition of inductand	ce –
Inductance of loops and solenoids-Definition of mutual inductance - Energy density in ma	gneticfields.
MODULE IV TIME VARYING ELECTRIC AND MAGNETIC FIELDS	9 Hours
average and complex pointing vector.	
MODULE V ELECTROMAGNETIC WAVES	9 Hours
Derivation of wave equation – Wave equation in pharos form – Plane waves in free spac homogenous material – Wave equation for a conducting medium – Plane waves in lossy d Propagation in good conductors – Skin effect – Linear elliptical and circular polarization – R plane wave from a conductor – Normal incidence – Dependence on polarization – Brewster angle	e and in a ielectrics – eflection of 2.
IUIAL: 4	5 NUUKS
REFERENCES	
REFERENCES:	
- I Edward C. Jordan & Keith G. Balmain Electromagnetic waves and Radiating Systems Se	cond
I.Edward C. Jordan & Keith G. Balmain, Electromagnetic waves and Radiating Systems, Se Edition, Prentice-Hall Electrical Engineering Series, 2012.	cond

2015. 3. NarayanaRao, N., "Elements of Engineering Electromagnetics", 6th Edition, Pearson Education, 2006.

4. Ramo, Whinnery and Van Duzer., "Fields and Waves in Communication Electronics", 3rd Edition,

John Wiley and Sons, 2003.

2301GEX07	E	NVIR	RONM	ENTA	L SC	IENC	ES AN	D SUS	STAIN	ABIL	ITY		L	T	P 2	C 2
													I	U	2	2
PREREQUI	SITE:															
	1.5															
	1. Ba	$\frac{1}{1}$	nowled	ge abo	ut the	valuab	le envi	ronme	nt.	4						
	2. Ba	isic kr	lowled	ge to c	onserv	e the p	preciou	s envii	conmer	it.						
COURSE O	BJEC	TIVF	S:													
	DULC	11,1														
	1. Re	ealize	the int	erdisci	plinary	and h	olistic	nature	of the	enviro	nment					
	2. UI	nderst	and ho	w natu	ral res	ources	and er	vironr	nent af	fect th	e quali	ity of	life	and s	stimula	ate
	th	ne que	st for s	ustaina	able de	velopr	nent.					2				
COURSE O	UTCC	OMES	:													
At the end	of the		the et	. dont u		abla to										
	Descri	ibe the	impo	rtance	of ecos	able to)									
CO1:	scribe	the v	arious e	-nviror	menta	1 issue	s and i	ts prev	ention							
CO3:	Organ	ize va	rious r	natural	resour	ces and	d the ir	nmedia	ate nee	d to co	onserve	e it.				
CO4:	Select	the va	arious	ways o	of cons	ervatio	n of bi	odiver	sity.							
CO5:	Invest	igate (the diff	ferent t	ypes o	f pollu	tion an	d its e	ffects.							
COs Vs PC)s MA	PPIN	G:													
ſ	<u> </u>	DO1	DOA	DOJ	DO4	DO5	DOC	DO7	DOO	DOO	DO10		1 1	012		
	COS	2	PO2	POS	PO4	P05	PO6	PO7	PO8	PO9	POIU	POI	IP	<u>J12</u>		
	$\frac{CO1}{CO2}$	2	1	-	-	-	-	3	-	-	-	-		-		
	CO2	2	2	-	-	-	-	3	- 2	-	- 2	- 3		2		
	CO4	3	$\frac{2}{2}$	1	1	1	1	3	$\frac{2}{2}$	$\frac{2}{2}$	$\frac{2}{2}$	3		$\frac{2}{2}$		
	CO5	3	2	1	1	1	1	3	2	2	2	3		2		
I		-										_				
COs Vs PS	Os Ma	APPI	NG:													
																
					C	Os PS	O1PS	O2PS	03							
					C	$\frac{01}{02}$			-							
						$\frac{02}{02}$			-							
						$\frac{03}{04}$			-							
						04 -										
					C	05			-							
COURSE C	ONTE	ENTS:	:													
MODULE I ECOSYSTEM															8 Hoi	ırs
Concept of	an ec	osyste	em –	structu	ire an	d fun	ction of	of an	ecosy	stem -	– proc	lucer	s, c	onsu	mers	and
decomposers	. Intro	oductio	on, typ	es, cha	racteri	stic fea	atures,	structu	ire and	l functi	ion of	the (a	ı) fo	rest e	cosys	tem
(b) grassland	ecosy	stem (c) dese	ert ecos	system	(d) aq	uatic e	cosyst	ems (p	onds, r	ivers,	ocear	is)		7 II	
MODULE I	I EN	VIR	JNME			JES A	ND SC			h a1		Cre	la		/ Hot	irs
Current En	2 princ	inles of	f gree	s: Ació n chen	i rain, v nistrv-l	Ozone Rain w	layer c	rvestir	on, Giù 19	odal wa	irming	, Gre	en n	ouse	eneci	•
			FDST	rv	insti y-i			u vestii	15.						10 Uo	
Introduction	to bio	divers	ity _ge	netic (snecies	and e	ecosyst	em dix	ersity	– valu	e of h	iodiv	ercit	V. CO	neum	otive
use, product	ive use	e, soc	ial, etl	hical, a	aesthet	ic and	option	n valu	es – h	ot-spo	ts of l	biodiv	versi	j. co itv –	threat	ts to
biodiversity:	habita	t loss,	poach	ing of	wildlif	fe, mar	n-wildl	ife cor	flicts -	- conse	ervatio	on of	biod	ivers	ity: In	-situ
and ex-situ c	onserv	ation	of biod	liversit	y.										10	
MODULE I	V NA	TUR	AL RI	2SOUI	KCES										10 H	ours

Forest resources: Use and over-exploitation, deforestation- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and overutilization of surface and ground water, damsbenefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity– Energy resources: Growing energy needs, renewable and nonrenewable energy sources, use of alternate energy sources. Energy Conversion processes Biogas – production and uses, anaerobic digestion – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles.

MODULE VENVIRONMENTAL POLLUTION10 HoursDefinition – Source, causes, effects and control measures of: (a) Air pollution (b) Water pollution(c) Soilpollution - soil waste management: causes, effects and control measures of municipal solid wastes – (d)Marine pollution (e) Noise pollution –(f) Nuclear pollution (g) Thermal pollution role of an individual inprevention of pollution.

TOTAL: 45 HOURS

REFERENCES:

- 1. Trivedi.R.K., "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards", Vol. I and II, Enviro Media, 3rd edition, BPB publications, 2010.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, "Environmental Encyclopedia", Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, "Environmental law", Prentice hall of India PVT LTD, New Delhi, 2007.
- 4. Rajagopalan, R, "Environmental Studies-From Crisis to Cure", Oxford University Press, 2005.
- 5. Benny Joseph, "Environmental Science and Engineering", Tata McGraw-Hill, New Delhi, 2006.
- 6. https://en.wikipedia.org/wiki/Carbon_capture_and_storage.
- 7. Ravikrishnan "Environmental Science and Engineering" Sri Krishna Hi-tech Publishing.

2302EC	C 351		DIGITAL ELECTRONICS LABORATORY												LTP				
														-	0	0	3	1.5	
PRERI	EOUI	SITE																	
	liqui	SIIL	•																
		1.	. Basi	c know	ledge	in gate	s and 1	number	r systei	ms.									
COUR	SE O	BJEC	TIVE	S:															
		1	Tair	mort t	hoatu	lonte in	tha d	ocionir	a abili	tuofo	omhin	otion	<u></u>	anda	0.011	ontio	laira		
		2	. 1011 	ducate	the stu	idents	in the	designi	ig abii ing abi	lity of C	synch	ronol	ai a 19 9	and a	equ	chron		ms.	
		2	sequential circuits.																
		3	. To te	each th	e stude	ents ab	out sof	ftware	skill in	VHD	L / Ve	rilogl	HD	L.					
COUR	SE O	UTCO	OMES	:															
	Δfte	r com	nletior	of the	cours	e Stud	ent wi	ll he al	le to										
	CO1	$\frac{1}{2}$	Constru	ct diffe	erent c	ombin	ational	circui	ts using	g logic	gates.								
	CO2	: D	Develop different sequential circuits using logic gates and flip flops.																
	CO3	: D	Develop verilog program for combinational and sequential circuits.																
<u> </u>		- 14	DDIN	<u>C.</u>															
COS	VS PU	S MA	PPIN	6:															
		COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0	PO11	P)12			
	_	CO1	3	3	3	3	-	-	-	-	2	-		-		1			
		CO2	3	3	3	3	-	-	-	-	2	-		-		1			
		CO3	3	3	3	3	-	-	-	-	2	-		-		1			
		CO4	3	3	3	3	3	-	-	-	2	-		-		1			
COal		0~ M		IC.															
COS	vs PS	US IVI.	AFFII	NG:															
						C	Os PS	O1PS	O2PS	03									
						С	01 3	3 -	· -										
						C	O2 3	3 -											
						C	03 3	3 -	·										
						C	04 3	3 -	-										
LIST ()F FX	PFR	IMEN	TS·															
				10.															
1.	Verif	icatio	n of B	oolean	Theor	ems us	ing ba	sic gate	es.										
2.	Desig	gn, im	pleme	ntation	and si	mulati	on of h	nalf ado	ler and	l full sı	ubtract	or.							
3.	Desig	gn, im	pleme	ntation	and si	mulati	on of h	nalf sut	otractor	r and f	ull sub	tracto	or.						
4.	Desig	gn, im	pleme	ntation	and si	mulati	on of c	code co	onverte	rs.									
5.	Desig	gn, im	pleme	ntation	and si	mulati	on of r	nultipl	exer ar	nd de-r	nultipl	exer.							
6.	Desig	gn, im	pleme	ntation	and si	mulati	on of p	barity g	enerat	or/che	cker.								
/. o	Desig	gn, im	piemei plemei	ntation	and si	mulati	$\frac{\text{on of } \epsilon}{\text{on of } \epsilon}$	ncode	r and d	ecodei	or								
0. Q	Desig	$\frac{11, 111}{20}$	nleme	ntation	and si	mulati	$\frac{01011}{010f}$	Counter		nparat	01.								
10.	Desig	n, in 2n. im	pleme	ntation	and si	mulati	on of s	hift res	gister.										
	2	,	1											тот	AI	.: 45	ноц	RS	
BEEEI	RENC	'FC.																	
		1210.																	

1. Morris Mano and Michael D. Ciletti, "Digital Design", 5th edition, Prentice Hall of India, 2012.

2. Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2003.

3. https://archive.nptel.ac.in/courses/108/105/108105132/(Link for NPTEL/SWAYAM/MOOC Courses).

<u>https://www.vlab.co.in/broad-area-electronics-and-communications</u>(Link for modern tool usage).
Morris Mano and Michael D. Ciletti, "Digital Design", 5th edition, Prentice Hall of India,2012.