E.G.S. PILLAY ENGINEERING COLLEGE, (Autonomous)

Approved by AICTE, New Delhi

Affiliated to Anna University, Chennai | Accredited by NAAC with 'A++ 'Grade

Accredited by NBA (B.Tech-IT, B.E-CSE, ECE, EEE, CIVIL AND MECH)(Tier-1)

NAGAPATTINAM – 611002 B.TECH – COMPUTER SCIENCE & BUSINESS SYSTEMS R-2023 CURRICULUM FOR SEMESTER II

COURSE		CATEG	_	_	_	~	MAX. MARKS			
CODE	COURSE NAME	ORY	L	T	Р	C	CA	ES	TOTAL	
Theory Course	es									
2302BS301	Formal language and automata theory	PCC	3	1	0	4	40	60	100	
2302BS302	Computer oriented programming	PCC	3	1	0	4	40	60	100	
2302BS303	Object oriented programming	PCC	3	0	0	3	40	60	100	
2302BS304 - T	Computational statistics - T	PCC	3	0	2	3	50	50	100	
2302BS305 - T	Database management system - T	PCC	3	0	2	4	50	50	100	
2302BS306	Marketing Research and Marketing Management	PCC	3	0	0	3	40	60	100	
2301MC30 1	Environmental science and sustainability		2	0	0	1	100	0	100	
	Laborat	ory Course	es							
2302BS351	OBJECT ORIENTED PROGRAMMINGLABORATORY	PCC	0	0	2	2	50	50	100	
	TOTAL	20	2	6	24	410	390	800		

2302BS3	01	FORMAL LANGUAGE AND AUTOMATA THEORY											Τ	Р	C
												3	1	0	4
PREREQ	UISIT	E:											·		
	Bas	ic Ma	athema	tics Co	ncept	s, Gr	aph The	eory							
COURSE	OBJI	ECT	IVES:	2											
	1. T	'o une	derstar	nd the co	oncep	ts of	regular	langua	ges an	d finite	automa	ta.			
	2.T	o deri	ive of o	context	free-g	gram	mars wi	th CFG	and to	o desig	n pushdo	own auto	omata.		
	4 To manage undecidable problems														
	5. To know the complexity theory of turing machines.														
	5. To know the complexity theory of turing machines.														
COURSE	SE OUTCOMES:														
On the su	cossfu	1 com	nlatio	n of the	cours	o et	udante i	vill be	bla to						
COI the su		strate	the co	ncents	of fini	ite ar	itomata	regula	r expre	essions	and red	uce the	states in	finit	e
	auto	automata.													
CO2	CO2: Design pushdown automata and context free grammars for various languages.														
CO3	CO3: Construct basic Turing machine for its recursive languages and functions.														
<u>CO4</u>	: Det	ermir	ne and	classify	the v	variou	is unde	cidabili	ty.						
COS	Rel	ate P,	, NP ar	nd NP c	omple	etene	ss prob	lems.							
COs Vs	POs M	[API	PING	:											
F	~~~										1 -			_	
	COs	PO 1	PO2	PO3 1	PO4	PO	5 PO 6	PO7	PO8	PO9	PO10	PO11	PO12		
	CO1	3	3	3	2	3		_	2	_	_	_	_	-	
-	CO2	2	3	3	2	3	_	_	_	-	_	-	_		
	CO3	3	2	3	2	2	_	-	-	-	-	-	-		
	CO4	3	3	3	-	-	_	-	-	-	2	3	2		
	CO5	3	2	3	2	2	-	-	2	-	-	-	2		
COs VsI	PSOs N	ЛАР	PING	•											
	0001			•											
					CC) s]	PSO1	PSO2	PSC)3					
					CC)1	3	-	2						
					CC)2	3	2	2						
					CC)3	3	2	2						
					CC)4	3	$\frac{2}{2}$	-						
						13	3	Z	2						
COURSE	CON	TEN	TS:												
MODULE	I R	EGU	LAR	LANG	UAGI	ES A	ND FI	NITE A	UTO	МАТА			1	9 Hoi	ırs

Alphabet-languages and grammars- Productions and derivation-Chomsky hierarchy of languages. Regular expressions and languages- Deterministic finite automata (DFA) and equivalence with regular expressions Nondeterministic finite automata (NFA) and equivalence with DFA- Regular grammars and equivalence with finite automata - Properties of regular languages - Kleene's theorem - Pumping lemma for regular languages My hill- Nerode theorem and its uses- Minimization of finite automata.

MODULE IICONTEXT-FREE LANGUAGES AND PUSHDOWN AUTOMATA9 HoursContext-freegrammars(CFG) and languages(CFL)- Chomsky and Greibach normal forms -Nondeterministicpushdown automata(PDA) and equivalence with CFG - Parse trees- Ambiguity in CFG -Pumping lemmafor context-free languages - Deterministic pushdown automata- Closure properties of CFLs.MODULE IIILINEAR BOUNDED AUTOMATA AND TURING MACHINES9 Hours

Context-sensitive grammars (CSG) and languages - Linear bounded automata and equivalence with CSG. The basic model for Turing machines (TM) - Turing recognizable (recursively enumerable) and Turingdecidable (recursive) languages and their closure properties - Variants of Turing machines -Nondeterministic TMs and equivalence with deterministic TMs - Unrestricted grammars and equivalence with Turing machines – TMs as enumerators.

MODULE IV UNDECIDABILITY

9Hours

9 Hours

Church-Turing thesis -Universal Turing machine – The universal and diagonalization languages - Reduction between languages – Rice's theorem -Undecidable problems about languages

MODULE V COMPLEXITY THEORY

Introductory ideas on Time complexity of deterministic and nondeterministic Turing machines - P and NP, NP completeness –Cook 's Theorem, other NP - Complete problems.

TOTAL: 45 HOURS

REFERENCES:

1. John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson Education, Third Edition, 2014.

2. Harry R. Lewis and Christos. H. Papadimitriou, Elements of the theory of Computation, Pearson Education/PHI, 2007

3. John C. Martin, Introduction to Languages and the Theory of Computation, TMH, 2007.

4. MichealSipser, Introduction of the Theory and Computation, Thomson Brokecole, 2005.

5. *M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory of NP Completeness", 1979.*

2302BS302	COMPUTER ORGANIZATION AND ARCHITECTURELTPC												
		3	0	0	3								
PREREQUIS	SITE:												
	T												
	Fundamentals of computer science												
COURSE OF	RIECTIVES:												
	1. To introduce the principles of computer organization and the ba	sic ar	chited	tural									
	concepts.			1.4									
	2. To reinforce the concepts of Boolean Algebra and arithmetic op	eratic	ons on	data.									
	3.10 analyze instruction set design, micro programmed control unit, pipelining and vector												
	processing, memory organization and 1/0 systems, and multiprocess	5015											
COURSE OU	JTCOMES:												
On the succe	Exploin basic organization of a computer and introduces simple register t	ronof	or lon	0110.00	to								
	Explain basic organization of a computer and introduces simple register transfer language to specify various computer operations												
CO2:	Describe different formats to represent data and perform various arithmetic operations on them.												
CO3:	Devise the basics of hard wired and micro programmed control of the CPU and pipelined												
	architecture.												
<u>CO4:</u>	 Design I/O interface to transfer information among peripheral devices. Outline the memory concepts and mapping techniques of digital computer. 												
<u> </u>	COS: Puttine the memory concepts and mapping techniques of digital computer.												
COs Vs PO	s MAPPING:												
	· · · · · · · · · · · · · · ·												
	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO)11 P(012										
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-										
-	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-										
-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-										
	CO5 3 3 2 3 -		-										
COs VsPSC	os MAPPING:												
	COs PSO1 PSO2 PSO3												
	CO1 3												
	CO2 3 3												
	CO3 3 3												
	CO4 3 3												
	CO5 3 3												
COUPSE CO	NTENTS.												
COUNSE CO	H112/110.												
MODULE I	INTRODUCTION TO COMPUTER ARCHITECTURE			9 H	ours								
Functional blo	ocks of a computer: CPU, memory, input - output subsystems, control mo	dule.	Instr	uction	set								
architecture o	f a CPU: Registers, instruction execution cycle, RTL interpretation of inst	tructio	ons, a	ddress	ing								

modes, instruction set. Outlining instruction sets of some common CPUs.	
MODULE II COMPUTER ARITHMETIC	9 Hours
Data representation: Signed number representation, fixed and floating - point representations,	character
representation. Integer addition and subtraction, ripple carry adder, carry look-ahead adder. multip	olication -
shift-and-add, Booth multiplier, carrysave multiplier. Division restoring and non-restoring techniques,	
Floating point arithmetic.	
MODULE III CONTROL MODULE AND PIPELINING	9 Hours
Introduction to x86 architecture. CPU control MODULE design: Hardwired and micro-programmed	d design
approaches, design of a simple hypothetical CPU. Pipelining: Basic concepts of pipelining, through	put and
speedup, pipeline hazards. Introduction to parallel processing.	
MODULE IV PERIPHERAL DEVICES AND THEIR CHARACTERISTICS	9 Hours
Input-output subsystems, I/O device interface, I/O transfers- program controlled, interrupt driven a	nd DMA,
privileged and non-privileged instructions, software interrupts and exceptions. Programs and proces	sses-role
of interrupts in process state transitions, I/O device interfaces–SCII,USB.	
MODULE V MEMORY ORGANIZATION AND SYSTEMDESIGN	9 Hours
Memory interleaving, concept of hierarchical memory organization, cache memory, cache size vs. b	olock size,
mapping functions, replacement algorithms, write policies. Memory system design: Semiconductor	memory
technologies, memory organization.	TOTIDE
IUIAL: 45	nouks
REFERENCES:	
1.MorrisMano, "ComputerSystemArchitecture" 3rd Edition, PrenticeHallofIndia, NewDelhi, 2014.	
2. David A. Patters on and John L. Hennessy, ``Computer Organization and Design: The Hardware/Software Interval and the set of the	erface",Els
evier,5thEdition2013.	
$\label{eq:carlHamacher} 3. Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Naraig Manjikian, ``Computer Organization and Embedded'$	
Systems "McGraw-Hill,6thEdition2014.	

4. John P. Hayes, Computer Architecture and Organization, McGraw-Hill, 3rd Edition, 2013.

5. WilliamStallings, "ComputerOrganizationandArchitecture-

DesigningforPerformance",10thEdition,PearsonEducation,2015.

6. Vincent P. HeuringandHarryF. Jordan, "ComputerSystemDesignandArchitecture", PrenticeHall, 2ndEdition, 2004. 7. <u>https://nptel.ac.in</u>

2302BS303	OBJECT ORIENTED PROGRAMMING L T P C 3 0 0 3															
PREREOUI	SITE:	:											5	U	U	5
	Prog	rommi	ing in (r												
	110g															
COURSE O	BJEC	TIVE	S:													
	1	. То	comp	rehend	the fu	Indame	ental pr	inciple	es of o	biect-o	oriente	d prog	rami	ming	g. incl	uding
		ene	capsula	ation, i	nherita	ance, p	olymoi	phism	, and a	bstrac	tion, a	nd app	ly th	nese	conce	pts to
		des	sign an	d deve	lop C-	++ prog	grams.				,	11	5			•
	2	2. То	define	classe	es and	create	- objects	, utiliz	e cons	tructor	rs and o	destruc	ctors	, imj	pleme	nt
		me	ember f	functio	ons, and	d mana	ige acc	ess spe	cifiers	to end	capsula	te data	a and	l beł	navior	
	3. To design and implement class hierarchies using various types of inheritance (single,															
	multiple, hierarchical), understand the concept of base and derived classes, and															
		OV	erride 1	nethoo	ils to e	xtend c	lass fu	nction	ality.							
COURSE O)MES	•													
COURDEO			•													
On the succ	essful	compl	letion of	of the c	course,	studer	nts will	be abl	e to							
CO1:	CO1: Object Oriented Programming															
CO2: CO3:	CO2: Concepts of Object Oriented Programming															
CO3:	CO4: Files I/O and Generic Programming															
CO5:	Obje	ct Orio	ented I	Design	and M	Iodelin	g									
			<u>a</u>													
COS VS PC	JS MIA	PPIN	6:													
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12		
	CO1	3	3	-	2	-	-	-	2	2	2	3	2			
	CO2	2	3	-	2	-	-	-	2	2	2	3	2			
	C03	$\frac{2}{2}$	$\frac{2}{2}$	2	$\frac{3}{2}$	3	-	-	2	2	$\frac{2}{2}$	$\frac{2}{2}$	2			
	CO4	2	2	2	2	3	-	-	2	2	2	2	2			
COs VsPS	Os MA	PPIN	IG:													
					C	'Os PS	O1PS	O2PS	03							
					C	:01 2	2 -	-	00							
					C	202 2	2 2	2 -								
					C	03	$\frac{2}{2}$ 2	2 -								
						04 <u>4</u>	$\frac{2}{2}$ 2									
							- 2	,								
COURSE C	ONTE	ENTS:														
	T N T	TDAT	MOT			IFOT	ODIE	NUT		CDAR		C			0.11	01272
MODULE I	IN	<u>i kol</u>	JUCTI		<u>o ob</u>	<u>ject</u>	OKIE	NIED	<u>rk0</u>	GKAI	VIIVIIIN	Ե			УH	ours

Single line comments, Local variable declaration within function scope, function declaration, function overloading, stronger type checking, Reference variable, parameter passing -value vs reference, passing pointer by value or reference, Operator new and delete, the typecasting operator, Inline Functions in contrast to macro, default arguments.

MODULE II CONCEPTS OF OBJECT ORIENTED PROGRAMMING

9 Hours

Necessity for OOP, Data Hiding, Data Abstraction, Encapsulation, Procedural Abstraction, Class and Object. Scope of Class and Scope Resolution Operator, Member Function of a Class, private, protected and public Access Specifier, this Keyword, Constructors and Destructors, friend class, error handling (exception) 9 Hours

MODULE III ESSENTIALS OF OBJECT ORIENTED PROGRAMMIG

Operator overloading, Inheritance, Single and Multiple, Class Hierarchy, Pointers to Objects, Assignment of an Object to another Object, Polymorphism through dynamic binding, Virtual Functions, Overloading, overriding and hiding

MODULE IV FILES, I/O AND GENERIC PROGRAMMING

9 Hours

Streams, Files, Library functions, formatted output Template concept, class template, function template, template specialization

MODULE V **OBJECT ORIENTED DESIGN AND MODELING**

9 Hours

UML concept, Use case for requirement capturing, Class diagram, Activity diagram and Sequence Diagram for design, Corresponding C++ code from design.

TOTAL: 45HOURS

REFERENCES:

1. BjarneStroustrup, The C++ Programming Language, 1e:3rd Edition, Pearson Education, 2015

2.Debasish Jana. C++ and Object-Oriented Programming Paradigm. 3rd Edition. Prentice Hall of India. New Delhi, 2014.

3.https://onlinecourses.nptel.ac.in/noc16 cs17/preview

4.https://www.geeksforgeeks.org/basic-concepts-of-object-oriented-programming-using-c/

5.BjarneStroustrup, The Design and Evolution of C++, Addison-Wesley Professional, 2013.

1902BS304	O4 COMPUTATIONAL STATISTICS L T P C														
												3	0	0	3
PREREOU	ISITE														
x -		-													
	Basic	Conc	epts of	f C,C+	-+.										
COLIDGE O	DIEG		a												
COURSE O	DRJEC	TIVE	S :												
	1. To understand the basics of algorithmic problem solving.														
	2. To learn to solve problems using Python conditionals and loops.														
	3. To define Python functions and use function calls to solve problems														
	4. To	use Pv	thon d	ata stru	ctures	-lists	tuples	s. dicti	onarie	s to ret	present	compl	ex data.		
							, <u>F</u>	,		<u> </u>		<u>F</u> -			
COURSE O	UTCO	OMES	:												
On the ave		1						:11 1	a a bl	. 40					
CO1.	Devel	n com	pietio	n or tr	tions to	rse, st	udents	W111 (be able	2 10 bloms	,				
CO1:	Devel	op and	execu	te simi	ole Pvt	hon pr	ogram	Sulatio	mai pro	JUICHIS					
CO3:	Write	simple	e Pvtho	n prog	rams u	ising c	onditio	nals a	nd loor	oing fo	r solvi	ng prol	olems.		
CO4:	Decon	npose	a Pyth	on prog	gram in	nto fun	ctions.			0		01			
CO5:	CO5: Represent compound data using Python lists, tuples, dictionaries etc.														
COs Vs POs MAPPING:															
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	CO1	3	3	3	2	3	-	-	2	-	-	-	-		
	CO2	2	3	3	2	3	-	-	-	-	-	-	-		
	CO3	3	2	3	2	2	-	-	-	-	-	-	-		
	CO4	3	3	3	-	-	-	-	-	-	2	3	2		
	CO5	3	2	3	2	2	-	I	2	-	-	-	2		
			10												
COs Vs PS	SOs M.	APPI	NG:												
					C	Os PS	O1 PS	O2PS	03						
					C	01 3	3 -	2	2						
					С	O2 3	3 2	2	2						
					С	03 3	3 2	2	2						
					С	O4 3	3 2	. –							
					С	05 3	3 2	2	2						
COURSE C	ONTE	ENTS:													
MODIIIE	ICC	MDU			TIII					ICOT	VINC			<u>оц</u>	01116
Fundamental	$\mathbf{I} \mathbf{U}$			dentifi	a HHI	NKIN of Cor	J ANL	onal D	roblan	1 SUL	ving	e huil	ding blo		f
algorithms (stateme	ents. st	ate. co	ntrol f	ow. fu	inction	s), not	ation (1	pseudo	code	flow	hart. n	ogram	ning	Ĺ
language), al	lgorith	mic pr	oblem	solving	g, simp	ole stra	tegies	for dev	velopin	g algo	rithms	(iterati	ion, recu	ursion).
MODULE	LE II DATA TYPES, EXPRESSIONS, STATEMENTS 9 Hours														

Python interpreter and interactive mode, debugging; values and types: int, float, Boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments. MODULE III FACTOR ANALYSIS AND SEGMENTATION ANALYSIS 9 Hours Factor Analysis: Factor analysis model, extracting common factors, determining number of factors, Transformation of factor analysis solutions, Factor scores. Clustering and Segmentation Analysis: Introduction, Types of clustering, Correlations and distances, clustering by partitioning methods, hierarchical clustering, overlapping clustering, K-Means Clustering 9 Hours **MODULE IV PYTHON CONCEPTS AND DATA WRANGLING** Python Concepts, Data Structures, Classes: Interpreter, Program Execution, Statements, Expressions, Flow Controls, Functions, Numeric Types, Sequences and Class Constructors, Text & Binary Files - Reading and Writing. Data Wrangling- Combining and Merging Datasets, Reshaping and Pivoting, Data Transformation, String Manipulation, Regular Expressions 9 Hours MODULE V DATA AGGREGATION AND VISUALIZATION IN PYTHON Data Aggregation, Group Operations, Time series: Group by Mechanics, Data Aggregation, Group wise Operations and Transformations, Pivot Tables and Cross Tabulations, Time Series Basics, Data Ranges, Frequencies and shifting. Visualization in Python: Matplotlib package, Plotting Graphs, Controlling Graph, Adding Text, More Graph Types, Getting and setting values, Patches. **TOTAL: 45 HOURS** LIST OF EXPERIMENTS: 1.Basic Python Programs 2. Program using String Operations 3. Program on python Data structures 4. Perform various numpy operations and special functions 5. Draw statistical graphics using seaborn 6. Implement k-means, logistic and time series algorithm using Scikit-learn 7. Multi Variable analysis with regression in python 8. Factor analysis with python 9. Data Aggregation in python 10. Visualization in python using Altair **TOTAL: 30 HOURS REFERENCES:**

1.T.W. Anderson, "An Introduction to Multivariate Statistical Analysis", Wiley, 3rd Edition, 2003

2. J.D. Jobson, "Applied Multivariate Data Analysis", Vol I & II, Springer, 2012

3. Magnus Lie Hetland, "Beginning Python: From Novice to Professional", Apress, 2nd Edition, 2008

4. Stanley A Mulaik, "Foundations of Factor Analysis", CRC Press, 2nd Edition, 2009

5. Douglas C. Montogomery, Elizabeth A. Peck, G. Geoffrey Vining, "Introduction to Linear Regression Analysis", Wiley, 5th Edition, 2012

6. Mark Lutz, "Programming Python", Shroff Publishers, 3rd Edition, 2006

7. Tim Hall and J-P Stacey, "Python 3 for Absolute Beginners", Apress, 2009

8. Wes Mc Kinney, "Python for Data Analysis", O"Reilly, 2018

9. https://onlinecourses.nptel.ac.in/noc19_mg13/preview
10. https://nptel.ac.in/courses/110106064/
11. https://www.analyticsvidhya.com/blog/2016/01/complete-tutorial-learn-data-science-pythonscratch-2/
12. https://github.com/cliburn/Computational-statistics-with-Python/tree/master/

2302BS30	DATABASE MANAGEMENT SYSTEMS L T P C														
												3	0	0	3
PREREQU	UISIT	E:													
	Com	puter	Progra	mming	Lang	uages									
COUDEE		CTI	TC.												
COURSE	ORIE		ES:												
	1 Tc	unde	retand	the co	ncen	t of DI	RM	S and I	FR Mod	leling					
	2 T	o evol	ain th	e norn	neep	tion ar	nd re	lation	al algeb	ra					
	2. T	apply	the c	oncur	rency	contro	l re	coverv	ai aigeo v securi	tv and	lindexi	ng for t	he re	al tim	ie.
	data	, appi	uie e	oneun	lency	contro	1, 10	covery	, securi	ty unc	i maexi	115 101 1	ne re	ur tim	
COURSE	OUTC	COMI	ES:												
On the su	ccessfi	il com	nletio	n of th		rse st	uder	nte wil	l he ahl	e to					
COL		emons	trate f	he bas	ic con	cent a	nd r	ole of	DBMS	in an	organiz	ation			
CO2	: 11	ustrate	the d	esign	nrinci	ples fo	or da	atabase	e design	ER 1	nodel a	nd norr	naliz	ation	
CO3	: Ar	only C	oncur	rency	contro	ol and	reco	overv r	nechani	sms f	or the d	esirable	e data	hase	
	pro	problem													
CO4	Compare the basic database storage structure and access techniques indexing and														
	hashing														
CO5	CO5: Review the fundament alive wonun structured data and its management														
			NC												
	05 11		110.												
	COs	PO1	PO2	PO3	PO4	PO5	PO	06 PO	7 PO8	PO9	PO10	PO11	PO1	2	
(C O1	2	2	-	-	-	-	-	-	-	-	-	2		
	C O2	3	3	3	2	-	-	-	-	-	-	-	2		
(C O3	3	3	3	3	2	-	-	-	-	-	-	1		
(C O 4	3	3	3	3	3	-	-	-	-	-	-	3		
(C O 5	2	2	-	-		_	_		-		_	2	_	
		-	-										_		
COs VsP	SOs M	IAPP	ING:												
							01	DCOA	DCOO						
						$\frac{\mathbf{S}}{\mathbf{I}} = 1$		PSO2	PS03						
								-	-						
					CO	2.	•	2	-						
					CO	3 2	,	3	-						
					CO	4 2	,	3	-						
					CO	5 1		2	-						
COURCE			0												
COURSE	CUNI	LENT	9:												

9 Hours MODULE I INTRODUCTION TO DATABASE SYSTEMS Overview – Data Models – Database System Architecture – History of Database Systems. Entity-Relationship Model: Basic Concepts – Constraints – Keys – Design Issues – Entity Relationship Diagram – Weak Entity Sets – Extended E-R Features – Design of an E-R Database Schema. MODULE II RELATIONAL DATABASES 9 Hours Structure of Relational Databases -Relational Algebra – Extended - Relational Algebra Operations - Modification of Database - Views - Tuple Relational Calculus-Domain Relational Calculus. SQL: Background – Basic Structure–Set- Operations – Aggregate Functions – Null Values – Nested Sub queries – Modification of the database – Joined Relations – Data Definition Language. MODULE IIIINTEGRITY SECURITY AND FILE STRUCTURES 9 Hours Domain Constraints – Referential Integrity – Assertions–Security and Authorization – Authorization in SQL-Relational-Database Design: Normalization -first normal form, second normal form, third normal form, Boyce- Codd normal form-Indexing and Hashing: Basic Concepts –Ordered Indices Static Hashing – Dynamic Hashing 9 Hours MODULE IV TRANSACTION CONCEPT Two-Phase Locking Techniques for Concurrency Control – ConcurrencyControlbasedontimestamp-RecoveryConcepts–Recoverybasedondeferred update – Recovery techniques based on immediate update - Shadow Paging. 9 Hours MODULE V CLOUD AND NOSQL DATABASES Cloud databases- Data Storage Systems on the Cloud, Data Representation, Partitioning and Retrieving Data, Challenges with Cloud-Based Databases- No SQL Data model: Aggregate Models, Document Data Model, Key-Value Data Model, Columnar Data Model, Graph-Based Data Model. **TOTAL: 45+15 HOURS**

LIST OF EXPERIMENTS

1. Study of Basic SQL Commands.

2. DDL and DML

3. Table creation with constraints.

4. Joins operations with views

5. PL/SQL-Procedures

6. PL/SQL- Cursors

7. PL/SQL- Functions, Triggers

REFERENCES:

1. Richard L. Daft, Understanding the Theory and Design of Organizations, Cengage Learning India Private Limited; 11th Edition, 2016

2. Mahajan. J.P., —Management Theory and Practices, 3rd Edition, Ane Books Pvt Ltd. 2011. 3. Stephen P. Robbins, Timothy A. Judge, NeharikaVohra, —Organizational Behavior", Pearson, 2013.

4. Harold Koontz, Weihrich, —Essentials of Management: An International, Innovation, and Leadership Perspectivel, 10th Edition, Tata McGraw Hill, 2015.

2302BS3	BS306 MARKETING RESEARCH AND MARKETING MANAGEMENT												Τ	Р	C
												3	0	0	3
RERE(QUISIT	TE:													
	Ma	rketir	ng res	earch	and m	arke	ting me	anagen	ent co	nirses	cover a	range	oftoni	~ 6	
	inc	luding	g	caren		iai KC	ang m	inagen		Jui 505		i Talige (or topi	,	
JURSI	E OBÌI	ECTI	VES												
	1.7	The me	eaning	of Ma	rketin	g Re	search								
	2. 7	To ide	ntify c	pportu	nities	unde	erstand n	narket o	hallen	ges.					
	3. Market research can help you better understand your current customers.														
	4. Market research is used to determine the viability of a new product.														
	5. Research is a vast discipline that caries depending on sub – disciplines.														
JURSI	URSE OUTCOMES:														
n tha a	the successful completion of the course, students will be able to														
CO	the successful completion of the course, students will be able to CO1: 1. Define marketing research concepts.														
CO	CO1: 1. Define marketing research concepts. CO2: 2. Understanding the marketing research process.														
CO3: 3. Knowledge about the pricing, promotion and distribution strategy.															
$\frac{CO}{CO}$	4: 4.0	Comm	unicat	e findi	ngs fro	$\frac{5}{2}$	marketi	ng rese	arch pi	oject.					
	5: 5. 5	strateg	y and	planni	ng for	inter	rnet mar	keting.							
COs Vs	POs N	IAPP	ING	:											
	COs	PO1	PO2	PO3	PO4	PO	5 PO 6	PO7	PO8	PO9	PO10	PO11	PO12		
	CO1	3	3	3	2	3	-	-	2	-	-	-	-		
	CO2	2	3	3	2	3	-	-	-	-	-	-	-		
	CO3	3	2	3	2	2	-	-	-	-	-	-	-		
	CO4	3	3	3	-	-	-	-	-	-	2	3	2		
	CO5	3	2	3	2	2	-	-	2	-	-	-	2		
COs VsI	PSOs M	APPI	NG:												
					CC)s	PSO1	PSO2	PSO	3					
					CC)1	3	-	2						
					CC)2	3	2	2						
					CC)3	3	2	2						
					CC)4	3	2	-						
						15	3	2	2						
OURSI	E CON	TEN	TS:												
ODULI	EI						INTRO	DUCT	ION					9 Hoi	urs
ODULI	EI						INTRO	DUCT	ION					9 Hoi	ır

Marketing Concepts and Applications: Introduction to Marketing & Core Concepts, Marketing of Services, Importance of marketing in service sector-Marketing Planning & Environment: Elements of Marketing Mix, Analyzing needs &trends in Environment -Macro, Economic, Political, Technical & Social- Understanding the consumer: Determinants of consumer behavior, Factors influencing consumer behavior –Market Segmentation: Meaning &Concept, Basis of segmentation, selection of segments, Market Segmentation strategies, Target Marketing, Product Positioning.

MODULE II	MARKETING MIX	9 Hours									
Concept, eleme	ents, 7 Ps of Marketing-Product Management: Product decision and strategi	es,									
Packaging, Pro	duct Life cycle concept, New Product development & strategy, Stages in N	ew									
Product develo	pment, Branding										
MODULE III	PRICING, PROMOTION AND DISTRIBUTION STRATEGY	9 Hours									
Pricing Policies	s & Practices – Pricing Methods & Price determination Policies. Marketing										
Communication – The promotion mix, Advertising & Publicity, 5 M"s of Advertising Management,											
Personal selling, Public Relations. Marketing Channels, Retailing, Logistics & Supply Chain.											
Marketing Con	nmunication, Advertising										
MODULE IV	MARKETING RESEARCH	9Hours									
Introduction, S	cope, Objectives & Limitations, Types of Market Research, Marketing Res	earch									
Techniques, Su	rvey Questionnaire design & drafting, Pricing Research, Media Research,										
Qualitative Res	search, Data Analysis: Use of various statistical tools – Descriptive & Infer	ence									
Statistics, Stati	stical Hypothesis Testing, Multivariate Analysis –Discriminate Analysis, C	luster									
Analysis, Segn	nenting, Factor Analysis										
MODULE V	INTERNET MARKETING	9 Hours									
Introduction to	Internet Marketing. Mapping fundamental concepts of Marketing (7Ps, STP); S	Strategy and									
Planning for Inte	ernet Marketing.										
	TOTAL: 45	HOURS									
REFERENCES:											
1. RajanSaxena, "Marketing Management", McGraw Hill Education, 6th edition, 2019											
2. S.A.Sherlekar, "MarketingManagement", HimalayaPublishingHouse, 2014											
3. Service Marke	eting–S.M. Zha										
4. Journals–The	IUP Journal of Marketing Management, Harvard Business Review										
5. Research for I	Marketing Decisions by Paul Green, Donald, Tull										
5. Business Statistics, A First Course, David M.Levine et al., Pearson Publication											

7. Marketing Management (Analysis, Planning, Implementation & Control)–Philip Kotler

2301MC	301												Τ	Р	C
PREREC)UISI 1	TE:													
COURSI	T OB II	TOT	IVES	•											
coensi		201		•											
COURSI	E OUT	CON	AES:												
CO	1:														
CO	2:														
C0 C0	3: 4:														
CO	5:														
	POs M	1 A PI	PINC												
05 15	10510			•											
	COs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	CO1													_	
	$\frac{\text{CO2}}{\text{CO3}}$													_	
	CO4													_	
	CO5														
COs Vs	PSOs N	МАР	PING	:											
								DCOO	DCO						
)s P:)1	501	PS02	PS 0	03					
					C)2									
					CO)3									
)4				_					
						~~									
COURSI	E CON	TEN	TS:												

MODULE I	9 Hours
MODULE II	9 Hours
	· · · · ·
	9 Hours
MODULE IV	9Hours
	· · ·
MODULE V	9 Hours
	TOTAL: 45 HOURS
REFERENCES:	

2302BS351	2BS351 OBJECT ORIENTED PROGRAMMINGLABORATORY									L	, T	Р	С		
											0	0	2	1	
PREREQUISITE:															
COURSE OBJ	ECTIV	VES:													
	1	.Understa	anding	and A	pplying	g Obje	ct-Orie	ented P	rincipl	es:					
	2	<u>. Masteri</u>	ng Ope	erator a	ind Fur	nction	Overlo	ading:							
	3	• Explori	ng Inne	eritance	e Mecr	lanism	s:								
COURSE OUT	ГСОМ	ES:													
	On the successful completion of the course statistic will be shirt to														
On the success	On the successful completion of the course, students will be able to														
	Mastering Overloading Techniques														
CO2:	Applying Inheritance Concepts:														
CO4:	Using	Using Friend Functions:													
CO5:	File Handling Expertise:														
CUS VS PUS MAPPING:															
C	Os PC	01 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
C	D1 3	3	-	2	-	-	I	2	2	2	3	2			
CO	D2 2	3	-	2	-	-	-	2	2	2	3	2			
CO	$\begin{array}{c c} 03 & 2 \\ 04 & 0 \end{array}$	2	2	3	3	-	-	2	2	2	2	3			
	$\frac{34}{25}$ 2	2	$\frac{2}{2}$	$\frac{2}{2}$	3	-	-	$\frac{2}{2}$	3	$\frac{2}{2}$	$\frac{2}{2}$	2			
	JJ Z	2	2	2	5	-	-	2	2	2	2	2			
COs Vs PSOs	s MAPI	PING:													
					0 50	0150	0.000	<u> </u>							
					Os PS 01	$\frac{OIPS}{2}$	02PS	03							
					$\frac{01}{02}$ 2	$\frac{2}{2}$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
CO4 2 2 -															
				С	O5 2	2 2	-								
I IST OF EVD															
LIST OF LAL															
1. Implem	entatio	n of class	es and	object	s with	constr	uctors	and de	structo	ors					
2. Implem	entatio	n of oper	ator an	d func	tion ov	erload	ing.								
3. Implem	entatio	n of type	s of Inh	neritan	ce.										
4. Implem	entatio	n of two	differe	nt class	ses for	adding	g a priv	vate dat	ta men	nber us	ing frie	end func	ction.		
5. Implem	entatio	n of file h	handlin	g oper	ations										
6. Implem	ientatio	n or temp	nates a	na UN	il diag	grams									

TOTAL: 45 HOURS

REFERENCES:

- 1. Bjarne Stroustrup, The C++ Programming Language, 1e:3rd Edition, Pearson Education, 2015.
 - 2. Debasish Jana, C++ and Object-Oriented Programming Paradigm, 3rd Edition, Prentice Hall of India, New Delhi, 2014.

3. Bjarne Stroustrup, Programming Principles and Practice Using C++, 2nd Edition, Addison Wesley, 2014.

4. Bjarne Stroustrup, The Design and Evolution of C++, Addison-Wesley Professional, 2013.