B.E. Mechanical Engineering | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2019 Approved in IV Academic Council Meeting Held on 25.05.2019

E.G.S. PILLAY ENGINEERING COLLEGE

(Autonomous)

Approved by AICTE, New Delhi | Affiliated to Anna University, Chennai

Accredited by NAAC with 'A' Grade | Accredited by NBA (CSE, EEE, MECH)

NAGAPATTINAM - 611 002

B.E MECHANICAL ENGINEERING

Third Year – Sixth Semester

Course Code	Course Name	т	т	р	C	May	ximum	Marks
Course Coue	Course Manie	L	I	I	C	CA	ES	Total
Theory Cours	Se .							
1902ME601	Materials science and Metallurgy	3	0	0	3	40	60	100
1902ME602	Design of Transmission systems	3	2	0	4	40	60	100
1902ME603	Dynamics of Machines	3	2	0	4	40	60	100
	PC Elective II	3	0	0	3	40	60	100
	HSS Elective 1	3	0	0	3	40	60	100
	Open Elective I	3	0	0	3	40	60	100
Laboratory (Course							
1902ME651	Theory of Machines Laboratory	0	0	2	1	50	50	100
1004ME652	Mini project	0	0	4	2	50	50	100
1904MIE032	(Design and fabrication Project)	0	0	4	2	50	50	100
1904ME653	Industrial Visit Presentation	0	0	0	1	100	-	100
1904GE651	Life Skills: Aptitude II & GD	0	0	2	1	100	-	100

L – Lecture | T – Tutorial | P – Practical | CA – Continuous Assessment | ES – End Semester

											_		
1902M	E601		MATE	ERIALS	SCIEN	CE ANI	D META	ALLUR	GY	L	Т	Р	C
										3	0	0	3
										1			
MODU	JLE I	PHASI	E DIAG	RAMS A	AND CO	ONSTIT	UTION	OF AL	LOYS		(9 Hot	irs
Alloys, eutectic	Solid so	olutions	- Phase toid reac	diagran tions - In	n, phase ron-Cart	e rule, 1 bon phas	ever rul e diagra	e, Binar m - Meta	y phase allography	diagram y, micros	-Ison structu	orphore.	ous,
MODU	JLE II	ENGIN	EERIN	G MET	ALS A	ND ALI	LOYS		0 1 0		9	9 Hou	irs
Classifi steels), steels - white, metals Bearing	ication of microstr stainless malleable - Nickel g material	Enginee ucture/co steels, I e, sphere , Copper ls.	ering ma ompositi High Stro oidal gra c, Titani	terials - on, prop ength Lo aphite c um, Alu	Ferrous erties, a ow Alloy ast iron uminium	metals - pplication y Steels , micross , Magne	Plain ca ons - All (HSLA) structure esium, Z	rbon steel oy steel , maragi , proper inc allog	el (low, n s, effect o ng, tool s ties, appl ys, prope	nedium a of alloyi ateels - C ications rties and	nd hig ng add Cast irc – No l appli	tions itions on - gr n-ferr catior	on on rey, ous 1s -
MODI	JLE III	НЕАТ	TREAT	MENT	OF ST	EELS						9 Hor	irs
Purpose Harden superin quench inductio	e of hea ing and nposed o test, Cas on harder	t treatm Temper n T-T-T se harder ning.	ent - A ring, Iso diagran ning pro	nnealing othermal ns (mart cesses, c	g (stress transfo ensite a carburizi	relief, prmation nd baini ng, nitri	recrysta diagra te phase ding, ca	llization ms (T-7 e format rbonitrid	, spheroi Γ-Τ diag ion) -Har ling, cyan	dizing) rams), (rdenabili iding, fl	-Norm Cooling ty, Jor ame h	alizin g cur niny ardeni	g - ves end ing,
MODU	JLE IV	INTRO	DUCT	ION TO	POLY	MERS A	AND EN	GINEE	RING C	ERAMI	CS 9	9 Hou	irs
(polyet) polyeth polyam polyteth types -	hylene, p nylene te nideimide rafluroeth Types of	oolyprop erapthala , po ylene, u Ceramic	ylene, p te, poly plypropy rea form es and ap	olyureth ycarbona leneoxic aldehydo plication	ane, po ate, pol le, e, pheno ns.	lystyrend lyamide, polypro l formal	e, poly acrylo pylene dehyde,	vinylchl onitrile sulp polyeste	oride, po butadiene bhide, r, nylon, o	lymethy e styrer polyet epoxy) -	l meth ne, po hereth - Rubb	hacryl blyam erketo er and	ate, ide, one, l its
MODU	JLE V	MECH	IANICA	L PRO	PERTIF	ES AND	MATE	RIALS '	TESTIN	J	(9 Hot	irs
Elastic materia method affectin propaga	and plast and plast s - Stres s -Impac als fatigue ation mod	ic defori s-strain b et test - e - Cree les.	nation, s behaviou Fatigue ep test,	slip and the slip	twinning tomers - ress vs urves -'	g - Tensi · Viscoel number Types o	le test, s asticity of cycle f fractu	tress-stra - Compres es (S-N) re - Fra	ain behav ession tes) curve, e acture tou	ior of du t – Hard enduranc 1ghness	nctile a ness ar e limi – Thr	nd bri nd test t, fact ee cr	ttle ing tors ack
FOR F	URTHE	R REAI	DING –	SEMIN	$\mathbf{AR} - \mathbf{CI}$	PS							
Review failure	/ on Sup analysis.	ber alloy	rs, Shap	e memo	ory allo	ys, Con	posite l	Materials	s, Case s	studies i	n Meta	allurg	ical
										TOTA	L: 45	HOU	RS
COUR	SE OUT	COMES	5:										
0		1	tion fr	h a									
On the	Successfu	and phase	etion of t	the cours	se, stude	nts will	be able to	0 riole					
CO1:	Discuss	the prop	erties an	d applie	ations of	f various	metals a	and allow	ve.				
CO2:	Identify	appropri	ate heat	treatmer	at proces	sses for t	he given	application	tions				
CO4:	Summar	ize the p	ropertie	s and apr	olication	s of Poly	mers an	d engine	ering cer	amics.			
CO5:	Test the	mechani	ical prop	erties of	the mat	erials	,	a engine					
			• •										
COs V	s POs M	APPINC	j:										
COs	Ρ Ω1	PO2	PU3	PO 4	PO5	POA	PO7	PUS	PU0	PO10	PO11	PO [*]	12
C01	3	2	103	107	2	100	10/	100		1010		3	·
CO2	2	2	2		2							3	
CO3	3	2	2		2				3			1	
CO4	3	3	2		2				3			3	

CO5

COs Vs PSOs MAPPING:					
	COs	PSO1	PSO2	PSO3	
	CO1		3		
	CO2		2		
	CO3		3		
	CO4		2		
	CO5		3		
REFERENCES:					
1. William D Callister Jr., Materi	als Scien	nce and l	Engineer	ing: An	Introduction, 7th Edition, John
Wiley & Sons Inc., New York	, 2007.				
2. G. E. Dieter, Mechanical Meta	llurgy, N	AcGraw	Hill, 200)7.	
3. V. Raghavan, Materials Science	e and E	ngineerii	ng, Prent	ice Hall	of India, Delhi, 2009.
4. William Smith and Javed Hash	nemi, Fo	undation	s of Mat	erials Sc	ience and Engineering, 5th Edition,
McGraw Hill, New York, 2009	9.				
5. G. Murray, C. White and W. W	Veise, In	troductio	on to Eng	gineering	g Materials, 2nd Edition, Chemical
Rubber Company (CRC) Press	s, Taylor	& Franc	is Group	, Florid	a, 2007.
6. https://onlinecourses.nptel.ac.i	n/noc18	_mm05/j	preview		

1902M	E602	DESIGN OF TRANSMISSION SYSTEMS L T P C												С
											3	2	0	4
MODI	ILEI	DESIG	N OF F	LEXIB	LEFLE	EMENT:	2						12 Ho	nirs
Design	of Flat b	belts and	pullevs	- Select	ion of V	/ belts a	nd pulle	vs – Sele	ection of	f hoisti	ng	wire	opes :	and
pulleys	– Desig	n of Trai	nsmissio	n chains	and Spr	ockets.	F	/~ ~			0		- F	
MODU	JLE II	SPUR	GEARS	AND P	ARALI	LEL AX	IS HELI	ICAL G	EARS				12 Ho	ours
Speed	ratios an	d numbe	er of tee	th-Force	analysi	s -Tooth	stresses	s - Dyna	mic eff	ects –	Fati	igue s	strengt	th -
Factor	of safety	- Gear n	naterials	- Desigi	n of stra	ight toot	h spur &	t helical	gears ba	umbor	stre	ength	and w	'ear
helical	gears	- Flessul	e aligie i	in the no	nillai all	u uansv	erse plai	ie- Equi	valent n	umber	οιι	eeui-	loices	101
MODU	JLE III	BEVE	L, WOR	M AND	CROS	S HELI	CAL GE	EARS					12 Ho	ours
Straigh	t bevel g	ear: Too	th termi	nology,	tooth fo	rces and	stresses	s, equiva	lent nun	nber of	f tee	eth. E	stimat	ing
the din	nensions	of pair of	of straig	ht bevel	gears.	Worm C	Gear: Me	rits and	demerit	s- tern	nino	ology.	Ther	mal
capacit	y, materi	als-force	s and str	resses, ef	fficiency	, estima	ting the	size of th	he worm	n gear p	pair.	Cros	s heli	cal:
Termin	ology-he	lix angle	s-Estima	ating the	size of t	the pair of	of cross l	nelical ge	ears.					
MODU	JLE IV	GEAR	BOXES										12 Ho	urs
Geome	tric prog	ression -	Standar	d step ra	tio - Ray	y diagrar	n, kinem	natics lay	out -De	sign of	slic	ding r	nesh g	gear
box - I	Design of	t multı s	speed ge	ar box f	or mach	nne tool	applica	tions - (Constant	mesh	gea	ir box	c - Sp	eed
Teducer	$u \dots u \dots u \dots$			$\frac{1}{100}$		upings,	ND							••
MODU	JLE V	FUELS MATE	S CAN RIALS	AS, C	LUTCH	IES A	ND B	SRAKES	ENC	FINEE	KIN	G	12 H0	urs
Cam D	esign: Ty	pes-pres/	ssure ang	gle and u	inder cu	tting bas	e circle	determin	ation-fo	rces an	id si	urface	e stres	ses.
Design	of plate	clutches	s –axial	clutches	-cone c	lutches-i	nternal e	expandin	ig rim c	lutches	- E	lectro	magn	etic
clutche	s. Band a	B B B B B B B B B B	k brakes	- externa	al shoe t	orakes –	Internal	expandir	ng shoe t	orake.				
Design	of Mach	ine Tool	Structur	es: Fund	rtions of	Machin	e Tool S	Structure	s and the	-ir Rea	nire	ment	s Des	ion
for Stre	ength.	1001	Structur	05. 1 un		111401111	0 1001 2	, ii ao tai oi	s und un	on nog	une		5, 2 05	-9
	0									TO	ГАІ	L: 60	HOU	RS
COUR	SE OUT	COMES	S:											
On the	successfy	1 compl	otion of	the cour	a atuda	nto will 1	ha ahla t	0						
CO1 :	Design	the belt	drives (flat belt	V- hel	t) chain	drive r	o one driv	es belt	drive	pul	levs	and ch	nain
001	sprocke	ts.		inar öönt,		<i>c)</i> , enam		ope any	05, 001	un e,	Pui	le je t		iuiii
CO2:	Solve th	e proble	m of spu	r and str	aight he	lical gea	r based o	on streng	th and w	vear co	nsid	leratio	on.	
CO3:	Solve th	e proble	m of bev	el and w	orm gea	ar based	on streng	gth and v	vear con	siderat	ion.			
CO4:	Constru	ct the va	arious g	ear boxe	es (slidi	ng mesh	, consta	nt mesh	, multis	peed)	thro	ugh g	geome	tric
CO5:	Design	cam clu	itches ar	nd interr	ay ulagi nal - ext	ternal sh	oe brak	ayout. es from	using h	asic kr	IOW	ledge	acqui	ired
005.	earlier s	tudies.	iteries u	ia men		ternar sn	oe blak	es nom	using b	usie Ri	10	leage	ucqu	iicu
COs V	s POs M	APPINO	j:											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1() F	PO11	PO	12
C01	3	3	3	2	100	100	101	3	2	1010	-	011	2	
CO2	3	3	3	2				3	2				2	
<u>CO3</u>	3	3	3	2				3	2				2	
CO4	3	3	3	2				3	2				2	
003	5	5	5	2	I	1		5	2	I			2	
COs V	s PSOs N	<u>AAPPIN</u>	IG:											
				С	Os PS	SO1 PS	502 PS	503						_
				C	01			3						

CO2

CO3 CO4

CO5

3 3

REFERENCES:
1. Bhandari V, "Design of Machine Elements", 3rd Edition, Tata McGraw-Hill Book Co, 2010.
 Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design", 8th Edition, Tata McGraw-Hill, 2008.
3. Prabhu. T.J., "Design of Transmission Elements", Mani Offset, Chennai, 2000.
4. C.S.Sharma, Kamlesh Purohit, "Design of Machine Elements", Prentice Hall of India, Pvt. Ltd., 2003.
5. Bernard Hamrock, Steven Schmid, Bo Jacobson, "Fundamentals of Machine Elements", 2nd Edition, Tata McGraw-Hill Book Co., 2006.
6. http://nptel.ac.in/courses/108102047/

1002ME602			DV	NAMIC	SOF	MACU	IINI	78		Т		т	D	C
190210112005			DI	NAMIC	SUL	MACH		20			'	1	r	
										3		2	U	4
MODULE I	DYN	AMIC I	FORCE	ANAL	YSIS (OF MI	ECH	IANISN	IS			1	2Ho	urs
Principle of super	rpositio	n, Cond	lition for	r dynam	nic ana	lysis, l	Dyna	amic an	alysis of	f four b	ar &	slid	er cra	ank
mechanism - Er	ngine 1	force a	nalysis.	Turning	g mor	nent o	diag	ram fo	r steam	n & I	C Eng	gine	. Ene	rgy
stored in flywheel	, Dime	nsion of	flywhee	el rim, F	lywhee	el in pu	inch	ing pres	s.					
MODULE II	BAL	ANCIN	G									1	2 Ho	ours
Introduction - Sta	tic bala	incing a	nd dyna	mic bala	ancing,	Balan	cing	g of Rot	ating ma	ass seve	ral m	asse	es in s	same
and different pla	ne. Ba	lancing	of recip	procatin	g mas	s Swa	ying	couple	, Tracti	ve forc	e, Ha	amn	ner B	low.
Balancing of coup	oled loc	omotive	s.											
MODULE III	GOV	ERNO	R AND	GYRO	SCOP	£]	2 Ho	urs
Governor Termin	ology,	working	g princip	ole, Typ	es - W	/att, Po	ortei	and Pi	oell gov	vernor,	Chara	actei	ristics	of
Governor-sensitiv	eness,	Hunting	, Ichoro	nisn, St	ability.	Gyros	scop	e- Gyro	scopic e	effect, g	yrosc	opic	c couj	ple,
MODULE IV	FUN			F VIB	RATIC)N						1	2 Ho	urs
Introduction-Term	inology	Classifi	cation e	lements	of vibr	ation f	ree 1	ındamne	d vibrati	on Free	Dam	ned	vibrat	tion
(Viscus Damping)	- Dam	, Classifi ping rati	o and lo	garithmi	c decre	ement.	Forc	e dampe	d vibrati	ion - Ma	agnifi	catio	on fac	tor.
Vibration isolation	and trai	nsmissib	ility.	0				r						
MODULE V	TRA	NSVER	SE ANI	D TORS	SIONA	LVI	BRA	TION				1	2 Ho	ours
Transverse vibrati	on of sl	hafts and	1 beams	Shaft c	arrying	severa	al lo	ads, whi	rling of	shafts. '	Torsio	onal	vibra	tion-
effect of inertia or	1 torsio	nal vibra	ation - T	Torsiona	lly equ	ivalent	Sha	aft, singl	e rotor,	two rote	ors ar	nd tł	nree r	otors
system.					J 1			, 0	,					
										тот	AL:	60 I	HOU	RS
COURSE OUTC	OMES	5:												
0.1														
On the successful	comple	etion of t	the cours	se, stude	ents wi	II be at	ole to	0 me						
CO2: Calculate	the bal	ancing r	nasses a	nd their	locatio	ons of r	recip	procating	g and rot	ating m	asses.			
CO3: Calculate airplanes.	the spe	ed and 1	ift of the	e govern	or and	estima	ate th	ne gyros	copic ef	fect on s	ships	and		
CO4: Compute	the free	quency of	of free vi	bration,	forced	l vibrat	ion	and dan	ping co	efficient				
CO5: Compute	the effe	ect of ine	ertia forc	e on tra	nsvers	e and t	orsio	onal vib	rations for	or single	e, two	o and	d thre	e
rotor syste	ems.													
COs Vs POs MA	PPING	; :												
	D O A	D 00	D 04				_	DOG		D 040				
$\begin{array}{c c} COs & POI \\ \hline CO1 & 3 \\ \hline \end{array}$	PO2 3	2 PO3	PO4	P05	PO) P (1) 7	PO8	PO9	POIO	PO)11	PO	12
CO2 3	3	2	2			1					2	r r	2	
CO3 3	3	2	2			1					2	r	2	
CO4 3	3	2	2			1					2	,	2	
CO5 3	3	2	2			I					2	,	2	
COs Vs PSOs M	APPIN	G:												
			С	Os P	SO1	PSO2	PS	603						
			C	01			3	3						
			C	$\frac{02}{03}$				3						
				03				3						
			C	05				3						
REFERENCES .														
1. Uicker, J.J.	, Penno	ock G.R	and Shi	gley, J.F	E., "Th	eory of	f Ma	chines a	nd Mecl	hanisms	",3rc	ł Ed	ition,	

4. Thomas Bevan, "Theory of Machines", 3rd Edition, CBS Publishers and Distributors, 2005.	
5. Cleghorn. W. L, "Mechanisms of Machines", Oxford University Press, 2005	
6. Benson H. Tongue, "Principles of Vibrations", Oxford University Press, 2nd Edition, 2007	
7. http://nptel.ac.in/12106166.	

1903M	E015		REFR	IGERA	ΓΙΟΝ Α (PC EL	ND AIF ECTIV	R CONI E II)	DITION	ING]	L 2	T	P	C 3
											5	U	U	
MODU	LE I	AIR R	REFRIG	ERATI	ON SYS	STEMS	AND R	EFRIGI	ERANTS	5		8	B Hou	rs
First an	d Second	law of	thermody	ynamics	applied	to refrig	erating	machine	s - Rever	sed Ca	arn	ot cycle	e, unit	of
refriger	ation, co-	efficien	t of perf	ormance	. Air ref	rigeratio	n: Bell-	Colemar	n cycle, T	Гуреs	of	air refr	igerat	ion
systems	s. Refrige	rants- D	esirable	propertie	es of refi	rigerants	, Recent	t substitu	te for ref	rigera	nts			
MODU	LE II	VAPC	OUR CO	MPRES	SSION I	REFRIC	GERAT	ION SY	STEM			9) Hou	rs
Vapor c heating refriger	compressi - effects ation - C	on cycle of conde ascade	e : p-h an enser an systems	nd T-s di d evapor – probl	agrams rator pre ems. Eq	- deviati essure or juipment	ons from COP- Type:	n theoret multi pr of Com	ical cycl essure sy pressors,	e – sul /stem Cond	oco – le ens	oling a ow ten sers, E	nd su perat xpans	per ure ion
MODI	, Evapora	tors.	CR REF	RIGER	ATION	SYSTE	MS					G) Hou	rs
Workin	g princip	les of V	anour ah	sorption	systems	and ada	orntion	cooling	systems	_ Stea	n i	et refri	rerati	<u></u>
Ejector tube ref	refrigeration	tion system	ems- Th s.	ermoele	ctric ref	rigeratio	n- Air r	efrigerati	on - Ma	gnetic	-V	ortex a	nd Pu	lse
MODU	LE IV	PSYC	HROM	ETRIC	PROPE	RTIES	AND P	ROCES	SES			9	Hou	rs
Properti Relative tempera	ies of mo e humidi ature, Psy	ist Air-C ty, Entl chromet	Gibbs Da nalpy, H ric chart	llton law lumid sj ; Psychro	y, Specifi pecific	ic humic heat, W of air-co	lity, Dev et bulb nditioni	w point to tempera	emperatu ature Th sses, miz	ure, De ermod king of	gre lyna f air	ee of sa amic v rstream	turati vet b s	on, ulb
MODU	LE V	AIR C	CONDIT	IONIN	G SYST	EMS A	ND LO	AD EST	IMATI	ON		1	0 Ho	urs
Air con radiatio load, hu conditio Systems	nditioning n, Electri uman con oning loa s with Co	g loads: cal applinfort & d; Class ntrols: T	Outside iances, I IAQ prin sificatior Cemperat	e and ir nfiltratio nciples, o ns, Layo cure, Pres	nside de on and ve effective out of pl ssure and	esign con entilatior e temper lants; A d Humid	nditions n, interna ature & ir distrib lity sens	; Heat t al heat lo chart, ca bution sy ors, Actu	ransfer oad; App Ilculation ystem; F ators & S	throug aratus 1 of su Filters; Safety	h sel mn Ai cor	structur ection; ner &w ir Cono ntrols	re, So fresh vinter dition	lar air air ing
FOR F	URTHE	R REAI	DING –	SEMIN	AR – Cl	BS								
Solar re	frigeratio	n systen	n, HVA	C, Auton	nobile re	efrigerati	on syste	em						
										ΤΟ	ГА	L: 45 I	HOU	RS
COUR	SE OUT	COMES	5:											
On the	successfu	l comple	etion of t	the cours	se, stude	nts will l	be able t	0						
CO1:	Describe	about th	he air ref	rigeratio	on syster	ns and th	ne refrig	erants be	ing used					
CO2:	Demonst	rate the	working	g of singl	e and m	ultistage	vapour	compres	sion refr	igerati	on	system	s.	
CO3:	Explain	the operation	ation of	vapour a	bsorptio	on and ot	her refri	geration	systems	•				
CO4:	Discuss a	about Ps	ychome	trics and	its appli	ications.								
CO5:	Analyze	the para	meters i	nvolved	in desig	n of air o	condition	ning syst	ems.					
<u> </u>														
COs Vs	s POs MA	APPING	j:											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1)	PO11	PO1	2
CO1	3	3	2	3									2	
CO2	3	3	2										2	
CO3	3	3	2										2	\neg
CO4	3	3	2	3				1			+		2	\neg
CO5	3	3	2	5	2			2			+		2	\neg
	5	5	-		-	l		-	I				-	
COs Vs	s PSOs M	IAPPIN	[G:											
				C	Os PS	SO1 PS 2	SO2 PS	803						

CO2

CO3 CO4 CO5 2 2 2

REFERENCES:
1. C. P. Arora, "Refrigeration and Air Conditioning", Tata McGraw Hill Publishing Company Private
Limited, New Delhi, 2017.
2. Khurmi R.S. and Gupta J.K., "Refrigeration and Air conditioning", Eurasia Publishing House Pvt.
Ltd.
3. Basic Refrigeration and Air conditioning by Ananthanarayanan, Mcgraw hill,4th edition
4. N. F Stoecker and Jones, Refrigeration and Air Conditioning, Tata McGraw Hill Publishing
Company, New Delhi, 2008.
5. Manohar Prasad, Refrigeration and Air Conditioning, Wiley Eastern Limited, 2007.
6. https://nptel.ac.in/courses/112105129/

1903M	E018		GAS	Ι	4	Т	Р	С						
							L' II)			3		0	0	3
MODU	JLE I	BASI	C CONO	CEPTS A	AND IS	ENTRO	PIC FL	OW				9	9 Hou	irs
Energy cone – Diffuse	and mon Effect of ers.	nentum Mach r	equation number of	s of con on comp	npressib ressibili	le fluid f ty – Iser	flows – f htropic f	Stagnation low thro	on states ough var	, Mach iable du	wa acts	ves a – No	nd M ozzle	ach and
MODU	J LE II	FLOW	V THRO)UGH I	DUCTS							(9 Hou	Irs
Flows to flow	through contract through contract through the second secon	onstant a es.	area duc	ts with h	eat trans	sfer (Ray	leigh flo	ow) and	Friction	(Fanno	o flo	w) –	variat	ion
MODU	JLE III	NOR	MAL AN	ND OBL	IQUE	SHOCK	S					(9 Hou	rs
Govern Meyer	ing equations	tions – – Applic	Variation ations.	n of flov	w paran	neters ac	ross the	normal	and obl	lique sl	nock	(s – 1	Prand	1 –
MODU	JLE IV	JET P	ROPUI	LSION								9	9 Hou	rs
Theory cycle a	of jet pro	pulsion d use of	– Thrus stagnati	t equation on state	n – Thr perform	ust powe ance of 1	er and pr am jet, t	opulsive turbojet,	efficien turbofar	cy - O and tu	pera rbo	ting j prop	princij engin	ple, es.
MODU	JLE V	SPAC	E PRO	PULSIO	N		3 ·	5					9 Hou	irs
Types propuls flights.	of rocket sion – Per	engine	s – Prop ce study	ellants- – Stagin	feeding ng – Te	systems rminal a	– Igniti nd chara	ion and acteristic	combus velocity	tion – y – Ap	The plica	ory on ations	of roc s – sp	ket ace
FOR F	URTHE	R REAI	DING -	SEMIN	AR – C	BS								
Case S	tudy: Adv	anced A	ircraft E	ngines,	select Fu	lel for A	ir-craft e	engines.						
	-			-				-		TO	FAL	: 45	HOU	RS
COUR	SE OUT	COMES	5:											
On the	successfu	l comple	etion of	the cours	se, stude	nts will l	be able t	0						
CO1:	Employ	the basic	c concep	ts of isei	ntropic	flow.								
CO2:	Calculat	e the flo	w proper	ties for	fanno flo	ow and F	Rayleigh	flow						
CO3:	Determin	ne vario	ous flow	paramet	ers for n	ormal sl	nock and	l oblique	e shock v	vaves				
CO4:	Utilize tl	nrust equ	ation fo	r perforr	nance ca	alculation	n of var	ious jet e	engines.					
CO5:	Utilize tl	nrust equ	ation fo	r perforr	nance ca	alculation	n of roc	ket engii	nes					
COs V	s POs M	APPINO	; :											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	Р	011	PO	12
C01	3	3	2	3				100			-		2	
CO2	3	3	2										2	
CO3	3	3	2										2	
CO4	3	3	2	3									2	
CO5	3	3	2		2			2					2	
COs V	s PSOs N	IAPPIN	IG:											
					Us PS	<u>501 PS</u> 2	SO2 PS	503						
				C	01	2								
				С	03	2								

2 2

CO4

CO5

REFERENCES: 1. Patrick H. Oosthuizen and William E. Carscallen, Introduction to Compressible Fluid Flow, 2nd edition, CRC Press, Taylor & Francis Group, Florida,2014. 2. Robert D. Zucker, Fundamentals of Gas Dynamics, 2nd edition, John Wiley & Sons Inc., New York,2002

- 3. George P. Sutton and Oscar Biblarz, Rocket Propulsion Elements, 9th edition, John Wiley & Sons Inc., New York, 2016.
- 4. S. M. Yahya, Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion, 6th edition, New Age International private Limited, 2018.

1901M	IGX01		Т	OTAL	OUALI	TY MA	NAGEN	AENT		L	Т	Р	С
				-	C -					3	0	0	3
												U	
MODU	J LE I	INTR	ODUCI	ION							9	Hou	rs
Introdu	ction – N	eed for a	quality –	Evoluti	on of qu	ality – D	efinition	ns of qua	lity – Di	mensior	ns of pro	duct a	ind
service	quality –	Basic c	oncepts o	of TQM	- TQM	Framew	ork – Co	ontributi	ons of D	eming, J	uran and	d Cros	by
– Barri	ers to TQ	M - Qu	ality sta	tements	– Custo	mer foci	us – Cus	stomer of	rientatio	n, Custo	mer sati	sfaction	on,
Custon	ner compl	aints, Ci	istomer i	retention	1 - Costs	of quali	ty.					How	
Londor	LE II	tratogia	PRINC.	IPLES		lity Cor	maila	Emplo	voo inv	Juaman	5 t Mo	HOU	rs on
Empoy	verment '	Team ar	quanty id Team	work O	uality c	ircles Re	ecogniti	n and k	yee mw Reward	Perform	ance an	nraisa	ля, 1 —
Contin	uous proc	ess imp	ovemen	t - PDC	A cvcle.	5S. Kai	zen - S	upplier r	artnersh	ip – Par	tnering.	Suppl	ier
selectio	on, Suppli	er Ratin	g.		;	,	~~			-r		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
MODU	J LE III	TQM	TOOLS	SAND T	TECHN	IQUES	I				9	Hou	rs
The se	ven tradi	tional to	ols of q	uality –	New n	nanagem	ent tool	s – Six	sigma:	Concept	s, Meth	odolog	gy,
applica	tions to n	nanufact	uring, se	rvice sec	ctor inclu	iding IT	- Bench	n markin	g – Reas	on to be	nch mar	k, Ber	ich
markin	g process	-FMEA	A – Stage	es, Types	s.								
MODU	JLE IV	TQM	TOOLS	S AND T	ECHN	IQUES	II				9	Hou	rs
Contro	l Charts -	- Proces	s Capabi	lity – C	oncepts	of Six S	Sigma –	Quality	Function	n Devel	opment	(QFD) —
	$\frac{11}{11}$ G U F V	OUAT	$\frac{1}{1}$	PM – CO VSTEMO	oncepts,	improve	ment ne	eas – Pe	riorman	ce meast	ires	Hou	rc
Need f	$\frac{\mathbf{JLE} \mathbf{v}}{\mathbf{or} \mathbf{ISO} \mathbf{Q}}$	100 - 15	0.9001^{-1}	2008 Ou	5 Jality Sv	stem _ F	Tlements	Docum	entation	Qualit	v Auditi	$\frac{110u}{ng}$	18
9000 -	ISO 140	00 - 15	ncents 1	2000 Qu Requiren	nents an	d Benef	its - TC	M Imple	ementati	on in m	anufactu	ring – v	and 1
service	sectors.	00 00	neepts, I	loquiton	lients un	a Dener		in mpr	onnonnan		anaraota		
										TOT	AL: 45 1	IOUI	RS
COUR	SE OUT	COMES	5:										
On the	successfu	l comple	etion of t	he cours	se, stude	nts will l	be able t	0					
CO1:	Explain	the basic	concep	ts of the	Total Q	uality M	anageme	ent					
CO2:	Describe	the Tot	al Oualit	v Manas	zement r	principle	s						
CO3·	Describe	the Stat	tistical P	rocess C	ontrol (S	SPC) tec	hniques						
CO4·	Enumera	te the T	otal Qua	lity Man	agemen	t Tools	1						
C04.	Elaborat	e the pri	ncinles o	of Qualit	v Systen	ns							
005.	Liuooiu	e die pri	neipies c	n Quun	y bysten	115							
COs V	s POs M	APPINO	; :										
							-					I	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
CO1						3	2			2	3	2	
CO2						3	2			2	3	2	
CO3						3	2			2	3	2	
CO4						3	2			2	3	2	
CO5						3	2			2	3	2	
	1	I.	I.			1	I.	I.					
COs V	s PSOs N	IAPPIN	[G:				•						
				C	Os PS	501 PS	502 PS	503					
						-	1						
					02	-	1						
					04		1						
				C	05		1						
REFE	RENCES	:											
1.	Dale H.B.	esterfield	d et al, T	otal Qua	lity Mar	nagemen	t, Third	edition,	Pearson	Educatio	on (First	India	n
	Reprints 2	2004).											

 ShridharaBhat K, Total Quality Management – Text and Cases, Himalaya Publishing House, First Edition 2002.

1902M	E651		THE	ORY O	F MAC	HINES	LABOR	RATOR	Y	L	Т	P	(
										0	0	2	-
l ist of	Fynorin	onte											
1	Determ	ination (of mass i	noment	of inerti	a of avie	vmmetri	c bodies	using ti	ırn təhlə	annarat	10	
2	Determ	ine the c	character	istics an	d effort o	of Watt	Porter P	roell and	l Hartne	ll Govern	nors	us	
3.	Exercis	se on Bal	lancing of	of recipro	ocating n	nasses.	1 01001 1	i oʻcii uiic			1015.		
4.	Exercis	se on Bal	lancing of	of four re	tating m	asses pl	aced on	different	plane.				
5.	Analyz	e the gy	roscopic	effect us	sing Gyr	oscope a	nd verif	y its law	s.				
6.	Determ	ination	of critica	al speed	of shaft	with con	ncentrate	ed loads	by Whi	rling of s	shaft &	vibrat	ion
7	Dotor	paratus.	nomant	of in out :	ofobio	ot by D:4	Filor ouer	onsion	Trifilor	& mothe	dofoco	illatio	n
/. 0	Kinom	nne me r	noment	or mertia	1 OI ODJE	olo goor	troin on	difform	ntial ma	a metno dal	u or osc	111at10	11.
ð. 0	Determ	anc anar	ysis of c	am mode 1 fraguas	el, Epicy	cie gear	train and	a dom a	uatam P	del.			
9.	Determ	ination (1 frequer	ad with rea	ngle deg	ree of fr	eedom s	ystem &	two rold	or system	n.	
11	Determ	ine the I	requenc	y of forc	ed vibra		ig Cantil	ever bea	m.				
11	. Determ	mation	or natura	Inteque		orque me	easureme	ent syste		тот	11.20		DC
COUR	SF OUT	COME	2.							1014	AL: 30	που	KS
COUN		COME	J •										
On the	successfu	ıl compl	etion of	the cours	se, stude	nts will l	be able to	0					
CO1:	Measure	e the ma	ss mom	ent of in	ertia of	axisymr	netric ob	ojects us	ing Tur	n table a	pparatu	s, bi-f	ilaı
	suspens	ion and c	compour	d pendu	lum.			1		·	· · · ·	1	
C O2:	balancir	ient wit	n vibrai ne	ions and	u balanc	cing of	rotating	and re	ciproca	ing mas	ses in	dynai	mc
CO3:	Make us	se of Wa	tt, Porte	Proell	and Hart	nell gov	ernors fo	or detern	nination	of range	sensitiv	vity.	
C O4:	Do expe	rimentat	ion of th	e critica	l speed o	of shaft u	inder the	given lo	oad cond	litions.		2	
C O5:	Perform	the tors	ional nat	ural freq	uency of	f single a	and doub	ole rotor	systems	•			
<u>CO6:</u>	Make us	se of whi	rling of	shaft for	determi	nation of	f critical	speed of	f a shaft	with con	centrate	ed load	ls.
$\frac{207}{208}$	Prepare	the moti	on curve	tor the	given c	am follo	wer setu	р.					
.00:	Measure		ISHIISSIO	III Tallo	using v	Iorating	table.						
COs V	s POs M	APPINO	;										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
CO1	3	2	2	1			3		3			2	_
CO2	3	2	2	1			3		3			2	
CO3	3	2	2	1			3		3			2	
CO4	3	2	2	1			3		3			2	
C05	3	2	2	1			3		3			2	
CO7	3	$\frac{2}{2}$	$\frac{2}{2}$	1			3		<u>ः</u> २			$\frac{2}{2}$	
	2	2	2	1			3		3			$\frac{2}{2}$	

COs Vs PSOs MAPPING:

COs	PSO1	PSO2	PSO3	
CO1		3	3	
CO2		3	3	
CO3		3	3	
CO4		3	3	
CO5		3	3	
CO6		3	3	
CO7		3	3	
CO8		3	3	

$\begin{tabular}{ c c c c c c } \hline $\mathbf{MINIPROJECT}$ & \mathbf{L} & \mathbf{T} & \mathbf{P} & \mathbf{C} \\ \hline 0 & 0 & 4 & 2 \\ \hline 0 & 0 & 4 & 2 \\ \hline 0 & 0 & 4 & 2 \\ \hline 0 & 0 & 4 & 2 \\ \hline 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & \mathbf																	
(DESIGN AND FABRICATION PROJECT) 0 0 4 2 GUIDELINE FOR REVIEW AND EVALUATION The students may be grouped into 2 to 4 and work under a project supervisor. The device/ system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semestre examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department. TOTAL: 45 HOURS COURSE OUTCOMES: TOTAL: 45 HOURS COL COLS Fabricate any components using different manufacturing tools. CO2: Fabricate any components using different manufacturing tools. CO3: Develop patentable concepts and fabrication sequence. CO3: PO4 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 COs Vs POS MAPPING: COs Vs PSOS MAPPING:	1904M	E652				MINI	PRO	JEC	CT				Ι	-	Т	Р	C
GUIDELINE FOR REVIEW AND EVALUATIONThe students may be grouped into 2 to 4 and work under a project supervisor. The device/ system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department. TOTAL: 45 HOURSCOURSE OUTCOMES:On the successful completion of the course, students will be able to CO1: Develop conceptual engineering design of any components by using basic design principles CO2: Fabricate any components using different manufacturing tools. CO3: Demonstrate their practical ability in the form of working models. CO4: Evaluate design concepts and fabrication sequence. CO5: 				(DES	SIGN A	ND FAI	BRIC	ATI	ION	PR	OJECI	'))	0	4	2
GUIDELINE FOR REVIEW AND EVALUATIONThe students may be grouped into 2 to 4 and work under a project supervisor. The device/ system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department. TOTAL: 45 HOURSCOURSE OUTCOMES: 																	
The students may be grouped into 2 to 4 and work under a project supervisor. The device/ system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.TOTAL: 45 HOURSCOURSE OUTCOMES:TOTAL: 45 HOURSCOURSE OUTCOMES:On the successful completion of the course, students will be able to CO1: Develop conceptual engineering design of any components by using basic design principles CO2: Evaluate design concepts and fabrication sequence.CO3: CO4: Evaluate design concepts and fabrication sequence.CO5: CO5: Develop patentable concepts and innovations.CO4PO1PO1PO12CO3PO4PO5PO6PO7PO8PO9PO10PO11PO12CO3: CO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12CO3: CO1PO1PO2PO3PO4PO5PO6PO7PO8PO9<	GUIDI	ELINE F	OR RE	VIEW A	ND EV	ALUA	ΓΙΟΝ	[
system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department. TOTAL: 45 HOURS COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: Develop conceptual engineering design of any components by using basic design principles CO2: Fabricate any components using different manufacturing tools. CO3: Develop patentable concepts and fabrication sequence. CO5: Develop patentable concepts and fabrication sequence. CO5: Develop patentable concepts and innovations. CO5: Develop patentable concepts and innovations. CO5: OS WAPPING: COs vs POS MAPPING: COs vs PSOs M	The st	udents r	nay be	grouped	d into	2 to 4	and	. wo	ork T	und	er a p	roject s	supervi	sor.	. The	devi	ice/
with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department. TOTAL: 45 HOURSTOTAL: 45 HOURSCOURSE OUTCOMES:TOTAL: 45 HOURSCOURSE OUTCOMES:COL: Develop conceptual engineering design of any components by using basic design principlesCO2: Fabricate any components using different manufacturing tools.CO3: Demonstrate their practical ability in the form of working models.CO3: Develop patentable concepts and fabrication sequence.COS vs POs MAPPING:COs vs POs MAPPING:COs vs POs MAPPING:COs vs PSos MAPPING:	system	/compone	ent(s) to	be fabri	cated m	ay be d	ecideo	d in	cons	sulta	ation wi	th the s	upervis	or	and if	possi	ble
reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department. TOTAL: 45 HOURS TOTAL: 45 HOURS COURSE OUTCOMES: TOTAL: 45 HOURS COURSE OUTCOMES: TOTAL: 45 HOURS COURSE our completion of the course, students will be able to CO1: Develop conceptual engineering design of any components by using basic design principles CO2: Fabricate any components using different manufacturing tools. CO3: Develop patentable concepts and fabrication sequence. CO5: Develop patentable concepts and fabrication sequence. CO5: Develop patentable concepts and innovations. CO5 Vs POS MAPPING: CO4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	with ar	ı industry	7. A proj	ect repo	rt to be	submitt	ed by	/ the	e gro	up a	and the	fabricat	ed mod	lel,	which	ı will	be
At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department. TOTAL: 45 HOURS COURSE OUTCOMES: TOTAL: 45 HOURS TOTAL: 45 HOURS TOTAL: 45 HOURS COURSE outcomestation of the course, students will be able to Col: Develop conceptual engineering design of any components by using basic design principles CO2: Fabricate any components using different manufacturing tools. CO3: Demonstrate their practical ability in the form of working models. CO4: Evaluate design concepts and fabrication sequence. CO5: Develop patentable concepts and fabrication sequence. CO5: Develop patentable concepts and innovations. CO5: Develop patentable concepts and 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	reviewe	ed and ev	aluated f	for interr	nal asses	sment b	y a C	omn	nittee	e co	nstituted	d by the	Head of	of tł	he Dep	artme	ent.
Torjointly by external and internal examiners constituted by the Head of the Department. TOTAL: 45 HOURS COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: Develop conceptual engineering design of any components by using basic design principles CO2: Fabricate any components using different manufacturing tools. CO3: Demonstrate their practical ability in the form of working models. CO4: Evaluate design concepts and fabrication sequence. CO5: Develop patentable concepts and innovations. CO5 VS POS MAPPING: CO5 PO4 PO5 PO8 PO9 PO11 PO12 CO5 PO5 PO6 PO7 PO8 PO11 PO12 CO5 PO6 PO7 PO8 PO11 PO12 CO5 PO6 PO7 PO8 PO9 PO10 <th< td=""><td>At the</td><td>end of th</td><td>ne semes</td><td>ter exan</td><td>nination</td><td>the pro</td><td>ject w</td><td>vork</td><td>is e</td><td>valu</td><td>ated ba</td><td>sed on o</td><td>oral pro</td><td>eser</td><td>ntation</td><td>and</td><td>the</td></th<>	At the	end of th	ne semes	ter exan	nination	the pro	ject w	vork	is e	valu	ated ba	sed on o	oral pro	eser	ntation	and	the
TOTAL: 45 HOURS COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: Develop conceptual engineering design of any components by using basic design principles CO2: Fabricate any components using different manufacturing tools. CO3: Demonstrate their practical ability in the form of working models. CO4: Evaluate design concepts and fabrication sequence. CO5: Develop patentable concepts and innovations. COs Vs POs MAPPING: CO2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	project	report jo	intly by e	external	and inter	rnal exa	miner	s co	nstitu	uted	l by the	Head of	the De	par	rtment.		
COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: Develop conceptual engineering design of any components by using basic design principles CO2: Fabricate any components using different manufacturing tools. CO2: Fabricate any components using different manufacturing tools. CO3: Demonstrate their practical ability in the form of working models. CO4: Evaluate design concepts and fabrication sequence. CO5: Develop patentable concepts and innovations. CO5 Vs POs MAPPING: CO3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	TOTAL: 45 HOURS											RS					
	COUR	SE OUT	COMES	5:													
On the successful completion of the course, students will be able to CO1: Develop conceptual engineering design of any components by using basic design principles CO2: Fabricate any components using different manufacturing tools. CO3: Demonstrate their practical ability in the form of working models. CO4: Evaluate design concepts and fabrication sequence. CO5: Develop patentable concepts and innovations. CO5 VS POS MAPPING: CO2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3					_												
CO1: Develop conceptual engineering design of any components by using basic design principles CO2: Fabricate any components using different manufacturing tools. CO3: Demonstrate their practical ability in the form of working models. CO4: Evaluate design concepts and fabrication sequence. CO5: Develop patentable concepts and innovations. CO5 VS POS MAPPING: CO2: 3 PO3 PO4 PO7 PO8 PO9 PO11 PO12 CO5 VS POS MAPPING: CO2: 3 PO3 PO6 PO7 PO8 PO9 PO11 PO12 CO5 PO4 PO5 PO6 PO7 PO8 PO10 PO11 PO12 CO3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <th col<="" td=""><td colspan="11">On the successful completion of the course, students will be able to</td><td></td></th>	<td colspan="11">On the successful completion of the course, students will be able to</td> <td></td>	On the successful completion of the course, students will be able to															
CO2: Pabricate any components using different manufacturing tools. CO3: Demonstrate their practical ability in the form of working models. CO4: Evaluate design concepts and fabrication sequence. CO5: Develop patentable concepts and innovations. COs Vs POs MAPPING: COs Vs POs MAPPING: CO3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	CO1: Develop conceptual engineering design of any components by using basic design principles																
CO3: Demonstrate their practical ability in the form of working models. CO4: Evaluate design concepts and fabrication sequence. CO5: Develop patentable concepts and innovations. COs Vs POs MAPPING: COs Vs POs MAPPING: COs Vs POs MAPPING: COs Vs POs MAPPING: CO3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	CO2: Fabricate any components using different manufacturing tools.																
Cos: Evaluate design concepts and rabrication sequence. COS: Develop patentable concepts and innovations. COs Vs POs MAPPING: Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 Cos PO1 3 <t< td=""><td>CO3:</td><td>Demons</td><td>trate the</td><td>ir practic</td><td>al abilit</td><td>y in the</td><td>form</td><td>of w</td><td>VORK11</td><td>ng r</td><td>nodels.</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	CO3:	Demons	trate the	ir practic	al abilit	y in the	form	of w	VORK11	ng r	nodels.						
Cos Develop patentable concepts and innovations. COs Vs POs MAPPING: PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 3 <td colspan="11">CO4: Evaluate design concepts and fabrication sequence.</td> <td></td>	CO4: Evaluate design concepts and fabrication sequence.																
COs Vs POs MAPPING: COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 3 <	005:	Develop	patenta	ble conc	epts and	innoval	ions.										
COS VSTOS MATTINO. COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 3 <t< td=""><td></td><td></td><td>A PPINC</td><td><u>.</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			A PPINC	<u>.</u>													
COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 3 <		<u>5 I US IVI</u>		J.													
$\frac{\begin{array}{c cccccccccccccccccccccccccccccccccc$	COs	PO1	PO2	PO3	PO4	PO5	PO)6	ΡΟ	7	PO8	PO9	PO1 0	1	PO11	PO1	12
CO2 3	C01	3	3	3	3	3	3		3	-	3	3	3	-	3	3	
CO3 3	CO2	3	3	3	3	3	3		3		3	3	3		3	3	
CO4 3	CO3	3	3	3	3	3	3		3		3	3	3		3	3	
CO5 3	CO4	3	3	3	3	3	3		3		3	3	3		3	3	
COs Vs PSOs MAPPING: COs PSO1 PSO2 PSO3 CO1 3 3 3 CO2 3 3 3 CO3 3 3 3 CO4 3 3 3	CO5	3	3 3 3 3 3 3 3 3 3 3								3						
COs Vs PSOs MAPPING: COs PSO1 PSO2 PSO3 CO1 3 3 3 CO2 3 3 3 CO3 3 3 3 CO4 3 3 3																	
COsPSO1PSO2PSO3CO1333CO2333CO3333CO4333	COs V	s PSOs N	APPIN	IG:													
CO1 3 3 3 CO2 3 3 3 CO3 3 3 3 CO4 3 3 3					C	Os P	SO1	PS	02	PS	03						
CO2 3 3 CO3 3 3 CO4 3 3 3					C	01	3	3	í	3							
CO3 3 3 3 CO4 3 3 3 3		CO2 3 3 3															
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					C		3	3		3							
					C	04	3	3		3							

1904ME653	INDUSTRIAL VISIT PRESENTATION	L T		Р	С
		0	0	0	1
GUIDELINE F	OR REVIEW AND EVALUATION				
T 1 .			. 1		

In order to provide the experiential learning to the students, shall take efforts to arrange at least one industrial visit / field visits in a year. A presentation based on Industrial visits shall be made in this semester and suitable credit may be awarded by the Committee constituted by the Head of the Department at the end of the semester examination

COURSE OUTCOMES:

On the successful completion of the course, students will be able to

CO1: Know the safety measures, standards, policy practice in industry

CO2: Identify the concepts for the own area of interest

CO3: Realize the Experience of the real time working in the industry

CO4: Compare the theoretical concepts in the industry

CO5: Explain the various industrial equipments, machinery

CO6: Make a real time product use of some tools

COs Vs POs MAPPING:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	2	2	2	2	1	1	1	2	1
CO2	2	2	2	1	2	1	2	2	2	2	2	3
CO3	2	3	2	2	2	3	2	2	1	1	3	3
CO4	1	3	3	3	2	3	2	2	2	2	3	3
CO5	2	2	2	2	2	1	1	1	2	1	2	2
CO6	1	3	2	2	2	2	3	3	1	1	3	3

COs	PSO1	PSO2	PSO3
CO1	2	3	2
CO2	3	2	2
CO3	2	2	3
CO4	3	3	3
CO5	2	2	2
CO6	3	3	3

1904GI	E651	LIFE SKILLS: APTITUDE – II & GD (Common to All Branches)									Т	Р	С	
		(Common to An Drancnes) 0									0	2	1	
		DADT	PARTNERSHIP, MIXTURES AND ALLEGATIONS PROBLEM ON 6 Hours										re	
MODU	LE I	AGES	5, SIMP	LE INT	EREST,	, COMP	OUND	INTER	S, I KOI EST	DLLIVI	UN		J 110u	15
Introduction Partnership - Relation between capitals, Period of investments and Shares- Problems on mixtures - Allegation rule - Problems on Allegation – Problems on ages - Definitions Simple Interest - Problems on interest and amount - Problems when rate of interest and time period are numerically equal - Definition and formula for amount in compound interest - Difference between simple interest and compound interest for 2 years on the same principle and time period.											on st - al - and			
MODU	DULE IIBLOOD RELATIONS, CLOCKS, CALENDARS6 Hours													
Defining the various relations among the members of a family - Solving Blood Relation puzzles - Solving the problems on Blood Relations using symbols and notations - Finding the angle when the time is given - Finding the time when the angle is known - Relation between Angle, Minutes and Hours - Exceptional cases in clocks - Definition of a Leap Year - Finding the number of Odd days - Framing the year code for centuries - Finding the day of any random calendar date.														
MODU	LE III	TIME	AND D	ISTAN	CE, TIN	ME ANI) WOR	K				•	6 Hou	rs
Relation between speed, distance and time - Converting kmph into m/s and vice versa - Problems on average speed - Problems on relative speed - Problems on trains - Problems on boats and streams - Problems on circular tracks - Problems on races - Problems on Unitary method - Relation between Men, Days, Hours and Work - Problems on Man- Day-Hours method - Problems on alternate days - Problems on Pipes and Cisterns.										on s - ien, on				
MODU	LE IV	DATA	INTE	RPRETA	ATION	AND DA	ATA SU	FFICIE	ENCY			(6 Hou	rs
Problen Differer	ns on tab nt models	ular forn in Data	n - Probl Sufficie	ems on l ency - Pre	Line Gra oblems o	aphs - Pr on data r	oblems (edundan	on Bar C cy.	Graphs - I	Problen	ns o	n Pie	e Char	ts -
MODU	LE V	ANAI	YTICA	L AND	CRITI	CAL RE	ASONI	NG				(6 Hou	rs
Problen Problen Finding Problen	ns on Lin ns on Sel the Neg ns on infe	near arra ections - gations f erences -	angemen - Probler or comp Problen	nt - Prob ns on Co oound sta ns on stre	olems or ompariso atements engtheni	n Circula ons - Fir s- Proble ng and y	ar arrang nding the ems on a veakenir	gement e Implica assumpting of arg	- Problem ations for ion - Pro- uments.	ms on r compo blems	Dou ound on	ible d stat conc	line-u temen lusion	p - ts - is -
COUR	SE OUT	COMES	5:							101	AL	: 30		KD
On the s	successfu	l comple	etion of t	he cours	se, stude	nts will l	be able to	0						
CO1:	Solve pr real life	oblems of situation	on Partne s.	ership, N	lixture &	& Allega	tion and	ages lea	st time u	sing sh	ortc	uts a	nd app	oly
CO2:	D2: Workout family relationships concepts, ability to visualize clocks & calendar and understand the logic behind a Sequence.													
CO3:	Calculat	e concep	ots of spe	ed, time	and dist	tance, ur	derstand	l timely	completi	on usin	g tii	me ai	nd wo	rk.
CO4:	Learners	should	be able t	o unders	tand var	rious cha	rts and i	nterprete	ed data le	east tim	e.			
CO5: Workout puzzles, ability to arrange things in an orderly fashion														
COs Vs POs MAPPING:														
COs	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1'									2			
CO1	1	102	105	104	105	100	107	100	10,	1010		011	2	
CO2	1												2	
CO3	1				ļ								2	
CO4	1												2	\neg
CO5	1										1		2	

COs Vs PSOs MAPPING:					
	COs	PSO1	PSO2	PSO3	
	CO1		1		
	CO2		1		
	CO3		1		
	CO4		1		
	CO5		1		
REFERENCES:					
1. Dale H.Besterfield et al, Total	Quality	Manager	ment, Th	ird edition	on, Pearson Education (First Indian
Reprints 2004).	-	-			
2. ShridharaBhat K, Total Qualit	y Manag	gement –	Text and	d Cases,	Himalaya Publishing House, First
Edition 2002.	-				-