B.E. Mechanical Engineering | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2019 Approved in IV Academic Council Meeting Held on 25.05.2019

E.G.S. PILLAY ENGINEERING COLLEGE

(Autonomous)

Approved by AICTE, New Delhi | Affiliated to Anna University, Chennai

Accredited by NAAC with 'A' Grade | Accredited by NBA (CSE, EEE, MECH)

NAGAPATTINAM - 611 002

B.E MECHANICAL ENGINEERING

Fourth Year – Eighth Semester

Course Code	Course Name	L	Т	Р	С	Maximum Marks					
						CA	ES	Total			
Theory Course											
	PC Elective IV	3	0	0	3	40	60	100			
	PC Elective V	3	0	0	3	40	60	100			
Laboratory Course											
1904ME851	Project Viva Voce	0	0	14	7	50	50	100			

L – Lecture | T – Tutorial | P – Practical | CA – Continuous Assessment | ES – End Semester

1903ME021	APPLIED HYDRAULICS AND PNEUMATICS											С		
17050112021				(PC E	lective I	V)	0.0.1.1.1	00	2		-	2		
											U U			
		DOW												
MODULE I	FLUID	POWE			LS AND	HYDR	AULIC	PUMPS			Hou	rs		
Introduction to	Fluid po	wer - F	Advantag	ges and .	Applicat	1000 - 1	fluid po	Wer syst	ems – 1	ypes of	I IIU10	IS -		
Work Power	nus anu s		- Dasics	Source	nauncs –	- rascal	s Law –	· Dump	ing The			088		
- WOIK, FOWE		orque r	n W	, Source	Design	yuraune Adv	power	. Fullip	llig The dvantage	ory –	ru. ormon	mp co		
Selection criteri	- CO	ar and	Rotary –	Fixed a	nd Varia	hle disn	lacemen	t numns	– Proble	, 1 CH	Jiman	сс,		
MODULE II	HYDR	AULIC	ACTUA	ATORS	AND C	ONTRO	DL CON	IPONE	NTS	<u> </u>	9 Hou	rs		
Hydraulic Actu	ators: (Cylinder	s – Ty	pes and	constru	ction,	Applicat	ion, H	ydraulic	cushi	oning	_		
Hydraulic moto	rs - Co	ntrol Co	mponent	ts : Dire	ction Co	ntrol, Fl	ow cont	rol and p	oressure	control	valve	s –		
Types, Constru	ction and	d Opera	tion – S	Servo an	nd Propo	ortional	valves -	- Applic	ations –	Acces	sories	:		
Reservoirs, Pre	ssure Sw	itches –	Applica	tions –	Fluid P	ower A	NSI Syı	nbols –	Problem	IS.				
MODULE III	HYDR	AULIC	CIRCU	ITS AN	ID SYST	ΓEMS				9	9 Hou	rs		
Accumulators,	Intensifie	rs, Indus	strial hyo	lraulic c	ircuits -	- Regene	erative, l	Pump Ur	loading	Doubl	e- Pur	np,		
Pressure Intensi	fier, Air	-over of	il, Sequ	ence, R	eciproca	tion, Sy	nchroniz	zation, F	Fail-Safe	, Speed	Conti	rol,		
Hydrostatic trar	smission	, Electro	hydraul	ic circui	ts, Mech	anical h	ydraulic	servo sy	stems.					
MODULE IV	PNEU	MATIC	AND E		<u>O PNE</u>			EMS			Hou	rs		
Properties of an	r – Perfe	ct Gas I	$_{aws} - 0$	Compres	ssor - Fi	Iters, Re	gulator,	Lubrica	tor, Mui	fler, Ai	r cont	rol		
valves, Quick	Exhaust	valves.	, Pneum	ta La	uators,	Design	OF Pheu Drohlar	matic ci	rcuit –	Cascad	e metr	100 md		
- Electro Pheu	mane Sy	/stem –	Elemen	its – La	ader dia	igram –	Problei	ns, intro	auction	to Hui	dics a	ina		
	TROU	RI F SH					NS) Hou	rs		
Installation Sel	ection M	laintenai	ice Troi	uble Sho	oting an	d Reme	lies in H	wdraulic	and Pne	umatic	syster	15 ne		
Design of hyd	raulic ci	ircuits f	for Drill	ing Pla	anning an	Shaning	Surfac	e orindi	ing Pre	ss and	Fork	lift		
applications D	esign of	Pneuma	tic circi	its for	Pick and	d Place	applicat	ions and	tool h	andling	in Cl	NC		
Machine tools -	- Low cos	st Autom	nation –	Hvdrauli	ic and Pr	eumatic	power r	acks.						
)					TOTA	L: 45	HOUI	RS		
COURSE OUT	COMES	S:												
On the successf	ul comple	etion of	the cours	se, stude	nts will l	be able to	0							
CO1: Define	and expla	ain the ba	asic prin	ciples of	Pneuma	tics and	Hydrau	lics						
CO2: Perform	the oper	ating pri	inciples	of pump	s, valves	and act	uators, a	nd their of	circuits.					
CO3: Design	pneumat	ic and hy	draulic (circuits a	and pred	ict the re	sponses.							
CO4: Constru	rize the	orking of	trouble	shooting	alle cire	de and	systems	one of b	vdraulic	and n	noum	otio		
CO5: Summa systems		various	liouble	Shooting	g memo	us allu a	applicati	ons of f	ryuraunc	and p	licullia	anc		
system														
COs Vs POs M	APPINO	; :												
	<u> </u>											_		
COs PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	<u>PO11</u>	PO1	2		
$\begin{array}{c c} COI & 3 \\ \hline CO2 & 2 \end{array}$	2		-	2	-			2	2	2	2			
$\begin{array}{c c} CO2 & 2 \\ \hline CO3 & 2 \end{array}$	2	1		1				2	1	1	2			
$\begin{array}{c c} CO3 & 3 \\ \hline CO4 & 3 \end{array}$	2	2		1				$\frac{2}{2}$	1	$\frac{1}{2}$	1			
$\begin{array}{c c} CO4 & 3 \\ \hline CO5 & 2 \end{array}$	2	1		1				3	$\frac{2}{2}$	1	3			
000 2	2	1		1				5	2	1	5			
COs Vs PSOs	MAPPIN	G:												
			C	Os PS	501 PS	502 PS	503							
			С	01		1 2	2							
			C	02		2 3	3							
			C	03		2 3	3							
			C	04		2	5							
DEEDENCE					,									
- KHHHKKHNI (1)	z.		C	05		2	3							

2. Majumdar S.R., "Oil Hydraulics Systems- Principles and Maintenance", Tata McGrawHill, 2001

B.E. Mechanical Engineering | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2019 Approved in IV Academic Council Meeting Held on 25.05.2019

3. Anthony Lal, "Oil hydraulics in the service of industry", Allied publishers, 1982.
4. Dudelyt, A. Pease and John T. Pippenger, "Basic Fluid Power", Prentice Hall, 1987.
5. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw Hill, 1995
6. Michael J, Prinches and Ashby J. G, "Power Hydraulics", Prentice Hall, 1989.
7. Shanmugasundaram.K, "Hydraulic and Pneumatic controls", Chand & Co, 2006.

1903ME013		POWERPLANTENGINEERING											С
		(PC Elective V)											
MODULEI	GOAT	DAGED			01115			a				0.11	
MODULE I	COAL	BASEL	<u>THER</u>	MAL P	OWE	R PLA	NT	S D = 11 = ==		1 II	. 1. D	9 Hou	rs
Layout of Stea Super Critical	m power Soilers F	plant -	Compoi Bed Boi	lers Eu	electio	n. Stea	am 1 andl	ing Co	and Cyc	n Equip	ign Pre	ssure a	ana ing
coal Mechanic	al Stoke	rs Pulv	eriser F	lectrost	atic Pi	Asii 11 recinita	anui	and M	echanica	al Colle	ctors) Draiigh	nng it -
different types.	Surface (Condense	er types.	Cooling	7 Towe	ers. Pol	lutic	on contro	ols.		C1015.	Jiaugh	ii –
MODULE II	DIESE	LAND	GAS TU	JRBINI	E POW	VER P	LAN	NTS				9 Hou	rs
Layout of Dies	yout of Diesel Power Plant - Components, Selection of Engine Type, applications. Gas Turbine Power												
Plant - Layout	, Fuels, (Gas Tur	bine Ma	terial. (Open a	and Cl	osed	l Cycles	- Rehe	eating, I	Regener	ation a	and
Intercooling - I	ntegrated	Gasifier	based C	ombine	d Cycl	e syste	ms						
MODULE III	NUCL	EAR PC	WER P	LANTS	<u>S</u>		NT	1 D			1	<u>9 Hou</u>	rs
Basics of Nucl	ear Engi	neering,	Layout	and sul	bsyster	NS OI Votor E		lear Pov	wer Plar \mathbf{P}	its, Woi Jada Dai	rking o	I NUCI	ear
reactor (CAND	III Water	der Gas	(DWK) Cooled	and Lic	mid M	etal C		d React	N), CAN	ty meas	uter for	r Nucl	uiii ear
Power plants	<i>(</i>), D	uci, Oas	Coolea	and Lie			0010	u React	ors. Dare	ty mea	suites it	1 I Tuci	cai
MODULE IV	POWE	R FROM	A RENE	WABL	E ENE	RGY						9 Hou	rs
Hydro Electric	Power	Plants -	- Classit	fication,	Турі	cal La	yout	t and a	ssociated	d comp	onents	includ	ing
Turbines. Princ	iple, Con	struction	and wo	rking of	f Wind	l, Tida	l, Sc	olar Pho	to Voltai	ic (SPV), Solar	Therm	nal,
Geo Thermal, I	Siogas and	$\frac{d}{C} Fuel C}{C} C$	ell powe	r system	1S FNVI	PON	/FN	TAT 1	STIFS (DE DOI	VFD	0 Hou	re
MODULE V	PLAN	FS							BOLD V		V L'IN) 110u	15
Power tariff typ	bes, Load	distribu	tion para	ameters,	load c	curve,	Com	nparison	of site s	selectior	n criteri	a, relat	ive
merits & deme	erits, Cap	ital & C	Operating	g Cost o	of diff	erent p	owe	er plants	s. Pollut	ion con	trol tec	hnolog	gies
including Wast	e Disposa	l Option	s for Co	al and N	luclear	Power	: Pla	nts.					Da
COUDER OUT		7								TOT	AL: 45	HOU	RS
COURSE OU	ICOME	5:											
On the success	ful comple	etion of	he cours	e stude	nts wi	ll be ab	ole to)					
CO1: Unders	tand and	acquire l	cnowled!	ze about	t basics	s of Po	wer	plants a	nd Boile	r functio	ons		
CO2: Know t	he function	ons and o	compone	ents of th	ne Dies	sel and	gas	turbine	Power p	lants an	d its co	mpone	nts
CO3: Know t	he function	ons and o	compone	ents of th	ne of N	luclear	Pov	ver plan	ts.				
CO4: Know t Geothe	he function rmal Plan	ons and out. Ocean	compone Therma	ents of re 1 Plant	enewał Hydel	ole ene Plant	rgy i Sola	resource	es power	plants s	uch as		
CO5: Gain th	e knowle	dge aboi	it Energy	v and ec	onomi	cs asso	ciat	ed with	Power p	lants and	d its co	nponer	nts
		-8		,					· · · · ·			-r	
COs Vs POs M	IAPPINO	;											
		DOA	DO 4		DO		_	DOG	DOG	DO10	D011	DO	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PO2	PO3	PO4	P05	P06	P) /	P08	PO9	POI0	POI	POI	12
$\begin{array}{c c} CO1 & 3 \\ \hline CO2 & 3 \end{array}$	3	3	3		3	1							
$\begin{array}{c c} CO2 & 3 \\ \hline CO3 & 3 \end{array}$	3	3	3		3	1							
CO4 3	3	2	3		2	3							
CO5 2	3	2	2		2								
		G:	C	Ds PS	SO1	PSO2	PS	03					
			C	$\frac{33}{21}$		3	10	00					
			С	02		3							
			С	03		3							
			C)4		2							
DEEDDENCT	q		C	05		2							
KEFERENCE	D: ora C D	mkund	vor A or	ureo in	Douvor	Dlant 1	Enci	noorina	Dhanne	traile C	one Ma	XX 7	
T. S. C. Af Delhi 20	01a, S. DC 08.	mkunuv	val, A CC		rower	r iailt l	ung1	meeting	, Dhanpa	uraix S	0115, INC	w	
2. K.K. Ra	malingan	n, Power	Plant Er	gineerii	ng, Sci	tech Pu	ublic	cations (India) Pi	rivate Li	mited,	2002	

3. P. K. Nag, Power plant Engineering, Tata McGraw Hill Company Private Limited, New Delhi,
2014.
4. G. R. Nagpal, Power Plant Engineering, Khanna Publishers, New Delhi, 2002.
5. G. D. Rai, Introduction to Power Plant Technology, Khanna Publishers, New Delhi, 2013
6. <u>http://nptel.ac.in/courses/108105058/8</u>

1903M	E016			RENE	WABLE	ENERC	Y SOU	URCES		L	Т	P	C
					(PC	Liecuve	v)			3	0	0	3
MODI	TET	TNUTT		TION								0 11	
World	JLE I Enormatical			IION of Ener	av Dass		Envin	onmontol	Acreate	of Eng	ant I Itil	9 HOU	irs
Renew	able Ene	Use – R	eserves	Tamiln	gy Kest adu Ind	lia and	enviro	the Wo	Aspects	of Eller	rgy Util - Achi	Isatio evem	n –
/Annlic	cations – 1	Economi	cs of rer	newable	energy s	vstems	around		iu – 10	Julians	- Achi	2 V CIII	/1115
MODU	JLE II	SOL	AR ENI	ERGY	energy s	jstems.					1	9 Hor	irs
Solar R	Radiation	– Measu	irements	of Sola	r Radiat	ion - Fla	t Plate	and Con	centratin	g Collec	tors - S	olar d	lirect
Therma	al Applica	ations –	Solar the	ermal Po	wer Gei	neration	- Fund	lamentals	of Solar	Photo V	Voltaic (lonve	rsion
– Solar	Cells – S	lolar PV	Power (Generatio	on – Sola	ar PV Ar	plicati	ons	01 00100	1 11010			
MODI		WIN	D ENEI	RGY			piloui					9 Hor	irs
Wind Data and Energy Estimation – Types of Wind Energy Systems – Performance – Site Selection –												<u>n –</u>	
Details	of Wind	Turbine	Generat	or – Safe	ety and I	Environn	nental .	Aspects					
MODI	ILEIV	BIO	– ENER	RGY				-				9 Hor	irs
Biomas	s direct c	ombustic	n - Bior	nass gasi	ifiers – H	Biogas pl	ants – I	Digesters -	– Ethano	ol product	tion –Bi	o dies	$\frac{1}{el}$ –
Cogene	eration - B	iomass A	pplicatio	ons		- 0		0		I			
MODU	JLE V	OTH	ER RE	NEWAH	BLE EN	ERGYS	SOUR	CES				9 Hor	irs
Tidal e	nergy – W	Vave Ene	ergy – O	pen and	Closed C	DTEC Cy	rcles –	Small Hyd	lro-Geot	hermal E	nergy -	Hydro	gen
and Sto	rage - Fue	el Cell Sy	stems –	Hybrid S	ystems.								-
FOR FU	JRTHER	READ	ING – S	EMINA	$\mathbf{R} - \mathbf{CB}$	S							
Solar p	ond ,types	of pv pa	nels, The	ermal ene	ergy stora	age mater	ials, R	enewable	energy h	arvesting	by nanc	mater	ials
COUD		COMP	-							ТОТ	AL: 45	HOU	RS
COUR	SE OUT	COME	5:										
On the	successfi	ul comple	etion of	the cours	se stude	nts will	he ahle	to					
CO1:	Underst	and the r	ecessity	of renev	wable en	ergy sou	rces ar	nd its pote	ntial in a	and arou	nd the w	vorld.	
CO2.	Explain	the conc	ept of th	e variou	s metho	ds of sol	ar ther	mal energ	y conver	sion syst	tem and		
CO2:	Photovo	ltaic sys	tem					0		2			
CO3:	To study	/ about th	he poten	tial and o	energy c	onversio	n proc	ess of Wi	nd Energ	gy.			
CO4:	Explain	bio gas s	sources,	generati	on and it	ts impac	t on en	vironmen					
CO5:	To impa	rt funda	mental k	nowledg	ge about	Ocean T	herma	l Energy a	nd Geot	hermal E	Energy.		
			r										
COs v	S POS M	APPING	J:										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12
C01	1	1	100	101	100	100	101	100	107	1010	1011	2	
CO2	2	2	3		2							2	
CO3	2	2	3		2							2	
<u>CO4</u>	2	2	2		2							2	
CO5	2	2	2		2							2	
COs V		/ A PPIN	IC.										
	<u>51505</u> h		U.	С	Os PS	SO1 PS	502 I	PSO3					
				C	01			500					
				С	02	2							
				С	03								
				C	04								
				C	05								

REFERENCES:

1. Rai. G.D., "Non Conventional Energy Sources", Khanna Publishers, New Delhi, 2018.

2. Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, second edition

3. Boyle, Godfrey. 2004. "Renewable Energy (2nd edition)". Oxford University Press.

4. J A Duffie and W A Beckman"Solar Engineering of Thermal Processes" 3rdedition

4. Sukhatme, Suhas P., and J. K. Nayak. "Solar energy", McGraw-Hill Education, 2017.

1904M	E851	PROJECT VIVA VOCE											. T	P	C
													0	14	7
GUIDELINE FOR REVIEW AND EVALUATION															
The students may be grouped into 2 to 4 and work under a project supervisor. The device/															
system/component(s) to be fabricated may be decided in consultation with the supervisor and if															
possible with an industry. A project report to be submitted by the group and the fabricated model,													odel,		
which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head													Head		
of the Department. At the end of the semester examination the project work is evaluated based on oral												oral			
presentation and the project report jointly by external and internal examiners constituted by the Head of												ad of			
the Department															
COURSE OUTCOMES:															
On the	successfu	l comple	etion of t	he cour	se, sti	udents v	vill t	be ab	le to						
CO1:	Identify	the real	world pr	oblems											
CO2:	Develop	design 1	methodo	logies a	nd its	implen	nenta	ation							
CO3:	Work as	a respon	nsible me	ember a	nd po	ssibly a	ı leac	ler of	f a tea	am in d	evelopi	ng softw	are en	gineer	ing
CO4:	Express	ideas an	d though	ts in ora	al sett	ing and	prep	pare t	echn	ical rep	orts				
CO5:	Participa	ate in and	d possibl	y mode	rate, c	liscussi	ons t	hat l	ead to	o makii	ng decis	ions			
CO6:	Evaluate	e the cost	t, enviroi	nmental	, safe	ty, and	ethic	al as	pects	in civi	l engine	ering pr	ojects.		
COs V	s POs M	APPINO	.												
00011															
COs	PO1	PO2	PO3	PO4	PO	95 PC) 6	PO	7	PO8	PO9	PO10	PO1	1 PC)12
CO1	3	3	3	3	3	3	3	3		3	3	3	3		;
CO2	3	3	3	3	3	(*)	3	3		3	3	3	3		;
CO3	3	3	3	3	3	3	3	3		3	3	3	3	-	;
CO4	3	3	3	3	3	3	3	3		3	3	3	3		\$
<u>CO5</u>	3	3	3	3	3	3	3	3		3	3	3	3		3
CO6	3	3	3	3	3	3	5	3		3	3	3	3		;
COs V	s PSOs N	/APPIN	IG:												
00011				С	Os	PSO1	PS	02	PSC)3					
				C	01	3	3	3	3						
				С	02	3	3	3	3						
				С	03	3	3	3	3						
				C	04	3	3	3	3						
				C	05	3	1	3	3						
l				C	06	3	3	3	3						