E.G.S. PILLAY ENGINEERING COLLEGE (AUTONOMOUS)

Approved by AICTE, New Delhi (Affiliated to Anna University, Chennai | Re-accredited by NAAC with 'A++ 'Grade) Accredited by NBA (Tier-1) NAGAPATTINAM – 611002

B.E. COMPUTER SCIENCE AND ENGINERING R - 2023 SECOND YEAR

	SEMEST	ER III					
Course Code	Course Name	Category	L	Т	Р	С	Contact Hours
2301MA304	Discrete Mathematics	BSC	3	1	0	4	4
2302CS301	Data Structures	PCC	3	1	0	4	4
2302CS302	Operating Systems	PCC	3	0	0	3	3
2302CS303	Problem Solving using Python	PCC	3	0	2	4	5
2302CS304	Computer Organization and Architecture	PCC	3	0	0	3	3
2301HSX01	Universal Human Values and Ethics	HSMC	1	0	2	2	3
	Laboratory course						
2302CS351	Data Structures Laboratory	PCC	0	0	2	1	2
2302CS352	Operating Systems Laboratory	PCC	0	0	2	1	2
2304GE301	Professional Development Course – I	EEC	0	0	2	1	2
2304LS351	Life Skills – III	MC	0	0	0	0	0
	Total		17	2	8	23	27

CURRICULUM AND SYLLABUS FOR THIRD SEMESTER

L-Lecture |T-Tutorial |P- Practical |CA- Continuous Assessment |ES - End Semester

2301MA304				D	ISCR	ETE N	ATH	EMA	FICS				L 2	T	P	C
													3		U	4
PREREQUI	SITE	:														
	Engi	neerin	g math	ematic	es I and	1 II										
COURSE O	BIEC	TIVE	S													
COURSEO	DJEC	,11,17	0.													
		1. B	e expo	sed to	the co	ncepts	of AD	DTs								
		2. L	earn li	near da	ata stru	ctures	– list,	stack,	and qu	eue.						
		3. B	e expo	sed to	sortin	g, sear	ching,	hashin	g algo	rithms						
		4. L	earn to	apply	Tree a	and Gra	aph str	uctures	5							
COUDEE O																
COURSE O	UTCO	JMES	:													
On the succ	essful	comp	letion o	of the c	ourse	studer	nts will	be ab	e to							
CO1:	Impl	ement	abstra	ct data	types	and pe	rforma	nce an	alysis t	for line	ear data	a stru	ctur	es		
CO2: Apply the different linear data structures to problem solutions.																
CO3:	CO3: Critically analyze the various algorithms CO4: Have a comprehensive knowledge of Trees and their implementations															
CO4 :	CO4: Have a comprehensive knowledge of Trees and their implementations CO5: Learn advanced data structures like Graphs and their implementation															
CO5: Learn advanced data structures like Graphs and their implementation																
COs Vs POs MAPPING:																
	COs Vs POs MAPPING:															
]	COs	Os PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 O1 2 1 2 2 - - - 2 2 2 2														
	CO1	2	1	2	2	-	-	-	-	2	2	2		2		
	CO2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
	CO3	2	2	3	2	1	-	-	-	2	1	1		2		
-	CO4	1	2	3	2	-	-	-	-	3	2	3		3		
	C05	1	1	3	2	I	-	-	-	2	2	2		2		
COs Vs PS	Os M	APPI	NG:													
	0.5 1.1															
					С	Os PS	O1 PS	O2 PS	03							
					С	O1 1	-									
					C	O2 1	-	-								
					C	$\frac{03}{04}$	2 -	· -								
					C	04 2	2 -	· -								
					C	05 2	-	· -								
COURSE C	ONTH	ENTS:														
MODULE I	SE	Т ТН	EORY	AND	LOG	IC									9+3 H	lours
Sets, function	n, relat	tion, ec	quivale	nce rel	lation,	Poset,	Functi	on log	ic, Pro	positic	on logic	c, Pre	dica	ites ai	nd	
quantifiers -	Nester	d quant	tifiers -	- Rules	s of inf	erence	e - Proc	ofs met	hods a	nd stra	ategy.			—	0.2T	τ
MODULE I. Mathematica	$\frac{1}{1}$ indu	DUCI	IION A	AND (INAT	OKIC nting	S The	nigos	n hol	o nrin	ainla		Dorm	9+3 E	lours
Combination	- Solv	icuon ing lin	– III ear rec	urrenc	isics (e relati	$\sin \cos \theta$	innig Fenerat	- The	pigeo	- Prin	e prin ciple of	cipie f incl	- usio	n exc	lusior	i and
MODULE I	II GI	RAPH		anone			senera	ing ru		1 1111			4510		9+3 F	Iours
Graph – Sub	graph	s - Op	eration	on gra	aph – N	Matrix	repres	entatio	n of gr	aph, p	ath and	l con	nect	ednes	$s - G_1$	raph
isomorphism	– Eul	er and	Hamil	ton's p	aths a	nd grap	oh.		÷	_ ^						-
MODULE I	V AI	GEB	RAIC	STRU	CTU	RE								-	9+3 H	ours
Algebraic sys	stem –	Semi	groups	, Mor	oids, (Groups	s, Subg	groups	and th	eir pro	perties	-C	yclic	grou	ps – C	losets
- Permutation	n grou	ps - La	agrang	e``s the	orem -	- Cayle	ey``s th	eorem	– Nori	nal su	bgroup	s, Ho	mon	morpl	aism c)İ
groups – Intr	oaucti	on to r	ings ar	ia melo	18.											

MODULE V LATTICES AND BOOLEAN ALGEBRA

Lattices aspartially order sets, properties of lattices – lattices as algebraic system some special lattices – Boolean algebra.

TOTAL: 45+15 HOURS

9+3 Hours

REFERENCES:

1.Ralph.p, Grimaldi – Discrete and combinatorial mathematics, An applied introduction – Fourth edition person education Asia, Delhi 2020.

2. *Trembly J.P and Manohar R – Discrete mathematical structure with application to computer science, Tata MC grow hill, Delhi.*

3.Peter J Cameron – combinatorics – Topics, Technique and algorithms, Cambridge University Press. 4.Nptel.ac.in/course/111105035 www.nptel videos in 2012/11/mathematics.

2302CS301	302CS301 DATA STRUCTURES L T P C 3 1 0 4															
												3		U	4	
PREREQUI	SITE:															
	Prog	rammi	ng in (r												
	1105	annn	ing in c													
COURSE O	BJEC	TIVE	S:													
		1 D		and 40	41.0.00		of AD									
		<u>1.</u> В 2. Ц	e expo earn lii	sed to hear da	the co	ctures	- list	stack a	and au	ene						
		3. B	e expo	sed to	sortin	g. sear	ching.	hashin	g algo	rithms						
		4. L	earn to	apply	Tree a	and Gra	aph str	uctures	5							
COURCE																
COURSE O	UTCC	OMES	:													
On the succ	essful	compl	etion o	of the c	ourse.	studer	nts will	be abl	e to							
CO1:	Impl	ement	abstrac	ct data	types	and pe	rforma	nce an	alysis	for line	ear data	struct	ures			
CO2:	Appl	y the c	lifferer	nt linea	ur data	structu	ires to	proble	m solu	tions.						
CO3: Critically analyze the various algorithms CO4: Have a comprehensive knowledge of Trees and their implementations																
CO4: Have a comprehensive knowledge of Trees and their implementations CO5: Learn advanced data structures like Graphs and their implementation																
CO5: Learn advanced data structures like Graphs and their implementation																
COs Vs POs MAPPING:																
г																
-	COs	s PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 1 2 1 2 2 2 2 2 2 2 2 2 2														
-	$\frac{CO1}{CO2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
-	CO_2	$\frac{2}{2}$	$\frac{2}{2}$	3	2	<u> </u>	-	-	-	$\frac{2}{2}$	5	<u> </u>	$\frac{3}{2}$	-		
-	CO4	1	2	3	2	-	-	-	-	3	2	3	3			
CO4 1 2 3 2 - - - 3 2 3 3 CO5 1 1 3 2 1 - - 2 2 2 2																
<u> </u>	<u> </u>		10													
COs Vs PS	Os MA	APPIN	NG:													
					C	Os PS	O1 PS	O2PS	03							
					С	01 1	. –	-								
					C	O2 1	-	-								
					C	O3 2	2 -	-								
					C	04 2 05 2	2 -	-								
					C	05 2	- 2	-								
COURSE C	ONTE	NTS:														
MODULE I	PE ST	RFOI RUCI	RMAN FURES	CE A S	NALY	'SIS A	ND IN	TROI	DUCT	ION 7	ro da'	ГА		9+31	Hours	
Performance	Analy	sis: A	Algorith	nm de	finition	n and	charac	teristic	es, tim	ne and	space	comp	olexity,	Asyn	ptotic	
operations -	Absti	ο, ΟΠ act Γ	lega al Data T	hu In vnes	ADTs	(1) = 1	is: mu List A	DT –	arrav	ala si v-based	imple	n ype	s - D tion –	ata su linke	ed list	
implementatio	on —s	singly	linked	lists-	circu	larly l	linked	lists-	doubly	y linke	d lists	– app	olicatio	ns of	lists –	
Polynomial M	lanipul	ation.													-	
MODULE I		NEAR		A STR	RUCTU	URES	- STA	CK A	ND Q	UEUE	1 -	C'	D	9+3]	Hours	
of Postfix P	1mple	menta	tion, L	Inked	list im	pleme	ntation	, Appl	ication	is of st	ack: In	11x to	Postfi	k, Eval	uation	
OFFUSUIX, Ba	aialicifi v jmnl	ig sym ement	ation I	inked	u tune Listin	non ca mplem	uis, Ke entatio	n Circ	u, 10% ular O		rianoi.					
MODULE I	II NO	N LI	NEAR	DAT	A STR	UCTU	JRES -	- TRE	ES					9+31	Hours	
General trees	, Tern	ninolo	gy, Rej	presen	tation	of tree	s, Tree	e trave	rsal- B	Binary	tree, Re	eprese	ntatior	, Expr	ression	
						-				2				1		

tree, Binary tree traversal, Binary Search Tree: Construction, Searching, Insertion, Deletion, AVL trees: Rotation, Insertion, Deletion, B-Trees, B + Trees, Splay trees, Red-Black Trees.

MODULE IV NON LINEAR DATA STRUCTURES – GRAPHS

9+3 Hours

. Representation of Graphs – Breadth-first search – Depth-first search – Topological sort – Minimum Spanning Trees – Kruskal''s and Prim''s algorithm – Shortest path algorithm – Dijkstra's algorithm – Bellman-Ford algorithm – Floyd - Warshall algorithm.

MODULE V LINEAR DATA STRUCTURES - SORTING, SEARCHING AND HASH 9+3 Hours TECHNIQUES

Sorting algorithms: Insertion sort - Selection sort - Shell sort - Bubble sort - Quick sort - Merge sort - Radix sort - Searching: Linear search –Binary Search Hashing: Hash Functions – Separate Chaining – Open Addressing – Rehashing – Extendible Hashing

TOTAL: 45+15 HOURS

REFERENCES:

1.Seymour Lipschutz, "Data Structures with C", McGraw Hill Education, Special Indian Edition, 2021. 2.A.V.Aho, J.E Hopcroft and J.D.Ullman, "Data structures and Algorithms", Pearson Education, First Edition Reprint 2023.

3.R.F.Gilberg, B.A.Forouzan, "Data Structures", Second Edition, Thomson India Edition, 2015. 4.ReemaThareja, "Data Structures Using C", Oxford Higher Education, First Edition, 2021.

220200000					DDD		1 0170		1				r		P	~
2502C8302				(JPERA	ATIN(J SYS	IEMS							<u>r</u>	
														,	U	3
PREREQUI	SITE	:														
	Data	struct	ures li	ke stac	k, que	ue, link	ced list	, tree,	graph,	hashir	ıg, file	structu	ires, a	ny	struc	tured
	prog	rammi	ing lan	guage	(like C	or py	thon).									
COUDSE O	DIFC	TIVE	ç.													
COURSE O	DJEU	IIVE	5:													
	1		learn	differe	nt typ	es of o	nerati	na evet	ems al	ong w	ith the	comp	onent	5 91	nd se	rvices
	1	Dro	ovided		in typ		peram	ig syst		ong w	iui uic	comp	onent	5 ai	.iu se	I VICCO
	2	2. To	under	rstand	the co	oncept	of pro	ocess r	nanage	ement	and in	nplem	entatio	on	of pi	ocess
		sch	nedulir	ng in a	multi-	prograi	mming	enviro	onmen	t using	sched	uling a	lgorit	hm	s.	
		3. То	provi	de kno	owledg	e on t	he stru	icture	and op	peratio	ns of 1	memor	y mai	nag	emer	it and
		sto	orage n	nanage	ment.								~~~			~ .
	2	4. To	be fa	amiliar	with	the ba	usics o	f virtu	ial ma	chines	and	Mobile	OS	like	e iOs	s and
		AI	idroid.													
COURSE O	UTCO	MES	:													
COCHDE O			•													
On the succ	essful	comp	letion of	of the c	course,	studer	nts will	be abl	le to							
CO1:	Anal	yze th	ne evo	lution	of ope	erating	syster	ns, con	mpone	nts an	d the	usage	of sys	ster	n cal	ls &
	prog	rams.			-		1 0751									
CO2:	Anal	yze th	e oper	ation o	f proce	esses and $\frac{1}{1}$	nd CP	J sche	duling	algori	thms in	n proce	ss ma	nag	gemei	nt
CO3:	Anal	yze th	e activ	ities in	ivolvec	1 in pro	cess s	ynchro	onizatio	on and	deadlo	ock me	chanis	sm.		
CO4: CO5:	Com	pare i	$\frac{na con}{OS and}$	ttrast v	arious	memoi eratino	ry man v Svete	ageme	ent sch	emes						
	Com	paren			olu Op	Crating	<u>z bysic</u>	1115.								
COs Vs PC)s MA	PPIN	G:													
				-	-	-	-		-	-						
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2		
	CO1	3	2	2	1	1	-	1	-	-	-	-	-			
	CO2	2	2	3	2	2	-	2	-	-	-	-	-			
	CO3	2	2	3	2	2	-	2	-	-	-	-	-			
	CO4	2	2	3	2	2	-	2	-	-	-	-	-			
	C05	3	1	2	I	1	-	-	-	-	-	-	-			
		A DDIN														
CU3 V315	05 111		10.													
					C	Os PS	O1 PS	O2PS	03							
					C	01 2	2 -									
					C	O2 2	2 -									
					С	03 2	2 -									
					C	O4 2	2 -	· -	-							
					С	O5 2	2 -	· -	-							
COURSE C	ONTE	ENTS:														
	T N T														0.1	-
MODULE I		TROI	DUCT	ION	Engly		f One	untin n	Cruster			Create	C		9 H	lours
Components	of Co	omput	er Sys	stem -	Evolu	ition o	of Ope	rating	Syster	n. Op	erating	g Syste	em Contine	omj	pone	its &
Operating S	ucess	manag Sorvi	cernent	omput	nory f ing Er	vianage	ennente	Oper	source	anagen	ating (rrote	uon	œ stor	secu	iny -
System progr	rame	501 110	.cs. C	omput	ing El	IVII UIII	nemes-	Open-	source	, open	anng s	system	5 -3y	5101		.115 Q
MODULE I	I PR	OCE	SS MA	NAG	EMEN	JT								Т	9 H	[ours
Process Cor	- r r	Proc	ess So	chedul	ing-Sc	hedulir	1g Ou	eues ·	-Sched	uler -	Cont	ext Sv	witch	C	loone	rating
	- r ••••				0~0		0 20								· · r •	35

Processes- Inter process Communication CPU Scheduling: Basic Concepts - Scheduling Criteria -	Scheduling
Algorithms, Threads - Multithread Models – Threading issues	C
MODULE III PROCESS SYNCHRONIZATION AND DEADLOCK	9 Hours
Process Synchronization: The Critical-Section Problem - Synchronization Hardware - Semaphor	es - Classic
problems of Synchronization. Deadlock: System Model - Deadlock Characterization - Methods f	for handling
Deadlocks -Deadlock Prevention - Deadlock avoidance - Deadlock detection - Recovery from Dea	dlocks.
MODULE IV MEMORY AND STORAGE MANAGEMENT	9 Hours
Address Binding -Contiguous Memory allocation-Fragmentation - Paging- Segmentation. Virtu	al Memory:
Demand Paging - Page Replacement Algorithms - Allocation of Frames-Thrashing.	-
File Management: Access Methods - Directory Structure- Directory Implementation - Allocativ	on Methods
Secondary Storage Structure: Disk Structure - Disk Scheduling.	
MODULE V VIRTUAL MACHINES AND MOBILE OS	9 Hours
Virtual Machines – History, Benefits and Features, Building Blocks, Types of Virtual Machines	and their
Implementations, Virtualization and Operating-System Components; Mobile OS - iOS and Androi	d.
TOTAL: 4	5 HOURS

REFERENCES:

1.RamazElmasri, A. Gil Carrick, David Levine, "Operating Systems – A Spiral Approach", Tata McGraw Hill Edition, 2010.

2.William Stallings, "Operating Systems: Internals and Design Principles", 7th Edition, Prentice Hall, 2018. 3.AchyutS.Godbole, AtulKahate, "Operating Systems", McGraw Hill Education, 2016.

4.https://onlinecourses.nptel.ac.in/noc23_cs101/preview(Link for NPTEL/SWAYAM/MOOC Courses)

2302CS303				P	ROBI	LEM S	OLVI	NG U	SING	PYTH	ION		L	Т	Р	С
													3	0	2	4
PREREOU	ISITE:	:														
	Prog	rammi	ing in (2												
COLID OF O	DIEG		a													
COURSE C	BJEC	TIVE	S:													
		1 T/	- 100m	to col	in prob	lomen	icing D	wthon	aandit	onala	and loc	200				
		$\frac{1.}{2}$ To	o defin	e Pyth	on fund	rtions	and use	y funct	ion cal	ls to se	olve pr	oblen	าร			
		$\frac{2.10}{3.10}$	o use P	vthon	data st	ructure	es – list	ts. tupl	es. dic	tionari	es to re	prese	ent c	ompl	ex dat	a.
		4. To	o do in	put/out	tput wi	th files	s in Py	thon.	,			I ····		· r		
					•											
COURSE C	UTCO	OMES	:													
On the suc	possful	comp	lation (of the c	011700	studor	nto mill	bo obl	a to							
<u>CO1</u> :	Deve	elon ar	id exec	ute sir	nple P	vthon 1	ns will prograi	ns.	0.0							
CO2:	Write	e sim	le Pvth	non pro	ograms	using	condit	ionals	and lo	oping	for solv	ving r	orobl	lems.		
<u>CO3</u> :	Deco	ompos	e a Pyt	hon pr	ogram	into fu	inction	IS.								
CO4 :	Repr	esent	compo	und da	ta usin	g Pyth	on list	s, tuple	es, dict	ionarie	es etc.					
CO5:	Read	l and v	vrite da	ata froi	n/to fi	les in F	ython	progra	ums.							
		DDIN	c.													
	JS IVIA		G													
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 P(012		
	CO1	3	3	2	2	-	-	-	2	2	-	-		1		
	CO2	3	3	2	2	2	-	-	-	-	1	-		1		
	CO3	3	3	2	1	-	-	-	2	-	-	-	_	1		
	CO4	3	3	2	1 1	-	-	-	-	-	-	-	+	1		
	005	3	5	Δ	1	-	-	-	-	-	-	-		1		
COs Vs PS	SOs M	APPI	NG:													
					C	Os PS	01 PS	O2PS	03							
					C	$\frac{01}{02}$	1	<u> </u> -								
						02	1	1 - 1 -								
					C	03	1	1 -								
					C	05	1	1 -								
								1								
COURSE C	ONTE	ENTS:														
		ТАТ	VDFS	FVD	DECCI	IONS	STAT	FME	NTC						01	ours
Python inter	nreter	and in	teracti	ye mo	de del	ulgoin	o valu	LIVILI les and	types	int f	float h	oolea	n si	tring	and	list.
variables, e	xpressi	ons, s	stateme	ents, ti	uple a	ssignm	ent, p	recede	ence o	f opei	ators.	com	nent	ts; Il	lustra	tive
programs: ex	xchang	e the	values	of two	varial	bles, ci	irculate	e the v	alues of	of n va	ariables	, dist	ance	e betv	veen	two
points.																
MODULE		ONTR	OL FI	LOW A	AND F	UNC	TIONS	5							<u>9 H</u>	lours
Conditionals	: Bool	ean va	alues a	nd ope	erators,	condi	tional	(if), al	ternati	ve (if-	else), o	chain	ed c	ondit	ional	(if-
elif-else); Ite	eration:	state	, while	compo	break,	contin	iue, pa	ss; Fri	littul I	unctio	ns: ret	urn v	alue	s, pa	ramet	ers,
	II ST	RING	S.LIS	TS A	ND TI	JPLES								T	9 H	ours
Strings: strin	ng slice	s, imn	nutabil	ity, str	ing fu	nctions	and m	nethod	s, strin	g mod	ule: Li	sts as	arra	ays. I	llustra	ative
programs: sc	juare ro	oot, gc	d, exp	onentia	ation, s	um an	array	of nun	ibers, l	inear s	search,	binar	y se	arch.	Lists	: list
operations, l	ist slice	es, list	metho	ds, list	t loop,	mutab	ility, a	liasing	, cloni	ng list	s, list p	aram	eters	s; Tuj	ples: t	uple

assignment, tuple as return value.

MODULE IV DICTIONARIES AND FILES

Dictionaries: operations and methods; advanced list processing – list comprehension; Illustrative programs: simple sorting, histogram, Students marks statement, Retail bill preparation. Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions.

MODULE V PYTHON MODULES AND PACKAGES

Modules, packages; Illustrative programs: word count, copy file, Voter's age validation, Marks range validation.

TOTAL: 45 HOURS

REFERENCES:

1. Paul Deitel and Harvey Deitel, "Python for Programmers", Pearson Education, 1st Edition, 2021.

2.G Venkatesh and Madhavan Mukund, "Computational Thinking: A Primer for Programmers and Data Scientists", 1st Edition, Notion Press, 2021.

3.John V Guttag, "Introduction to Computation and Programming Using Python: With Applications to Computational Modeling and Understanding Data'', Third Edition, MIT Press, 2021 4.https://nptel.ac.in/courses/106106182.

9 Hours

9 Hours

2302CS304		CON	APUT	ER O	RGAN	IZAT	ION A	ND A	RCHI	ТЕСТ	URE	Ι	T	P	С
													3 0	0	3
PREREOUI	SITE	:													
	Intro	ductio	n to C	omput	er, Pro	gramm	ning in	С							
COUDER O			<u>a</u>												
COURSE O	BJEC	TIVE	S :												
	1	Work	ing of	Comp	uter Sv	etems	and ha	sic pri	ncinles	2					
	2	Instru	iction I	evel /	Archite	ecture a	and Ins	tructio	n Exec	, sution					
	3.	The c	urrent	state o	f art ir	n memo	orv svs	tem de	esign	ution					
	4.	Acces	ssing L	/O dev	ices ar	nd its p	rincipl	es.	~-8						
	5.	To pr	ovide t	the kno	wledg	ge on Ir	nstructi	on Lev	vel Par	allelis	m				
COURSE O	UTCO	DMES	:												
	O:: 41		f1		lation	of the o		~ 4		he ch	1. 4.0				
COl	Lear	n the c	concent	ts of co	mnute	or the c	nizatio	n for s	nts will everal	engine	le lo	nnlica	tions		
CO1:	Deve	elon th	e abili	tv and	confid	lence to	o use f	ne fund	dament	als of	compil	ter org	anizat	ion as	a tool
	in th	e engii	neering	g of dig	gital sy	stems.	u	iuit	-union		- ompu			.511 40	
CO3:	An a	ability	to ide	entify,	formu	late, a	ind sol	ve ha	rdware	and s	softwar	e com	puter	engin	eering
	prob	lems u	sing so	ound c	omput	er engi	neering	g princ	iple				<u> </u>		
CO4:	To iı	npart t	the kno	owledg	e on n	nicro pi	rogram	ming							
CO5:	Com	preher	nd the	concep	ots of a	dvance	ed pipe	lining	techni	ques					
		DDIN	r.												
	5 WIA		G .												
Γ	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	CO1	2	1	1	-	-	-	-	-	-	-	-	1	-	
	CO2	2	1	1	-	-	-	-	-	-	-	-	1		
	CO3	2	1	1	-	-	-	-	-	-	-	-	1		
	CO4	2	1	1	-	-	-	-	-	-	-	-	1		
	CO5	2	1	1	-	-	-	-	-	-	-	-	1		
	<u>0 M</u>														
COs Vs PS	Os M	APPI	NG:												
					C	Oc PS		02 PS	03						
						01 0)								
						$\frac{101}{102}$	2		-						
					C	03 2	2 -								
					C	04 2	2 -								
					Č	05 2	2 -		-						
COURSE C	ONTE	ENTS:												·	
MODULE I	BA	SIC F	FUNC	FION	AL UN	VITS C)F CO	MPU	FERS					9	Hours
Functional u	nits, ł	pasic (Operat	ional	concep	ots, Bu	is stru	ctures.	Softw	vare, F	Perform	nance,	Multi	proces	sors,
Multicomput	er. D	Data I	Repres	entatio	n: Si	gned	numb	er rej	present	ation,	fixed	and	float	ing	point
Kepresentatio	ons.	OTOP	יייי פוסו	DANG					MICT			TONG	1	0	IIceres
			EKT	KANS	r EK I		UAGE	AND	MICH		'EKA') no4: -	<u> </u>	nours
KIL- Kegist	urs, Ko onerati	egister	u'ansi Arithm	ers, B	us and	i mem(Baci	nsters.	NIICIO) opera	auons:	and D	neuc,	Com	, and nuter
Registers C	omnut	er ine	tructio	ns In	structio	on eve	le Ind	tructio	puter v	es Ti	zanon mino 4	and C_i	ontrol	Tvn	s of
ivegisiels, U	omput	u ms	u ucu0	нэ, ш	suucil	JII CYC	μ . III	autucil	л cou	US , 11	nnng i	anu U	onuol,	<u>r yp</u> t	,5 UI

Instructions: Mem	ory Reference Instructions, Input – Output and Interrupts	
MODULE III C	ENTRAL PROCESSING UNIT ORGANIZATION	9 Hours

General Register Organization, Stack organization, Instruction formats, Addressing modes, Data Transfer and Manipulation, Program Control, CISC and RISC processors Control unit design: Design approaches, Control memory, Address sequencing, Micro Programmed Control.

MODULE IV MEMORY ORGANIZATION

Semiconductor Memory Technologies, Memory hierarchy, Interleaving, Main Memory-RAM and ROM chips, Address map, Associative memory-Hardware organization. Match logic. Cache memory-size vs. block size, Mapping functions-Associate, Direct, Set Associative mapping. Replacement algorithms, write policies. Auxiliary memory-Magnetic tapes.

MODULE V VECTOR PROCESSING AND I/O ORGANIZATION

9 Hours

9 Hours

Pipelining Basic concepts, Instruction level Parallelism and challenges, Throughput and Speedup, Pipeline hazards. Peripheral devices, Input-output subsystems, I/O device interface, I/O Processor, I/O transfers–Program controlled, Interrupt driven, and DMA, interrupts and exceptions. I/O device interfaces – SCII, USB

TOTAL: 45 HOURS

REFERENCES:

1.Computer Systems Architecture – M.Moris Mano, IIIrd Edition, Pearson/PHI 3rd Edition June 2017. 2.Computer Architecture and Organization", 3rd Edition by John P. Hayes,WCB/McGraw- Hill, 2017

3. Computer Organization – Carl Hamacher, Zvonks Vranesic, SafeaZaky, Vth Edition, McGraw Hill 2011.

4. Computer System Design and Architecture", 2nd Edition by Vincent P. Heuring and Harry F. Jordan, Pearson Education 2008.

2301HSX01		Ţ	JNIV	ERSA	LHU	MAN	VALU	ES Al	ND E	THICS	5	<u>I</u>	<u> </u>	P 2	C 2
													U	4	2
PREREQUI	SITE:														
	Profess	sional	Fthic	·c											
	1 10105	5101141	Lunc												
COURSE O	BJECT	IVES	:												
		-													
	1. Re	instat	e Indi	a's ric	h cultu	ral leg	acy and	d huma	an valu	les of v	which y	we are	the cus	todiar	ıs.
	2. FO	$\frac{1}{2}$	n prot	ession	al ethic	cs, whi	ch helj	o citize	ens to c	liscern	desira	ble and	undes	irable	
	3. Re	-empl	nasize	const	itution	al valu	es. uni	versal	values	and h	olistic	educat	ion to	create	
	integr	rated	citizer	ns.			, , ,			,					
	4. La	y dow	n bro	ader g	uidelir	nes of h	numan	values	and et	hics fo	or inter	nal and	lexter	nal	
	stake	holde	rs.	C											
COURSE O	UTCON	AES:													
On the succ	essful co	mnle	tion o	of the c	ourse	studer	nts will	be abl	le to						
CO1:	Create	such	an en	viron	ment, i	t is ess	sential	to ens	ure the	inclus	sion of	the lea	arning	proce	ss for
	holistic	c deve	elopm	ent.									C		
CO2:	Create	such	an en	vironr	nent, it	is esse	ential to	o ensu	re the i	nclusio	on of ii	npecca	ble go	vernar	nce.
CO3:	Create	such	an e	nviron	ment,	it is e	ssentia	l to er	nsure t	he incl	usion	of effe	ective	institu	tional
	management.														
CO4:	Create such an environment, it is essential to ensure the inclusion of well-laid system of														
	rewards and reprimand.														
CO5:	Create such an environment, it is essential to ensure the inclusion of institutional climate														
<u> </u>	where	"right	ts" are	e enco	uraged	and "v	vrongs	" are d	liscour	aged.					
CO6:	Create	such	an er	iviron	ment, 1	it is es	sential	to ens	sure th	e inclu	ision o	t inwa	rd-loo	king g	roups
	and co	mmu	nities	that h	ave th	e pote	ntial to) devel	lop the	capac	ty of	indivio	luals,	source	their
	potenti	ai and	i univ	ersal	values,	and er	isure tr	hat the	ir actio	ns ena	ble jus	tice and	a equit	y to al	1.
COs Vs PO	s MAP	PING	:												
					_			-	_		-				
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
-	<u>CO1</u>	2	1	2	-	-	1	1	3	1	-	-	1		
-	$\frac{CO2}{CO3}$	$\frac{2}{2}$	1 1	$\frac{2}{2}$	-	-	1	2	$\frac{2}{2}$	1	-	-	1		
-	<u>CO4</u>	2	1	2	-	-	1	1	2	1	-	-	1		
	CO5	2	1	2	-	-	1	2	3	1	-	-	1		
	CO6	2	1	2	-	-	1	2	2	2	-	-	1		
COs Vs PS	Os MAI	PPIN	G:												
005 1515	0510111		0.												
					С	Os PS	O1 PS	O2PS	03						
					C	$\begin{array}{c c} 01 & 3 \\ 02 & 3 \\ \end{array}$	-								
					C	$\begin{array}{c c} 02 & 3 \\ \hline 03 & 2 \end{array}$		-	·						
					C	03 3 04 3	, <u> </u>								
					C	O5 3	3	-							
		~			•										
UOURSE CO	ONTEN	IS:													

MODULE I **INTRODUCTION TO INDIAN ETHOS** 8 Hours Meaning of ethos and cultural essence of India – Scriptures as the base of the Indian Knowledge System (IKS) – Integrating the two methodologies: interiorization process for self-exploration, and exterior scientific pursuit for the prosperity of world – The Law of Karma and Nish kama Karma (The Law of action and selfless action). **Practical**: Five hours of Yoga practice per week, Ethics through Music and Indian Poetry, Community Engagement. **MODULE II** HUMAN VALUES AND ETHICS 9 Hours Knowing the Self and the universal values that we stand for - This is self enquirv& self discovery-Background conversations and deep listening - recognizing the assumptions that we make - the biases we have - and the implications for ethical action –Self-identity: distinguishing and embracing oneself (and others) four profiles (inner-potential, social, professional, personality)–Distinguish ideology, perspectives beliefs from embodying values. **Practical:**Self discovery, self enquiry and Mindfulness, Yama & Niyama of Ashthang Yoga. MODULE III CONSTITUTIONAL VALUES AND GLOBAL CITIZENSHIP 9 Hours Values embedded in the Preamble of the Indian Constitution Integration of Human Rights and duties -

Directive principles and responsibilities as citizens of India – Sensibility and responsibilities towards global environment, Loksangraha and Vasudhaiva Kutumbakam.

Practical: Debates and Theatre on diversity and plurality, research on similarities and differences in the ethos of different countries.

MODULE IV VALUES AND SKILLS FOR YOUTH

Designing to make a difference through strategies using the Conscious Full Spectrum Response model – Listening for commitment behind complaints to transform contentious arguments and create a space for listening and change – Distinguishing judgement from discernment – Being assertive and confident (assertiveness incorporates self-confidence).

Practical: Development of concentration among students through music, fine arts, mathematics, sports, yoga and mindfulness

MODULE V INTEGRATED PERSONALITY AND WELL-BEING

10 Hours The three gunas (qualities of sattva—purity and harmony, rajas —activity and passion, tamas —darkness and chaos), the four antah-karanas (inner instruments), and panchkosha (five sheaths) – Stress management: meditated personality and agitated personality – Oneness, non-duality, and equanimity – Physical, mental, social, and spiritual well-being.

Practical: Talks on importance of the Avurvedic concept of well being and nutrition.sports activities

TOTAL: 45 HOURS

REFERENCES:

1. Blanchard, Kenneth and Peale, Norman Vincent. 1988. The Power of Ethical Management. New York: William Morrow and Company, Inc.

2. Gandhi, Mohandas Karamchand. 1971. Pathway to God compiled by MS Deshpande. Ahmedabad: Navajivan Mudranalaya, Navjivan Trust.

3. https://fdp-si.aicte-india.org/UHV-II%20Class%20Note.php.

9 Hours

2302	2CS35	1		D	ATA S	STRU	CTUR	ES LA	BOR	ATOF	RY		Ι	L T	P	С		
													0	0	2	1		
PREF	REQUI	ISITE	:															
		D			C													
		Pro	ogrami	ning ir														
COUI	RSE O	BJEC	TIVE	S:														
				_	_													
			1.	Be exp	bosed t	o impl	ementi	ing abs	tract d	ata typ	es	~						
			<u> </u>	Gettin	g expo	sure in	imple	g and s mentir	g the c	liffere	nt data	s. structui	res					
							1		0									
COUI	RSE O	UTC	OMES	:														
On tl	ne succ	cessful	comp	letion of	of the c	ourse.	studer	nts will	be abl	e to								
	CO	1: De	esign a	nd imp	lement	C pro	grams	for im	plemer	nting s	tacks, c	queues,	linked	l lists.				
CO2: Implement stack applications. CO3: Develop searching and sorting programs.																		
CO3:Develop searching and sorting programs.CO4:Apply the different data structures for implementing solutions to practical problems.																		
CO4:Apply the different data structures for implementing solutions to practical problems.CO5:Develop recursive programs using trees and graphs																		
Develop recursive programs using trees and graphs																		
COs Vs POs MAPPING:																		
	COs	PO1	PO2	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2														
	CO1	1	1	O2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 1 1 - - - 2 2 - 1 2														
	CO2	1	1	1	-	-	-	-	-	2	2	-	-	1	2			
	CO3	2	2	2	2	-	-	-	-	2	2	-	-	2	2			
	CO4 CO5	3	$\frac{2}{3}$	3	3	- 3	-	-	-	3	3	3	- 3	3	3			
		-		_						_	-	_	-					
COs	Vs PS	SOs M	APPIN	NG:														
						С	Os PS	O1 PS	O2PS	03								
						С	01 1	. 2	; -									
						C	02 1	2	; -									
						C	$\begin{array}{c c} 03 & 2 \\ 04 & 2 \\ \end{array}$	$\frac{2}{2}$	-									
						C	04 2 05 3	3 3	,									
									I									
LIST	OF EX	XPER	IMEN	TS:														
1.	Arra	y imp	lement	ation o	f List A	ADT												
2.	Arra	y impl	lement	ation o	f Stack	and Q	Queue A	ADTs										
3.	Link	ed list	imple	mentat	ion of	List, S	Stack a	nd Que	eue AE	DTs	<i>a</i>							
4.	Con	version	n of inf	1x exp	ression	is to po	ostfix a	ind eva	luatior	n of po	stfix ez	xpressio	ons.					
5. 6	Impl	ement	ation c	of Sorti	ng que	orithm	s · Inse	ertion S	Sort O	nick S	ort Me	erge Sol	rt					
7.	Impl	ement	ation c	of searc	hing te	echnia	ues		יייני, ע		011, 111		ť					
8.	Writ	e a pro	ogram	to Impl	lement	Binar	v Searc	ch Tree	;									
9.	Writ	e a pro	ogram	to Impl	ement	Tree t	raversa	al Tech	iniques	5								
10). Writ	e a pro	ogram	to Impl	ement	Minin	num Sp	pannin	g Tree	using	Prims a	and Kru	ıskal A	lgorith	m.]		
11	. Writ	e a pro	ogram (to Impl	ement	Shorte	est Path	n using	Dijkst	tra"s al	lgorith	m.						
12	. impl	ement	auon c	n Hash	ung – a	iny two	U COIIIS	sion tee	rnniqu	es								

TOTAL: 45 HOURS

REFERENCES:

1.www.cs.cf.ac.uk/Dave/C/

2.http://www.lysator.liu.se/c/bwk-tutor.html

3.http://en.wikibooks.org/wiki/Data_Structures/Introduction

4.http://www.eskimo.com/~scs/cclass/notes/top.html

2302CS35	2302CS352 OPERATING SYSTEMS LABORATORY													P	C		
-												0	0	2	1		
PREBENI	ISIT	F.															
INERLUU		L'.															
	П	There is	no prer	equisit	te for t	he cou	rse										
			1	1													
COURSE O	BJE	CTIVE	ES:														
		1 1	T 1						1	1 1 11							
		$\frac{1}{2}$	To unde	erstand	the ba	asics of	t Unix	comma	and an	d shell	prograi	nming	g.				
		<u> </u>	To impl	lement	the co	ncepts	of Me	mory a	anager	ment a	IIU SYIIC	nont	ation				
		5.	10 mp			neepts				nage r	vianagei	nent					
COURSE O	UT(COMES	5:														
00	0	n the su	<u>iccessfi</u>	il com	pletion	of the	course	e, stude	ents wi	ll be a	ble to						
	CO1: Define and implement ONIX Commands CO2: Compare the performance of various CPU Scheduling Algorithms.																
	2: (2. (Compare	e the pe	riorma	unce of	variou	IS CPU	Schee	uling . m Mot	Algori bods	thms.						
	у. с 1: Г	Define F	ile Oro	anizati	on and	l File A	Allocati	ion Str	ategies	nous							
CO	CO5: Implement various Disk Scheduling Algorithms																
COs Vs POs MAPPING:																	
	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12																
		5 PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 3 1 3 1 1 - - 1 3 3 3														
	$\frac{CO}{CO'}$	1 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
		2 3	3	2	1	$\frac{2}{2}$	-	-	-	3	3	1	2				
	$\frac{CO}{CO^4}$	4 1	2	2	3	2	-	-	-	3	1	3	1				
	CO	5 2	2	1	1	3	-	-	-	1	2	2	3				
COs Vs PS	Os I	MAPPI	NG:														
					C				02								
						$\frac{08}{01}$	<u></u>	02P5	05								
					C	$\frac{01}{02}$ 2	-	-									
					Č	03 2	-	-									
					С	O4 2	-	-									
					С	O5 2	-	-									
LIST OF EX	XPE.	RIMEN	NTS:														
1 Illue	troto		ommo	ndaan	d Shall	Drogr	ommin	<i>a</i>									
1. Inus 2 Proc	$\frac{1}{2}$	UNIA (mont us	ing Su	u Shen	alle • 1	ammin Fork F	<u>g</u> Ivit Ga	atnid V	Noit (
2. 1100 3 Writ		rooram	inent us	nlemei	nt the y	various	CPII	Schedu	iling A	loorith	ms						
4. Illus	trate	the inte	r proce	ss com	munic	ation s	trategy	7	ining 11	150111	1115						
5. Impl	eme	nt mutu	al exclu	sion b	v Sem	aphore	, and by										
6. Writ	6. Write C programs to avoid Deadlock using Banker's Algorithm																
7. Impl	7. Implement the paging Technique using C program																
8. Writ	e C I	program	is to im	plemei	nt the f	ollowi	ng Me	mory A	Allocat	ion Me	ethods						
a. Fi	rst F	it b. Wo	orst Fit	c. Best	Fit												
9. Writ	e C I	orogram	is to im	pleme	nt the v	various	Page 1	Replac	ement	Algor	ithms						
10. Impl	eme	nt the fo	ollowin	g File	Alloca	tion St	rategie	s using	g C pro	grams							
a. Se	quer	inal d. I	naexed	c. Lin	кеа												

Write C programs for the implementation of various disk scheduling algorithms
Install any guest operating system like Linux using VMware.

TOTAL: 45 HOURS

REFERENCES:

1.Abraham Silbers chatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts" I, 10th Edition, John Wiley and Sons Inc., 2018.

2.Andrew S Tanen baum, "Modern Operating Systems", Pearson, 5th Edition, 2022 New Delhi. 3.http://www.cs.jhu.edu/~yairamir/cs418/os4/sld025.html

4.http://www.comptechdoc.org/os/linux/usersguide/linux_ugshellpro.html