E.G.S. PILLAY ENGINEERING COLLEGE

(Autonomous) NAGAPATTINAM – 611 002. (Affiliated to Anna University, Chennai | Accredited by NAAC with 'A++' Grade Accredited by NBA | Approved by AICTE, New Delhi)

B.TECH – ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

(**R**-2023)

CURRICULUM FOR SECOND YEAR: THIRD SEMESTER (III)

	B.Tech - AI&DS	(R2023) – II	I Seme	ster					
COURSE	COURSE NAME	CATEG	L	т	Р	С]	MAX. M	ARKS
CODE		ORY	Ľ		-	C	CA	ES	TOTAL
Theory Course	es	1	r	r		r	1	1	
2301HSX01	Universal Human Values & Ethics	HSMC	1	0	2	2	50	50	100
2301MA301	Probability & Statistics	BSC	3	2	0	4	40	60	100
2301GEX05	Applied Digital Logic & Design	ESC	3	0	0	3	40	60	100
2302AS301	Design and Analysis of Algorithms	PCC	3	2	0	4	40	60	100
2302AS302	Database Systems	PCC	3	0	0	3	40	60	100
2302AS303	Artificial Intelligence	PCC	3	0	0	3	40	60	100
Laboratory Co	ourses								
2301GEX54	Applied Digital Logic & Design Laboratory	ESC	0	0	2	1	60	40	100
2302AS351	Statistical Analysis and Computing	PCC	0	0	2	1	60	40	100
2302AS352	SQL for Data Science	PCC	0	0	4	2	60	40	100
Other Courses	\$								
2304GE301	Professional Development Course - I	EEC	0	0	2	1	100	-	100
2301LS301	Life Skills – III	LS	0	0	0	0	100	-	100
	TOTAL		16	4	12	24	630	470	1100

2301HSX01		UN	IVER	SAL H	UMAN	VALU	ES ANI) ETHI	CS]	L]	[]	P	С	
											1 0)	2	2	
PREREOUI	SITE:														
	1. Professi	onal E	thics												
COURSE O	BJECTIV	ES:													
	1 Daimatat	. T. 1'.	·	14	11	11.			.1.1			1.			
	2 Focus or	e mula	s rich	cultura	which	y and nu beln cit	inan val	discorn	desirabl	e and u	e custo ndosir	oular abla	is. acti	one	
	2. Pocus of 3. Re-empl	nasize (constit	utional	values	univers	al value	$\frac{\text{unseen}}{\text{s}}$ and h	olistic ec	lucation	n to cr	reate	acti	0115.	
	integrated of	citizen	s.	utionui	, araco,		ur vurue	s, una n		ucution		cuto			
	4. Lay dow	n broa	der gu	idelines	s of hur	nan valu	les and e	thics fo	r interna	l and ex	xterna	1			
	stakeholde	rs.													
GOUDGE O		I													
COURSE O	UTCOME	S :													
On t	On the successful completion of the course, students will be able to CO1: Create such an environment, it is essential to ensure the inclusion of the learning process for holistic development.														
C01:	Create su	ch an	enviro	nment,	it is es	sential to	o ensure	the inc	lusion o	f the le	arning	g pro	oces	s for	
	holistic de	evelop	ment.												
CO2:	 Coreate such an environment, it is essential to ensure the inclusion of impeccable governance. Coreate such an environment, it is essential to ensure the inclusion of effective institutional management. 														
CO3:	Create su	ch an	enviro	nment,	it is e	ssential	to ensu	re the i	nclusion	of effe	ective	inst	ituti	onal	
<u> </u>	managem	ent.	•		•, •	. 1		.1	· 1 ·	C	11 1	. 1		6	
CO4:	Create su	ich an	enviro	onment,	, 1t 1s (essential	to ensi	ure the	inclusio	n of w	ell-la	ld sy	/ster	n of	
C05:	Create su	ich an	enviro	nment	it is e	essential	to ensi	ire the	inclusio	n of in	stituti	onal	cli	mate	
005.	where "ri	ghts" a	re enc	ouraged	and "v	vrongs"	are disc	ouraged	l.	II OI III	Stituti	onai	CIII	mate	
CO6:	Create su	ch an	enviro	nment,	it is es	sential	o ensur	e the in	clusion	of inwa	ard-loo	oking	g gr	oups	
	and comr	nunitie	es that	have th	ne pote	ntial to	develop	the cap	pacity of	indivi	duals,	sou	rce	their	
	potential	and un	iversal	values	, and er	sure that	at their a	ctions e	nable jus	stice an	d equi	ity to	o all.		
	75 IVIAI I II	NG.													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12		
CO1	2	1	2	-	-	1	1	3	1	-	-	1			
CO2	2	1	2	-	-	1	2	2	1	-	-	1			
<u>CO3</u>	2	1	2	-	-	1	1	2	1	-	-	1			
<u>CO4</u>	2	1	2	-	-	1	1	2	1	-	-	1			
C05	2	1	2	-	-	1	$\frac{2}{2}$	3	1	-	-	1			
	L	1	Z	-	-	1	Z	Z	Z	-	-	1			
COs Vs PS	Os MAPP	ING:													
				(COs PS	O1 PSC	D2 PSO3	3							
				(<u>- 201</u>		-	_							
				($\frac{202}{202}$		-	-							
					- <u>03</u> - -04		-	-							
					<u> </u>		-	-							
					CO6 -		-	-							
						I									

COURSE CONTENTS:

MODULE I INTRODUCTION TO INDIAN ETHOS

Meaning of ethos and cultural essence of India – Scriptures as the base of the Indian Knowledge System (IKS) – Integrating the two methodologies: interiorization process for self-exploration, and exterior scientific pursuit for the prosperity of world –The Law of Karma and Nishkama Karma (The Law of action and selfless action).

Practical: Five hours of Yoga practice per week, Ethics through Music and Indian Poetry, Community Engagement.

MODULE II HUMAN VALUES AND ETHICS

Knowing the Self and the universal values that we stand for - This is self enquiry&self discovery– Background conversations and deep listening - recognizing the assumptions that we make - the biases we have - and the implications for ethical action –Self-identity: distinguishing and embracing oneself (and others) four profiles (inner-potential, social, professional, personality)–Distinguish ideology, perspectives beliefs from embodying values.

Practical:Self discovery, self enquiry and Mindfulness, Yama & Niyama of Ashthang Yoga.

MODULE III CONSTITUTIONAL VALUES AND GLOBAL CITIZENSHIP 09Hours

Values embedded in the Preamble of the Indian Constitution Integration of Human Rights and duties – Directive principles and responsibilities as citizens of India – Sensibility and responsibilities towards global environment, Loksangraha and Vasudhaiva Kutumbakam.

Practical: Debates and Theatre on diversity and plurality, research on similarities and differences in the ethos of different countries.

MODULE IV VALUES AND SKILLS FOR YOUTH

Designing to make a difference through strategies using the Conscious Full SpectrumResponse model– Listening for commitment behind complaints to transform contentious arguments and create a space for listening and change – Distinguishing judgement from discernment – Being assertive and confident (assertiveness incorporates self-confidence).

Practical : Development of concentration among students through music, fine arts, mathematics, sports, yoga and mindfulness

MODULE V INTEGRATED PERSONALITY AND WELL-BEING

10 Hours

The three gunas (qualities of sattva—purity and harmony, rajas —activity and passion,tamas —darkness and chaos), the four antah-karanas (inner instruments), and panchkosha (five sheaths) – Stress management: meditated personality and agitated personality – Oneness, non-duality, and equanimity – Physical, mental, social, and spiritual well-being.

Practical : Talks on importance of the Ayurvedic concept of well being and nutrition, sports activities

TOTAL: 45 HOURS

TEXT BOOKS:

1. R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and Professional Ethics.

REFERENCES:

1. Blanchard, Kenneth and Peale, Norman Vincent. 1988. The Power of Ethical Management. New York: William Morrow and Company, Inc.

2. Gandhi, Mohandas Karamchand. 1971. Pathway to God compiled by MS Deshpande. Ahmedabad: NavajivanMudranalaya, Navjivan Trust.

3. https://fdp-si.aicte-india.org/UHV-II%20Class%20Note.php

08 Hours

09 Hours

09 Hours

2301MA301			Р	ROBA	BIL	ITY A	ND S	FATIS	TICS]	L	Т	Р	С
													3	2	0	4
PREREQUI	ISITE:												•			
	1 D	· · · ·			1 1 '	1.4										
	1. B	asic C	oncept	t of Pro	obabi	lity										
	2. D		oncepi	1 01 51	uisuc	.5										
COURSE O	BJECT	IVES	:													
	1.	To int	roduce	the ba	asic c	oncept	s of pr	obabili	ity and	rando	m vari	ables.				
	2.	To acc	quaint	the kn	owled	lge of	testing	of hyp	othesi	s for s	mall ar	nd large	esa	mple	S	
	3	this pl	ays an	1mpoi	tant i	fole in	real III	e prob	ectors	which	ronros	ont ror	do	m va	riable	s in
	5.	multi-	dimen	sional.	ige of	manui	ing rai	uom v	ectors	which	Tepres		luoi	ili va	TIAULE	5 111
COURSE O	UTCO	MES														
COURSEO		VILD.														
On	the succ	essful	comple	etion o	f the	course	, stude	nts wil	ll be at	ole to						
CO1:	Use the	funda	mental	conce	pts o	f proba	ability	and ha	ve kno	wledg	e of sta	indard	dis	tribu	tions v	which
GOA	can dese	cribe re	eal life	pheno	men	on.		<u> </u>								
CO2:	Apply t	he basi	ic conc	epts o	t one	and tw	vo dim	ension	al rand	om va	riables	ın eng	gine	ering	5	
C03.	applicat	1011S.	oncent	t of tes	ting	of hype	thecie	for sm	all and	llarge	sampl	es in re	<u></u>	life n	robler	ne
CO4:	Apply t	he basi	ic conc	cepts of	f clas	sificati	ions of	design	$\frac{1}{1}$ of ex	nerime	ents in	the fiel		of sta	tistica	115. 1]
	quality of	control	l.	opus o	r eras	Sincut	10115 01	uesigi			1105 111			1 500		
CO5:	Develop	o expo	sure to	the pr	incip	al com	ponen	t analy	sis of 1	andon	n vecto	rs and	Tir	ne Se	eries.	
		DING														
COS VS PC	DS MAP	PING	:													
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC)12		
	CO1	3	2	1]	L		
	CO2	3	2	1									1	l		
	<u>CO3</u>	3	2	1									1	l		
	<u>CO4</u>	3	2	1]			
	05	3	2	1										L		
COs Vs PS	Os MA	PPIN	G:													
							_									
					C	Os PS	O1 PS	O2PS	03							
					C	01 -	· -	-								
					C	$\frac{02}{02}$	· -	-								
						$\frac{03}{04}$ -		-								
					C	04 -										
COURSE C	ONTEN	NTS:														
	-	mor		TANT			ICEDT	DIVE	ONG						0.11	
NODULE I	KAN	NDON Distrik	L VAR	IABL	ES A		15TRI	BUTI Drobal	UNS vility -	noco f	unctic	n D-	oh	hilit	א <u>לסה</u>	
function $-m$	oments	– Stan	dard D	istribu	tions	-Binor	nial. P	Disson	and No	ormal a	distrih	u - PI	002	um	y uen	sity
MODULE I	ΙΤΨ		1ENSI	[ONA]	LRA		M VA	RIABI	LES						9 Hoi	irs

Joint distributions – Marginal and conditional distributions – Expected values of functions of two variables–Correlation and regression(for discrete data only)- Central limit theorem– Statement

MODULE IIITESTING OF HYPOTHESIS9 HoursSampling distributions - Tests for single mean, proportion and difference of means (Large and small
samples)–Tests for single variance and equality of variances–Chi square test for goodness of fit–
Independence of attributes.9 Hours

MODULE IV DESIGN OF EXPERIMENTS

9 Hours

9 Hours

Onewayandtwowayclassifications-Completelyrandomizeddesign–Randomizedblockdesign–Latinsquaredesign-2²factorialdesigns.

MODULE V MULTIVARIATE ANALYSIS AND TIME SERIES

Random vectors and matrices – Mean vectors and covariance matrices –Principal components – Population principal components–Principal components from standardized variables. Time series - components - Trend-Determination of trend by moving averages – Least square method-Seasonal Variations-Ratio to moving average method.

TOTAL: 45 HOURS

REFERENCES:

- 1. Jay L. Devore, "Probability and Statistics for Engineering and the Sciences", Cengage Learning, 9th Edition, Boston, 2016.
- 2. Johnson, R.A., and Wichern, D.W., "Applied Multivariate Statistical Analysis", Pearson Education, Sixth Edition, New Delhi, 2013.
- 3. Devore.J.L., "ProbabilityandStatisticsforEngineeringandtheSciences", CengageLearning, NewDelhi, 8th Edition, 2014.
- 4. GuptaS.C.andKapoorV.K., "FundamentalsofMathematicalStatistics", SultanChand&Sons, NewDelhi, 12th Edition, 2020

5. Johnson, R.A., Miller, Iand Freund J., "Millerand Freund's Probability and Statistics for Engineers", Pear son Education, Asia, 8th Edition, 2015.

6. https://onlinecourses.nptel.ac.in/noc23_ma24/preview

(Link for NPTEL/SWAYAM/MOOC Courses)

2301GEX05			APP	LIED	DIGI	TAL	LOGIO	CAND) DESI	GN]	L	Т	Р	С
		С	ommo	on to B	E-CS	E, BN	AE, B.T	Fech -	IT, and	d AID	S		3	0	0	3
PREREQUI	SITE:															
	1. Bas	sic M	lathem	atic Sl	cills											
COURSE O	BJECT	IVE	S:													
	20201	_ ,,														
	1	l. T	o pres	ent the	funda	menta	ls of di	gital ci	ircuits	and sii	mplifica	ation r	netł	nods.		
	2	2. T	o prac	tice the	e desig	n of v	arious o	combii	nationa	l and s	sequent	ial dig	gital	circu	iits us	ing
			ogic ga	ites.	·			· . ·								
	3	<u>). 1</u> 1 Т	o intro	tice the		progr	or mem cammin	ories a g for c	ina pro	gramn ational	$\frac{1}{2}$	ogic de	evic	es.	te	
		r. 1	0 prac			progr	ammin		omoni	anona		quenti		ncui	15.	
COURSE O	UTCON	MES	:													
On t	he succe	essfu	l com	oletion	of the	cours	e, stude	ents wi	ll be al	ole to						
CO1:	Use l	Boole	ean alg	gebra, l	K-map	and t	abulatio	on met	hod to	simpli	fy Bool	lean fu	inct	ions.		
<u>CO2:</u>	Cons	struct	differ	ent cor	<u>nbinat</u>	ional o	<u>circuits</u>	using	logic g	ates.						
CO3:	Deve	elop c	differe	nt sequ	iential	circui	ts using	<u>g logic</u>	gates a	and flij	p flops.					
CO4:	Build	pare 1 pro	amere	ent sen pable d	evices	uctor 1	logic o	/ devic	es.							
CO6:	Deve	lon V	Verilo	nrogi	am for	comb	<u>inatior</u>	ates.	seque	ntial ci	ircuits					
	2010	nop		<u>, prob</u>		•••										
COs Vs PO	s MAP	PIN	G:													
-	~ ~ ~ ~						1									
-	COs F	201	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC)12		
-	$\frac{COI}{CO2}$	3	2	1 1	-	-	-	-	-	2	1	-	1	1		
-	CO2 CO3	3	2	1	-	-	-	-	-	$\frac{2}{2}$	1	-	1	1		
-	CO4	3	2	1	-	-	_	-	-	2	1	-	1	1		
-	CO5	3	2	1	-	-	-	-	-	2	1	-	1	L		
	CO6	3	2	1	-	3	-	-	-	2	1	-	1	l		
		DDIN														
	US MA	1 1 11	10.													
					C	Os PS	SO1 PS	O2PS	503							
					C	01			-							
					C	02			-							
					C	03			-							
						04			-							
					C	05			-							
COURSE C	ONTEN	NTS:														
				GER			0.070	~							077	
MODULE I	BOC	JLE	AN AI	LGEB	RA Aſ	ND LO	OGIC 0	<u>JATE</u>	<u>S</u>		C - 4		•	1	9Hou	rs
Review of Ni	umber s	yster	n - B(n)	olean	expres	sion a	ind min	1mizat	10n - I	Logic (Mon	Jates al	nd its bulati	1mp	Moth	entatio	n –
MODULE I		MRI		ONAL			an aigei	ла, к а	amaugi	i map	anu ra	Duratio		vietii	9Hou	rs
Combination	al Circu	ite	_ <u>Ana</u>	veie a	nd De	eion 1	Procedu	ires -	Circui	ts for	Δrithn	netic (One	ratio	ne C	ode
Conversion -	– Decor	iers -	/ Enco	oders -	– Mult	inlexe	rs / D	nes – E mil	tiplexe	rs = F	Parity o	eneral	tors	/ ch	ns, U lecker	50C 'S —
Magnitude C	omparat	tor.			mult	-prom	μο / D .		upiene		any g	,enera	.015	, ст.		5
MODULET	II SEO	UEN	NTIAI		CUITS	5								0	ЭНош	rs
						,								P	iivul	.0

B.E. – Artificial Intelligence & Data Science | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2023 Approved in 10th Academic Council Meeting held on 30.06.2023

Sequential logic-Basic latch-Flip-flops (SR, D, JK, T and Master-Slave)-Counters-Ripple counters-BCD and Binary-Synchronous counters, Registers-Shift registers-Registers, Hazards

MODULE IVMEMORY AND PROGRAMMABLE LOGIC9HoursClassification of memories (RAM, ROM, PROM, EPROM, EEPROM) Programmable Logic Devices(PLA,PAL,FPGA)-Implementation of circuits using ROM, PLA, PAL.

MODULE V VERILOG HDL MODELING

9Hours

Three types of Verilog modeling (gate-level, dataflow, and behavioral)-Verilog programming for combinational and sequential circuits.

TOTAL: 45 HOURS

REFERENCES:

1. Morris Mano and Michael D. Ciletti, "Digital Design", 5th edition, Prentice Hall of India, 2012

2. Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2003

3. https://archive.nptel.ac.in/courses/108/105/108105132/ (Link for NPTEL/SWAYAM/MOOC Courses)

4. https://www.vlab.co.in/broad-area-electronics-and-communications (Link for modern tool usage)

PREREQUISITE:									v
PREREOUISITE:						3	2	0	4
NIL									
COURSE OBJECTIVES:									
1.To analyse various algorithms main	ly for t	ime ar	nd spac	e com	plexity.				
2.To develop algorithm for solving va algorithm design strategies.	trious c	compu	tationa	l probl	ems by	applying	g vari	ous	
3.To understand the effect of choice o	of data	structu	ires on	the co	mplexit	y of algo	orithm	1.	
COURSE OUTCOMES:									
COURSE OUTCOMES.									
On the successful completion of the course	e, stude	ents wi	ll be a	ble to					
CO1: Apply the appropriate data structure for	or desi	gning	an algo	orithm	to solve	a given	prob	lem	
CO2: Evaluate different algorithms with res	pect to	time a	and spa	$\frac{1}{2}$	nplexity	•			
CO3: Create algorithms to solve various con	niputat. scientif	fic pro	hlems	using i	terative	method	2		
CO5: Analyse the different algorithm desig	gn tech	niques	s for a	given	problen	n based	on it:	s time	e and
space complexity.		1		0	1				
<u>ΓΩς Vς ΡΩς ΜΑΡΡΙΝ</u> Ω·									
COsPO1PO2PO3PO4PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	
CO1 2 2 2 1 2	-	-	-	-	-	1	2		
CO2 2 2 3 2 2	-	-	-	-	-	1	2		
CO3 3 2 3 2 2	-	-	-	-	-	1	2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-	-	-	-	2	1		
COS 1 2 3 3 3	-	-	-	-	-	2	2		
COs Vs PSOs MAPPING:									
		[
COs PSC	01 PS	O2 P	<u>SO3</u>						
		,	-						
$\begin{array}{c} \mathbf{CO2} & 3 \\ \mathbf{CO3} & 2 \end{array}$		2	-						
$\mathbf{CO4}$ 3	-	3	-						
CO5 3	3	3	-						
			-						

COURSE CON	TENTS:	
MODULE-I	BASIC CONCEPTS OF ALGORITHMS	9 Hours
Notion of Algo	rithm, Fundamentals of Algorithmic Solving, Important problem types, Fundame	ntals of the
Analysis Frame	ework, Asymptotic Notations and Basic Efficiency Classes, Mathematical analy	sis of non-
recursive algor	ithms. Mathematical analysis of recursive algorithm: recurrence relations,	solution of
recurrence relat	ions using substitution method.	r
MODULE-II	BRUTE FORCE, DIVIDE AND CONQUER STRATEGY	9 Hours
Selection sort, method, Merge	Bubble sort, Sequential searching (Linear Search), Brute force string matchin sort, Quick Sort, Binary Search, Strassen's matrix multiplication.	ıg, General
MODULE-III	GREEDY APPROACH AND DYNAMIC PROGRAMMING	9 Hours
Fractional Knap shortest path pr Knapsack probl	bsack problem, Minimum cost spanning tree: Prim's and Kruskal's algorithm, Si oblem, Principle of optimality, Multi-stage graph problem, all pair shortest path p lem, Traveling salesperson problem.	ngle source roblem, 0/1
MODULE-IV	BACKTRACKING AND BRANCH AND BOUND	9 Hours
General method	backtracking, N-Queen problem, Knight's Tour Problem, General method o	f branch &
bound, Fraction	al vs 0/1 knapsack problem, Traveling sales person problem using branch & bound	<u>•</u>
MODULE-V	LOWER BOUND THEORY AND COMPLEXITY CLASSES	9 Hours
Lower bounds,	Decision trees, P, NP and NP Complete problems.	
	TOTAL: 45	HOURS
TEXT BOOKS	S:	
1. Algorithm D	esign, Jon Kelinberg and Eva Tardos, 1st Edition, Pearson Education 2014	
2. Design & Ar	alysis of Algorithms, Gajendra Sharma, Khanna Book Publishing 2018.	
3. Fundamental	s of algorithms, Horowitz E, Sahini S, Rajasekaran S., University Press 2008	
REFERENCE	S:	
1. Introduction t	o algorithms, Cormen, Leiserson, Rivest, Stein, 3rd Edition, PHI. 2012	
2. An introduction	on to analysis of algorithms, R. Sedgewick, 1st edition, Pearson Education 1996	
2 Data Structu	nos and Duconam Dasian in C. Dohart I. Kruss, C.I. Tondo, Pruss, Laura, Dasaro	Education

3. Data Structures and Program Design in C, Robert L. Kruse, C.L. Tondo, Bruce Leung, Pearson Education. 2007

4. https://archive.nptel.ac.in/courses/106/106/106106131/

5. https://archive.nptel.ac.in/courses/106/101/106101060/

6.https://ocw.mit.edu/courses/6-046j-design-and-analysis-of-algorithms-spring-2015/pages/syllabus/

B.E. – Artificial Intelligence & Data Science | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2023 Approved in 10th Academic Council Meeting held on 30.06.2023

2302A	S302				Ι	DATAI	BASE S	YSTE	MS				L	Т	Р	С
													3	0	0	3
PRERI	EQUI	SITE:														
		NT	T													
		INI														
COUR	SE Ol	BJECT	IV	ES:												
		T					MC		a dalia	~						
		10 und	erst	the nor	concep	t of DE	sivis and	1 EK M	odelin	g						
		To expl	ain	the nor	manzai			nai aige	ora.	ام من ام م	anin a fe		a a 1 4 da	h		
		I o appl	y ti	ne conc	urrency	contro	I, recove	ery, sec	urity a	na inc	exing ic	or the r	eal th	ne a	ata.	
COUR	SE O	UTCON	ЛE	S:												
	On t	haanaa	haaf		alation	ofthoo	011400 0	tudanta		a abla	<u>to</u>					
C	01:	ne succe Illustrat	e tł	ui com ne desig	n princi	on the c	ourse, s r databa	<u>iudenis</u> ise desi	will D onand	FR m	io odel					
C	02:	Constru	ict !	SOL Or	ieries us	sing rel	ational	algebra	conce	nts	Juci					
C	03:	Compa	re t	he basic	databa	se stor	age stru	cture ar	d acce	ss tecl	miques	indexi	ng an	d has	hing	
C	04:	Apply (Con	currenc	ev contro	ol and	recovery	v mecha	nisms	for th	e desiral	ble data	abase	prot	olem	
C	05:	Review	the	e fundai	nental y	view or	unstruc	ctured d	lata an	d its m	anagem	ent		proc		
COs	Vs PO	s MAP	PIN	NG:												
	COs	PO	1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PC)12	
	CO	1 3		2	3	1	2	-	-	-	2	2	-		-	
	CO	2 3		2	3	3	2	-	-	-	2	2	1		-	
	CO	3 3		3	2	2	1	-	-	-	2	2	1		-	
	CO	4 3		3	2	2	1	-	-	-	1	2	1		-	
	CO	5 3		2	3	2	-	-	-	-	-	-	-		-	
<u> </u>		O- MAI	וחח	NC.												
COs	vs PS	US MA	PPI	ING:												
						COs	PSO1	PSO2	PSC	03						
						CO1	3	2	-							
						CO2	3	3	-							
						CO4	3	3	-							
						CO5	3	3	-							
COUP	SF CO	NTEN	JTS	·												
			10	•												
MODU	ULE-I	INT	RC	DUCT	TION T	O DAT	FABAS	E SYS	rems						9 Ho	urs
Introdu	uction	to Data	bas	se Syste	ems: Ov	erview	– Data	Mode	s - Da	atabas	e Syster	n Arch	itectu	ire –	Histo	ory of
Databa	ise Sy	stems.	Ent	ity-Rela	ationshi	p Mod	el: Basi	ic Con	cepts -	- Con	straints	– Key	s – I	Desig	n Iss	ues –
Entity Schem	Relati a	onship	Dia	agram –	- Weak	Entity	Sets –	Extend	ed E-l	k Feat	ures – I	Jesign	ot a	n E-l	x Dat	abase
MODU	ule-I	I REI	LA'	ΓΙΟΝΑ	L MOI	DEL									9 Ho	urs

B.E. – Artificial Intelligence & Data Science | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2023 Approved in 10th Academic Council Meeting held on 30.06.2023

Structure of Relational Databases – Relational Algebra – Extended - Relational Algebra Operations – Modification of Database – Views – Tuple Relational Calculus – Domain Relational Calculus. SQL: Background – Basic Structure – Set - Operations – Aggregate Functions – Null Values – Nested Sub queries – Modification of the database – Joined Relations – Data Definition Language .

MODULE-III INTEGRITY SECURITY AND FILE STRUCTURES

Domain Constraints – Referential Integrity – Assertions–Security and Authorization – Authorization in SQL-Relational-Database Design: Normalization -first normal form, second normal form, third normal form, Boyce-Codd normal form-Indexing and Hashing: Basic Concepts – Ordered Indices – Static Hashing – Dynamic Hashing .

MODULE-IV TRANSACTION CONCEPT

Two-Phase Locking Techniques for Concurrency Control – Concurrency Control based on timestamp – Recovery Concepts – Recovery based on deferred update – Recovery techniques based on immediate update - Shadow Paging .

MODULE-V CLOUD AND NO SQL DATABASES

Cloud databases- Data Storage Systems on the Cloud, Data Representation, Partitioning and Retrieving Data, Challenges with Cloud-Based Databases- NoSQL Data model: Aggregate Models, Document Data Model, Key-Value Data Model, Columnar Data Model, Graph-Based Data Model .

TOTAL: 45 HOURS

9 Hours

9 Hours

9 Hours

TEXT BOOKS:

1. Fred R McFadden, Jeffery A Hoffer, Mary B. Prescott, Modern Database Management, Fifth Edition, Addison Wesley, 2000

2. Abraham Silberschatz, Henry F. Korth, and S. Sudharsan, "Database System Concepts", 7th Edition, McGraw Hill, 2019

REFERENCES:

JefreyD.Ulman, Jenifer Widom, A First Course in Database Systems, Pearson Education Asia, 2001
 Elmasri, Navathe, Fundamentals of database Systems, Seventh Edition, Addison Wesley, 2016

3. Raghu Ramakrishnan, Database Management Systems, Mcgraw-Hill, 4th edition, 2015

4. 3. Bipin C Desai, An Introduction to Database Systems, Galgotia Publications Pvt Limited, 2001

4. https://hyperskill.org/tracks/31

5. https://nptel.ac.in/courses/106106220

2302AS30)3			AR	TIFIC	IAL IN	TEL	LIG	ENCE			L	Т	P	С
												3	0	0	3
PREREO	IIISITE														
		•													
	NIL														
			~												
COURSE	OBJEC	TIVE	S:												
	1 To	provid	e an or	nortur	ity to g	ain evne	rtice	in or	e of th	- most	fascina	ting ar	nd faste	et ar	owing
	areas	of Co	mputer	Scien	ce throu	igh class	sroon	n pro	gram t	hat cov	vers fas	cinatin	g and	comp	elling
	topic	s relate	ed to	human	intelli	gence a	nd it	ts [°] ap	plicatio	ons in	indust	ry, det	fence,	healt	hcare,
	agric	ulture a	and ma	ny oth	er areas	•									
	2.To	offer	the stu	idents	a rigor	ous, ad	vance	ed ar	nd prof	ession	al grad	uate-le	evel for	undat	tion in
	Artif	icial In	telligei	nce.											
COURSE	OUTC	OMES	:												
0	n the su	ccessfu	1 comp	oletion	of the c	ourse, st	uden	ts wi	ll be ab	le to					
	Infer	knowle	edge al	oout in	telligen	t agents	for se	earch	and st	ate spa	ace repi	resenta	tion		
CO2:	Solve	e AI pro	oblems	throug	gh prog	ramming	3								
CO3:	Build	l differ	ent mo	dels an	d apply	theoret	ical c	once	pts to r	eal-wo	rld prol	blems			
CO4:	Desig	gn and	develo	p prog	rams for	r an agei	nt to 1	learn	and ac	t in a s	tructure	ed envi	ronme	nt	
CO5:	Anal	yze AI	Ethics	and in	dustrial	use case	es for	real	-time p	roblem	n solvin	g using	g AI		
												<u> </u>			
COs Vs l	POs MA	PPIN	G:												
Г	COa	DO1	DO2	DO3	DO4	PO5	DO	DOT		DOO	DO10	DO11	DO11	,]	
	COS	101	102	105	104	105	6	10/	100	109	1010	1011	1012	·	
	CO1	3	3	3	2	1	-	-	-	-	-	-	-		
	CO2	3	2	3	3	3	-	-	-	-	_	-	-		
	CO3	3	2	3	2	2	_	_	-	_	_	_	_		
-	CO4	3	2	3	2	- 1	_	_	<u> </u>	_	_	_	_		
-	C04	3	1	5	2	1	_	1	1					_	
	003	5	1	-	2	-	-	1	1	-	-	-	-		
COs Vs I	PSOs M	APPIN	NG:												
					COs	PSO1	PSC	32	PSO3						
					CO1	3	-		-						
					CO2	3	3		-						
					CO3	3	3		-						
					CO4	3	3		-						
					CO5	3	3		-						
							1	I							
L															

COURSE CON	TENTS:	
MODULE-I	INTRODUCTION	6 Hours
Concept of AI, and graph stru ada.cx.	history, current status, scope, agents, environments, Problem Formulations, Rev ctures, State space representation, Search graph and Search tree., Case study	view of tree : Talkie.ai,
MODULE-II	SEARCH ALGORITHMS	12 Hours
Random search first search, A* satisfaction pro	, Search with closed and open list, Depth first and Breadth first search, Heuristic s d algorithm, Game Search, Hill climbing search, Search with non-determinism, blems, Map coloring, Job-shop scheduling, Backtracking for CSPs .	earch, Best Constraint
MODULE-III	REASONING& MARKOV DECISION PROCESS	12 Hours
Probability, co inference, temp iteration, polic Reducing wait	nditional probability, Bayes Rule, Bayesian Networks- representation, construction or al model, hidden Markov model, MDP formulation, utility theory, utility function y iteration and partially observable MDPs. Case study: How many patients time at a traffic intersection.	ruction and tions, value s to admit,
MODULE-IV	REINFORCEMENT LEARNING	9 Hours
Passive reinfor difference lear DeepMind'sAlj	rcement learning, direct utility estimation, adaptive dynamic programming ning, active reinforcement learning- Q learning. Case Study: AWS De phaZero, Arcade Learning Environment &Procgen.	, temporal eep Racer,
MODULE-V	AI APPLICATIONS & AI ETHICS	6 Hours
IBM Watson - using AWS Al autonomous we future of work,	Create a retail customer service chatbot, AWS AI Services - Monitor and predict services, Automate insurance document processing with AI, The Ethics of A eapons, Surveillance, security, and privacy, Fairness and bias, Trust and transpa Robot rights, AI Safety.	health data AI - Lethal arency, The
	TOTAL: 45	HOURS
	۲.	
IEAI BUUK		
1. Stuart Russel	I and Peter Norvig, "Artificial Intelligence: A Modern Approach", 4th Edition, Pi	rentice Hall
2. Rich and Key	vin Knight, "Artificial Intelligence", Tata McGraw Hill	

REFERENCES:

1. Trivedi, M.C., "A Classical Approach to Artificial Intelligence", Khanna Publishing House, Delhi. 2. SarojKaushik, "Artificial Intelligence", Cengage Learning India, 2011

3. David Poole and Alan Mackworth, "Artificial Intelligence: Foundations for Computational Agents", Cambridge University Press 2010

4. https://nptel.ac.in/courses/106105077 5. https://nptel.ac.in/courses/106106126

6. https://aima.cs.berkeley.edu

7. https://developer.ibm.com/tutorials/create-your-first-assistant-powered-chatbot/

8. https://youtu.be/UDFl_bBGDzQ

2301GEX54		APPL	JED D	IGIT	AL LO	OGIC	AN	D D	ESIG	N LAI	BORA	TOR	Y	L	Т	P	С
		(Comm	on to l	B.E-C	SE, BI	ME	, B.'	Tech –	- IT an	d AII	DS		0	0	2	1
PREREOU	SITE																
	1.	Basi	c Math	ematio	c Skill	s											
COURSE O	BJEC	TIVE	S:														
-																	
-		1.	To pre	esent th	ne fun	damen	tals	of c	ligital	circuit	s and s	implif	icatio	n me	thod	s.	
		2.	To pra	actice t	he des	sign of	var	ious	s comb	inatior	nal and	l seque	ntial o	ligita	al cir	cuits	using
			logic g	gates.		-						-		-			-
		3.	To pra	actice t	he HI	DL prog	grar	nmi	ng for	combi	nation	al and	seque	ntial	circ	uits.	
COURSE O	UTCO)MES	5:														
					0.1						1						
On	the suc	cesstu	il comp	oletion	of the	cours	e, st	ude	nts wi	$\frac{1}{1}$ be at	ole to						
	1: C	onstru	lct diffe	erentco	ombina	ational	circ	uits	using	logic g	gates.	n flond					
	2. D 3. R	uild n	p uniei	mable	devic	Ac usir	$\frac{1}{10}$	oric	g logic	gates		p nops					
	5. D	evelo	n Veril	og pro	gram t	for cor	nbir	natic	<u>gates.</u> mal an	d seau	ential	circuit	s				
		01010		<u>05 pro</u>	Brain	01 001		iunc	Jiidi dii	u sequ	ontial	eneur	5.				
COs Vs PC)s MA	PPIN	G:														
									-								
	COs	PO	PO2	PO3	PO4	PO5	P	06	PO7	PO8	PO9	PO1 0	PO1	1 PC)12		
		1															
	<u>CO1</u>	3	2	1	-	-	·	-	-	-	2	1	-	1	<u> </u>		
	$\frac{CO2}{CO2}$	3	2	1	-	-	· ·	-	-	-	2	1	-	1	<u> </u>		
	$\frac{CO3}{CO4}$	2	2	1 1	-	-		-	-	-	2	1 1	-	1			
	004	5	Z	1	-	3			-	-	Z	1	-		<u> </u>		
COs Vs PS	Os M	APPI	NG:														
000 1020	00112																
					0	COs I	PSO	PS	O2PS	03							
							1										
					(CO1	3	-	-								
					(CO2	3		-								
					(203	3		-								
					C	.04	3	-	-								
I IST OF F	VPFR	MEN	JTC.														
List of Lab	experi		on The	~ ~ ~ ~ ~ ~		hasia	~~ 4 ~										
1. Verificat	1011 01 . nd imn	Boole	an The	orems	using Enddor	Dasic g	gale	S.	or ful	laddar	and f	11 oub	tracto	r			
2. Design a	nd imp	lemer	itation	of cod		, nan s	suoi	.1 act	01, 1ui		anu n	un suo	inacto				
4 Design a	nd imp	lemer	itation	of mul	tiplex	er and	de-i	mul	tiplexe	r							
5. Design a	nd imp	lemer	tation	naritv	genera	ator/ch	eck	er.	присле								
6. Design a	nd imp	lemer	itation	counte	ers.			•11									
7. Design a	nd imp	lemer	itation	shift re	egister												
8. Develop	and sir	nulati	on of V	/erilog	progr	am for	co	mbiı	nationa	al circu	its.						
9. Develop	and sir	nulati	on of V	/erilog	progr	am fo	r se	que	ntial ci	rcuits.							
Hardware/s	oftwar	e req	uireme	ent				-									
1. Digital	trainer	kit 10) Nos														
2. Adequa	te num	ibers c	of IC's	**	C.												
S. Allinxl	SE (Or)	Altera	a Quart	us II s.	onwai	re											

3. XilinxISE (or)Altera Quartus II software

TOTAL: 30 HOURS

REFERENCES:

1. Morris Mano and Michael D. Ciletti, "Digital Design", 5th edition, Prentice Hall of India, 2012

2. Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2003 3. https://archive.nptel.ac.in/courses/108/105/108105132/

(Link for NPTEL/SWAYAM/MOOC Courses)

4. https://www.vlab.co.in/broad-area-electronics-and-communications (Link for modern tool usage)

Image: Note of the successful completion of the course, students will be able to Image: Note of the successful completion of the course, students will be able to COURSE OUTCOMES: Image: Note of the successful completion of the course, students will be able to Image: Note of the successful completion of the course, students will be able to COURSE OUTCOMES: Image: Note of the successful completion of the course, students will be able to Image: Note of the successful completion of the course, students will be able to COURSE OUTCOMES: Image: Note of the successful completion of the course, students will be able to Image: Note of the successful completion of the course, students will be able to COURSE OUTCOMES: Image: Note of the successful completion of the course, students will be able to Image: Note of the successful completion of the course, students will be able to COURSE OUTCOMES: Image: Note of the successful completion of the course, students will be able to Image: Note of the successful completion of the course, students will be able to CO2: Enhance skills in applying and interpreting statistical distributions Image: Note of the successful completion of the course is not of the course is not of the dataset CO3: Apply visualization techniques to understand data distributions and patterns Image: Note of the dataset CO4: Determine the important predictor variables in a regression analysis of the dataset Image: Note of the course is not of the course is not of the	2302AS351		ST	TATIST	ICA	L AN	ALYSI	IS ANI	D COI	MPUT	ING		L	Т	Р	С
PREREQUISITE: 2301GE201 - Programming using Python 2301MA301 - Probability and Statistics COURSE OBJECTIVES: This course is intended for students to get introduced to methods and tools for statistic computing. The course aims at the contemporary tools and languages for the same using languages suc as R, Python and MATLAB. The course shall be accompanied by computational lab for statistical analysis. COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: Develop a deeper understanding of different statistical distributions CO2: Enhance skills in applying and interpreting statistical methods CO3: Apply visualization techniques to understand data distributions and patterns CO4: Determine the important predictor variables in a regression analysis of the dataset													0	0	2	1
2301GE201 - Programming using Python 2301MA301 - Probability and Statistics COURSE OBJECTIVES: This course is intended for students to get introduced to methods and tools for statistic computing. The course aims at the contemporary tools and languages for the same using languages suc as R, Python and MATLAB. The course shall be accompanied by computational lab for statistical analysis. COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: Develop a deeper understanding of different statistical distributions CO2: Enhance skills in applying and interpreting statistical methods CO3: Apply visualization techniques to understand data distributions and patterns CO4: Determine the important predictor variables in a regression analysis of the dataset	PREREQUIS	TE:														•
2301GE201 - Programming using Python 2301MA301 - Probability and Statistics COURSE OBJECTIVES: This course is intended for students to get introduced to methods and tools for statistic computing. The course aims at the contemporary tools and languages for the same using languages suc as R, Python and MATLAB. The course shall be accompanied by computational lab for statistical analysis. COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: Develop a deeper understanding of different statistical distributions CO2: Enhance skills in applying and interpreting statistical methods CO3: Apply visualization techniques to understand data distributions and patterns CO4: Determine the important predictor variables in a regression analysis of the dataset CO5: Formulate hypothesis, perform a suitable hypothesis test and apply resampling techniques																
2301MA301 - Probability and Statistics COURSE OBJECTIVES: This course is intended for students to get introduced to methods and tools for statistic computing. The course aims at the contemporary tools and languages for the same using languages suct as R, Python and MATLAB. The course shall be accompanied by computational lab for statistical analysis. COURSE OUTCOMES: On the successful completion of the course, students will be able to CO2: Enhance skills in applying and interpreting statistical distributions CO2: Enhance skills in applying and interpreting statistical methods CO3: Apply visualization techniques to understand data distributions and patterns CO4: Determine the important predictor variables in a regression analysis of the dataset CO5: Formulate hypothesis, perform a suitable hypothesis test and apply resampling techniques		230	1GE201	- Progr	amm	ing usi	ng Pyt	hon								
COURSE OBJECTIVES: This course is intended for students to get introduced to methods and tools for statistic computing. The course aims at the contemporary tools and languages for the same using languages suc as R, Python and MATLAB. The course shall be accompanied by computational lab for statistical analysis. COURSE OUTCOMES: On the successful completion of the course, students will be able to COURSE OUTCOMES: On the successful completion of the course, students will be able to COURSE OUTCOMES: On the successful completion of the course, students will be able to COURSE OUTCOMES: On the successful completion of the course, students will be able to COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: Develop a deeper understanding of different statistical distributions CO2: Enhance skills in applying and interpreting statistical methods CO3: Apply visualization techniques to understand data distributions and patterns CO4: Determine the important predictor variables in a regression ana		230	1MA301	1 - Proba	abilit	y and S	Statisti	cs								
COURSE OBJECTIVES. This course is intended for students to get introduced to methods and tools for statistic computing. The course aims at the contemporary tools and languages for the same using languages suc as R, Python and MATLAB. The course shall be accompanied by computational lab for statistical analysis. COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: Develop a deeper understanding of different statistical distributions CO2: Enhance skills in applying and interpreting statistical methods CO3: Apply visualization techniques to understand data distributions and patterns CO4: Determine the important predictor variables in a regression analysis of the dataset CO5: Formulate hypothesis, perform a suitable hypothesis test and apply resampling techniques	COURSEOR	IFCI	TVFS													
This course is intended for students to get introduced to methods and tools for statistic computing. The course aims at the contemporary tools and languages for the same using languages suc as R, Python and MATLAB. The course shall be accompanied by computational lab for statistical analysis. COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: Develop a deeper understanding of different statistical distributions CO2: Enhance skills in applying and interpreting statistical methods CO3: Apply visualization techniques to understand data distributions and patterns CO4: Determine the important predictor variables in a regression analysis of the dataset CO5: Formulate hypothesis, perform a suitable hypothesis test and apply resampling techniques																
The course aims at the contemporary tools and languages for the same using languages suc as R, Python and MATLAB. The course shall be accompanied by computational lab for statistical analysis. COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: Develop a deeper understanding of different statistical distributions CO2: Enhance skills in applying and interpreting statistical methods CO3: Apply visualization techniques to understand data distributions and patterns CO4: Determine the important predictor variables in a regression analysis of the dataset CO5: Formulate hypothesis, perform a suitable hypothesis test and apply resampling techniques		Thi con	s course nputing.	e is inte	nded	for st	udents	to get	t intro	duced	to met	hods a	and too	ols fo	r stat	tistical
The course shall be accompanied by computational lab for statistical analysis. COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: Develop a deeper understanding of different statistical distributions CO2: Enhance skills in applying and interpreting statistical methods CO3: Apply visualization techniques to understand data distributions and patterns CO4: Determine the important predictor variables in a regression analysis of the dataset CO5: Formulate hypothesis, perform a suitable hypothesis test and apply resampling techniques		The	e course Pytho	aims at n and M	the c	ontem	porary	tools a	and lar	nguage	s for th	ie same	e using	lang	uages	s such
COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: Develop a deeper understanding of different statistical distributions CO2: Enhance skills in applying and interpreting statistical methods CO3: Apply visualization techniques to understand data distributions and patterns CO4: Determine the important predictor variables in a regression analysis of the dataset CO5: Formulate hypothesis, perform a suitable hypothesis test and apply resampling techniques		The	e course	shall be		mpani	ed by a	compu	tationa	l lab fo	or stati	stical a	nalysi	5.		
COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: Develop a deeper understanding of different statistical distributions CO2: Enhance skills in applying and interpreting statistical methods CO3: Apply visualization techniques to understand data distributions and patterns CO4: Determine the important predictor variables in a regression analysis of the dataset CO5: Formulate hypothesis, perform a suitable hypothesis test and apply resampling techniques		-				•		•					•			
On the successful completion of the course, students will be able toCO1:Develop a deeper understanding of different statistical distributionsCO2:Enhance skills in applying and interpreting statistical methodsCO3:Apply visualization techniques to understand data distributions and patternsCO4:Determine the important predictor variables in a regression analysis of the datasetCO5:Formulate hypothesis, perform a suitable hypothesis test and apply resampling techniques	COURSE OU	rco	MES:													
 CO1: Develop a deeper understanding of different statistical distributions CO2: Enhance skills in applying and interpreting statistical methods CO3: Apply visualization techniques to understand data distributions and patterns CO4: Determine the important predictor variables in a regression analysis of the dataset CO5: Formulate hypothesis, perform a suitable hypothesis test and apply resampling techniques 	On the	succ	essful c	ompletio	on of	the co	urse, st	tudents	s will t	be able	to					
CO2:Enhance skills in applying and interpreting statistical methodsCO3:Apply visualization techniques to understand data distributions and patternsCO4:Determine the important predictor variables in a regression analysis of the datasetCO5:Formulate hypothesis, perform a suitable hypothesis test and apply resampling techniques	CO1:	Dev	velop a c	leeper u	nders	standir	ng of di	fferent	statis	tical di	stribut	ions				
CO3:Apply visualization techniques to understand data distributions and patternsCO4:Determine the important predictor variables in a regression analysis of the datasetCO5:Formulate hypothesis, perform a suitable hypothesis test and apply resampling techniques	CO2:	Enł	nance sk	ills in aj	pplyi	ng and	interp	reting	statisti	cal me	thods					
CO4:Determine the important predictor variables in a regression analysis of the datasetCO5:Formulate hypothesis, perform a suitable hypothesis test and apply resampling techniques	CO3:	Ap	ply visua	alizatior	n tech	niques	s to und	lerstan	d data	distrib	utions	and pa	tterns			
CO5: Formulate hypothesis, perform a suitable hypothesis test and apply resampling techniques	<u>CO4:</u>	Det	ermine	the impo	ortant	t predi	ctor va	riables	in a re	egressi	on ana	lysis of	f the da	ataset	<u> </u>	
	C05:	For	mulate l	hypothes	s1s, p	ertorm	a suita	able hy	pothes	sis test	and ap	ply res	samplu	ng tec	hniqu	ues
COs Vs POs MAPPING:	COs Vs POs	MAF	PPING:													
			DO1	DOA	DO	DO 4	D05	DOC	DOF	DOG	DOG	DO10	DO11			
$\begin{bmatrix} cos & Po1 & Po2 & Po & Po4 & Pos & Po6 & Po7 & Po8 & Po9 & Po10 & Po12 \\ 3 & 3 & 3 & 3 & 3 \end{bmatrix}$		5	POI	PO2	PO 3	PO4	PUS	PU0	PO/	PUð	PO9	POIU	POII	PUL	2	
CO1 3 3 2 2 3 - - 2 1 - -	С	01	3	3	2	2	3	-	-	_	2	1	-	-		
CO2 3 3 2 2 3 - - 2 1 - -	С	02	3	3	2	2	3	-	-	-	2	1	-	-		
CO3 3 2 2 2 3 - - 2 1 -	С	03	3	2	2	2	3	-	-	-	2	1	-	-		
CO4 3 3 2 2 3 - - 2 1 -	C	04	3	3	2	2	3	-	-	-	2	1	-	-		
CO5 3 3 2 2 3 - - 2 1 -	С	05	3	3	2	2	3	-	-	-	2	1	-	-		
COs Vs PSOs MAPPING:	COs Vs PSO	s MA	PPING	:												
COs PSO1 PSO2 PSO3					C	Os I	PSO1	PSO 2	2 PS	03						
CO1 3 3 2					С	01	3	3		2						
CO2 2 1 1					С	02	2	1		1						
CO3 3 3 2					C	03	3	3		2						
CO4 3 3 2					C	04	3	3	/	2						
CO5 3 3 2					C	05	3	3		2						

LIST OF EXPERIMENTS:

- 1. Implement random number generation using R/Python or MATLAB drawn from various distributions such as Uniform, Normal, Exponential etc. Plot the histograms of the generated numbers and compute the mean and standard deviations
- 2. Implement the sampling and verify the central limit theorem.
- 3. Use the generators for certain distribution and compute the various moments and measures of the central tendency and statistical tests of significance.
- 4. Use census data from the Govt. of India and perform statistical analysis as defined by the instructor (for example multivariate analysis to find correlation between various attributes of data)
- 5. Perform linear regression to study the dependency of a dependent variable on various input/predictor variables
- 6. Study various types of regularizations and determine which predictor variables are significant.
- 7. Form a hypothesis and using the given dataset perform hypothesis testing (as defined by the instructor)
- 8. Perform various types of resampling to address mixed distributions, removing bias

TOTAL: 30 HOURS

TEXT BOOK:

1. Manish Sharma, Amit Gupta, The Practice of Business Statistics, Khanna Book Publishing House, 2010

REFERENCES:

1. B. L. S. PrakasaRao, A First Course in Probability and Statistics, World Scientific/Cambridge University Press India, 2009.

2. R. V. Hogg, J. W. McKean and A. Craig, Introduction to Mathematical Statistics, 6th Ed., Pearson Education India, 2006

3. Gareth M. James, Introduction to statistical learning: With applications to R, Springer 2013

4. https://archive.nptel.ac.in/courses/111/105/111105077/

5. https://libguides.jcu.edu.au/statistics/training

2302	AS352				SOL	for Dat	a Sciei	ıce				L	Т	Р	С		
					<u> </u>							0	0	4	2		
DDFL	PEOLIISI	 Т F •															
I KĽI	LQUISI	112.															
		NIL															
~																	
COU	RSE OBJ	ECTT	VES:														
		Toda	nian or	anta and	monog	a databa	sos for	data	stora	ro and r	otrioval						
		To de	volv adv	anced co	manage	ike stor	ed prod	<u>uata</u>	storag	ge and re	d databa	se des	ion	nrine	inles		
			e SOL i	n data se	ience w	orkflow	s incl	uding	data	wrangli	ng featur	e eng	inee	ring -	and		
		data y	visualiza	tion.		OIKIIOW	5, mei	uuiing	uutu	wrangin	ig, ieutui	e eng	mee	, ing, i	und		
COU	RSE OUI	ГСОМ	ES:														
	0 1		6 1	1	6.1		1 /	111	1 1	1 4							
	CO1.	Imple	ssiul con	npical date	of the c	tions on	d man	5 Will	be ab	ie to	¢						
	$\frac{CO1}{CO2}$	Desic	n appli	pical data	tost Ne	uons an	d Inan	Quari		mmanu	5.						
	$\frac{\text{CO2.}}{\text{CO3.}}$	Imple	ement si	mple app	lication	s that up	a John Se Viev	Ve	65								
	<u>CO4:</u>	Critic	cally ana	lvze the	use of F	Function	$\frac{1}{s}$ and $\frac{1}{s}$	Proced	lures								
	CO5:	Apply	v data m	odeling t	echniau	ues to de	esign a	nd im	plem	ent datal	bases for	data s	cien	ce			
		applie	cations.	0	1		0		1								
		MAPPING:															
COs	Vs POs I	bs MAPPING:															
[COs	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO9 PO10 PO11 PO12															
	COS	101	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO PO9 PO10 PO11 PO12														
-	CO1	3	2	3	1	2	-	-	-	2	2	-		-			
	CO2	3	2	3	3	2	-	-	-	2	2	1		-			
-	CO3	3	3	2	2	1	-	-	-	2	2	1		-			
	CO4	3	3	2	2	1	-	-	-	1	2	1		-			
	CO5	3	2	3	2	-	-	-	-	-	-	-		-			
	IL DOO		DING		•										-		
COs	Vs PSOs	MAP	PING:														
					COs	PSO1	PSO	2 PS	503								
				ľ	CO1	1	2		2								
				-	CO2	2	1		3								
				-	CO3	1	1		2								
				-	CO4	2	1		2								
				-	CO5	3	3		2								
						5	5		-								
LIST	OF EXP	ERIM	ENTS:														
1. S	tudy of B	asic SC	QL Com	mands													
2. D	DL and I	DML															
3. T	able creat	ion wi	th consta	raints													

3. Table creation with constraints

- 4. Joins operations with views
- 5. PL/SQL-Procedures
- 6. PL/SQL-Cursors
- 7. PL/SQL-Functions, Triggers
- 8. Data Exploration and Cleaning
- 9. Data Transformation
- 10. Data Analysis
- 11. Data Modelling

TOTAL: 60 HOURS

Mode of Assessment: PAT/Project Presentation

TEXT BOOKS:

1. Fred R McFadden, Jeffery A Hoffer, Mary B. Prescott, Modern Database Management, Fifth Edition, Addison Wesley, 2000

2. Abraham Silberschatz, Henry F. Korth, and S. Sudharsan, "Database System Concepts", 7th Edition, McGraw Hill, 2019

REFERENCES:

1. JefreyD.Ulman, Jenifer Widom, A First Course in Database Systems, Pearson Education Asia, 2001

2. Elmasri, Navathe, Fundamentals of database Systems, Seventh Edition, Addison Wesley, 2016

Raghu Ramakrishnan, Database Management Systems, Mcgraw-Hill, 4th edition, 2015
 Bipin C Desai, An Introduction to Database Systems, Galgotia Publications Pvt Limited, 2001

4. https://hyperskill.org/tracks/31

5. https://nptel.ac.in/courses/106106220