B.E. Mechanical Engineering | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2019 Approved in IV Academic Council Meeting Held on 25.05.2019

# E.G.S. PILLAY ENGINEERING COLLEGE

(Autonomous)

Approved by AICTE, New Delhi | Affiliated to Anna University, Chennai

Accredited by NAAC with 'A' Grade | Accredited by NBA (CSE, EEE, MECH)

NAGAPATTINAM - 611 002



## **B.E MECHANICAL ENGINEERING**

### Second Year – Third Semester

| Course Code  | Course Name                    | L | т | Р | C | May | ximum | Marks |
|--------------|--------------------------------|---|---|---|---|-----|-------|-------|
| Course Coue  | Course Manie                   | Ľ |   |   | C | CA  | ES    | Total |
| Theory Cours | e                              |   |   |   |   |     |       |       |
| 1902ME301    | Engineering Mechanics          | 3 | 2 | 0 | 4 | 40  | 60    | 100   |
| 1902ME302    | Manufacturing Technology I     | 3 | 0 | 0 | 3 | 40  | 60    | 100   |
| 1902ME303    | Fluid Mechanics & Machines     | 2 | 2 | 0 | 3 | 40  | 60    | 100   |
| 1902ME304    | Strength of Materials          | 3 | 2 | 0 | 4 | 40  | 60    | 100   |
| 1902ME305    | Thermodynamics                 | 3 | 2 | 0 | 4 | 40  | 60    | 100   |
| Laboratory C | Course                         |   |   |   |   |     |       |       |
| 1902ME351    | Fluid Mechanics & Machines lab | 0 | 0 | 2 | 1 | 50  | 50    | 100   |
| 1902ME352    | Strength of Materials lab      | 0 | 0 | 2 | 1 | 50  | 50    | 100   |
| 1902ME353    | Manufacturing Technology I lab | 0 | 0 | 2 | 1 | 50  | 50    | 100   |
| 1904GE351    | Life Skills: Soft Skills       | 0 | 0 | 2 | 1 | 100 | -     | 100   |
| Audit Course |                                |   |   |   |   |     |       |       |
| 1901MCX01    | Environmental Science          | 3 | 0 | 0 | 0 | -   | -     | -     |

L – Lecture | T – Tutorial | P – Practical | CA – Continuous Assessment | ES – End Semester

| 1902MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7301                                                                                                                                                                                                                                                                                                                                                                                            |            |                        | FNCI       | NFF             | BINC         | MF          | СНА               | NIC        | 27               |            | I         |               | т                        | р              | С           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|------------|-----------------|--------------|-------------|-------------------|------------|------------------|------------|-----------|---------------|--------------------------|----------------|-------------|
| 1702111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2301                                                                                                                                                                                                                                                                                                                                                                                            |            |                        | LINGI      |                 |              |             | CIIA              |            | .0               |            |           | '             | 1                        | 1              | 0           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 |            |                        |            |                 |              |             |                   |            |                  |            | 3         |               | 2                        | 0              | 4           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 |            |                        |            |                 |              |             |                   |            |                  |            |           |               |                          |                |             |
| MODU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LE I                                                                                                                                                                                                                                                                                                                                                                                            | BASIC      | CONC                   | EPTS A     | ND              | FORC         | E SY        | <b>STE</b>        | CM         |                  |            |           |               | 1                        | 2 Ho           | urs         |
| Introduc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ction to r                                                                                                                                                                                                                                                                                                                                                                                      | nechanic   | es - idea              | lization   | of m            | echanic      | s - 1       | aws (             | of m       | echani           | es - prin  | ciple of  | trai          | nsmis                    | sibilit        | у-          |
| vector -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | addition                                                                                                                                                                                                                                                                                                                                                                                        | , subtrac  | tion and               | product    | . For           | ce- type     | es - s      | yster             | n of       | forces           | - resultai | nt forces | s - c         | ompo                     | sition         | of          |
| forces - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | resolutio                                                                                                                                                                                                                                                                                                                                                                                       | n of for   | ce-free b              | ody diag   | gram            | for real     | wor         | ld sy             | stem       | IS.              |            |           |               |                          |                |             |
| MODU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                 | STATI      | <u>CS OF</u>           | PARTI      | CLE             | <u>S AND</u> | FO          | RCE               | SYS        | <u>STEM</u>      |            | •         |               | ]                        | <u>2 Ho</u>    | urs         |
| Equilibr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | um of                                                                                                                                                                                                                                                                                                                                                                                           | particle   | in space               | e, mome    | nt of           | t couple     | e-equ       | uılıbr            | ant .      | Momer            | it about   | point a   | ind           | speci                    | tic ax         | 18-         |
| moment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | at coupl                                                                                                                                                                                                                                                                                                                                                                                        | e- simpl   | ification              | of force   | e and           | couple       | syste       | ems.              |            |                  |            |           |               | 1                        | <u> </u>       |             |
| MODUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                 | SIAII      |                        | KIGID      | BOD             |              |             |                   | 1          |                  |            | 1         |               | 1                        | 2 H0           | urs         |
| Equilibr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1um of 1                                                                                                                                                                                                                                                                                                                                                                                        | 1910 DO    | dies in T              | two and    | thre            | e dime       | nsioi       | ns -              | bear       | ns - ty          | pes of I   | oads, s   | uppo          | orts a                   | ind th         | leir        |
| MODU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s I wo af                                                                                                                                                                                                                                                                                                                                                                                       |            | FDTIFS                 | OF SU      |                 |              | ND          | <u>;y.</u><br>501 | ING        |                  |            |           |               | 1                        | 2 Ho           | IFC         |
| Dotormi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LE IV                                                                                                                                                                                                                                                                                                                                                                                           | f controi  | d of area              | OF SU      |                 | nd mas       |             | SOL               | <u>105</u> | d Guldi          | nue theo   | roma      | mon           | L nont                   | $\frac{2}{10}$ | urs<br>etio |
| of plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and are                                                                                                                                                                                                                                                                                                                                                                                         | ac Daral   | lal avie               | theorem    | nes a           | ing mas      | S - F       | appu<br>ion c     | s and      | a Oului          | duct of    | inortio   | mai           |                          | mont           | of          |
| inertia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                 | as raia    |                        | theorem    | i iau           | lus or g     | ,yrat       |                   |            | ea- pro          |            | merua-    | ma            | 55 m                     | ment           | 01          |
| Inertia.         Image: Dynamics of Particles AND Friction         12 Hours           Displacement, Velocity and Acceleration their relationship – Relative Motion – Curvilinear motion         12 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 |            |                        |            |                 |              |             |                   |            |                  |            |           |               |                          |                |             |
| Inertia.       Image: Construction of the sector of the sect |                                                                                                                                                                                                                                                                                                                                                                                                 |            |                        |            |                 |              |             |                   |            |                  |            |           |               |                          |                |             |
| - Introdu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nertia.       12 Hours         VODULE V       DYNAMICS OF PARTICLES AND FRICTION       12 Hours         Displacement, Velocity and Acceleration their relationship – Relative Motion – Curvilinear motion       Introduction - mechanism of friction-types -laws of friction - friction on horizontal and inclined planes, adder and wedge friction - rolling resistance.       TOTAL: 60 HOURS |            |                        |            |                 |              |             |                   |            |                  |            |           |               |                          |                |             |
| MODULE V       DYNAMICS OF PARTICLES AND FRICTION       12 Hours         Displacement, Velocity and Acceleration their relationship – Relative Motion – Curvilinear motion       - Introduction - mechanism of friction-types -laws of friction - friction on horizontal and inclined planes, ladder and wedge friction - rolling resistance.       TOTAL: 60 HOURS         COURSE OUTCOMES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                 |            |                        |            |                 |              |             |                   |            |                  |            |           |               |                          |                |             |
| MODULE V       DYNAMICS OF PARTICLES AND FRICTION       12 Hours         Displacement, Velocity and Acceleration their relationship – Relative Motion – Curvilinear motion       - Introduction - mechanism of friction-types -laws of friction - friction on horizontal and inclined planes, ladder and wedge friction - rolling resistance.       TOTAL: 60 HOURS         COURSE OUTCOMES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                 |            |                        |            |                 |              |             |                   |            |                  |            |           |               |                          |                |             |
| COURS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | adder and wedge friction - rolling resistance. TOTAL: 60 HOURS COURSE OUTCOMES:                                                                                                                                                                                                                                                                                                                 |            |                        |            |                 |              |             |                   |            |                  |            |           |               |                          |                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COURSE OUTCOMES:                                                                                                                                                                                                                                                                                                                                                                                |            |                        |            |                 |              |             |                   |            |                  |            |           |               |                          |                |             |
| On the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | successfu                                                                                                                                                                                                                                                                                                                                                                                       | l comple   | etion of t             | the cours  | se, sti         | udents v     | vill ł      | be ab             | le to      |                  |            |           |               |                          |                |             |
| <b>CO1:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Determi                                                                                                                                                                                                                                                                                                                                                                                         | ne variou  | us forces              | using fi   | ree bo          | ody dia      | gram        | ns.               |            |                  |            |           |               |                          |                |             |
| CO2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Determi                                                                                                                                                                                                                                                                                                                                                                                         | ne variou  | us forces              | in equil   | libriu          | m cond       | ition       | n of o            | bject      | ts.              |            |           |               |                          |                |             |
| <u>CO3:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Calculat                                                                                                                                                                                                                                                                                                                                                                                        | e momei    | nt of a co             | ouple ab   | out a           | ny spec      | ified       | l area            | by s       | simplifi         | cation of  | f couple  | sys           | stem.                    |                |             |
| CO4:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Measure                                                                                                                                                                                                                                                                                                                                                                                         | various    | loads ar               | id their r | eacti           | ons in t     | eam         | <u>1.</u>         | •          | 6                | 1          | 1.1       |               |                          |                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Measure                                                                                                                                                                                                                                                                                                                                                                                         | momen      | t of iner              | tia and ra | adius           | of gyra      | tion        | Of Va             | ariou      | is surfa         | ces and s  | solids    |               |                          |                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | POs M                                                                                                                                                                                                                                                                                                                                                                                           | A PPINO    | 1.                     |            |                 |              |             |                   |            |                  |            |           |               |                          |                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 105 11                                                                                                                                                                                                                                                                                                                                                                                          |            | J.                     |            |                 |              |             |                   |            |                  |            |           |               |                          |                |             |
| COs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PO1                                                                                                                                                                                                                                                                                                                                                                                             | PO2        | PO3                    | PO4        | PO              | 05 P         | 76          | PO                | 7          | PO8              | PO9        | PO10      | P             | 011                      | <b>PO1</b>     | 2           |
| C01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                               | 3          | 2                      | 2          | 1               | -            |             |                   | -          | 200              | 107        | 1010      | -             |                          | 1              | -           |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                               | 3          | 2                      | 2          | 1               |              |             |                   |            |                  |            |           |               |                          | 1              |             |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                               | 3          | 2                      | 2          | 1               |              |             |                   |            |                  |            |           |               |                          | 1              |             |
| <b>CO4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                               | 3          | 2                      | 3          | 1               |              |             |                   |            |                  |            |           |               |                          | 1              |             |
| CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                               | 2          | 2                      | 3          | 1               |              |             |                   |            |                  |            |           |               |                          | 1              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 |            |                        |            |                 |              |             |                   |            |                  |            |           |               |                          |                |             |
| COs Vs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PSOs N                                                                                                                                                                                                                                                                                                                                                                                          | IAPPIN     | G:                     |            | 0               | PCOI         |             |                   | Da         |                  |            |           |               |                          |                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 |            |                        | C          | Us<br>01        | <b>PSO1</b>  | PS          | <b>SO</b> 2       | PSC        | 53               |            |           |               |                          |                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 |            |                        | C          |                 |              |             |                   | 3          |                  |            |           |               |                          |                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 |            |                        |            | $\frac{02}{03}$ |              |             |                   | 3          |                  |            |           |               |                          |                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 |            |                        |            | $\frac{03}{04}$ |              | -           |                   | 2          |                  |            |           |               |                          |                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 |            |                        |            | 04              |              |             |                   | 3          |                  |            |           |               |                          |                |             |
| REFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ENCES                                                                                                                                                                                                                                                                                                                                                                                           | •          |                        | C          | 05              |              |             |                   | 5          |                  |            |           |               |                          |                |             |
| 1. F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P. Beer.                                                                                                                                                                                                                                                                                                                                                                                        | and Jr.    | E.R Joh                | nston. V   | ector           | Mecha        | nics        | for E             | Engir      | neers - S        | Statics a  | nd Dvna   | mic           | cs. Ta                   | ta             |             |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /IcGraw-                                                                                                                                                                                                                                                                                                                                                                                        | Hill Pub   | lishing (              | Company    | y, Ne           | w Delh       | i, 20       | 07.               |            |                  |            | J         |               | ,                        |                |             |
| 2. N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I.H. Dub                                                                                                                                                                                                                                                                                                                                                                                        | ey, Engi   | neering                | Mechan     | ics- S          | Statics a    | nd E        | Dynai             | nics       | , Tata N         | /lcGraw-   | -Hill Pu  | blis          | hing                     |                |             |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Company                                                                                                                                                                                                                                                                                                                                                                                         | , New D    | elhi, 201              | 13         |                 |              |             |                   |            |                  |            |           |               |                          |                |             |
| 3. Ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rving H.                                                                                                                                                                                                                                                                                                                                                                                        | Chamaa     | <b>•</b> •••           | aring Ma   | chan            | nics - St    | atice       | d                 | Dun        | amics            | Pearson    | Educati   | ~             |                          | ) ( T          | td.,        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 006                                                                                                                                                                                                                                                                                                                                                                                             | Shames,    | Engine                 |            | Jonan           | 1105 51      | ancs        | and               | Dyn        | annes,           | i cuison   | Educati   |               | Asia l                   | vt. L          | ,           |
| 2<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 006.<br>R.C. Hibł                                                                                                                                                                                                                                                                                                                                                                               | eller F    | Engine                 | ng Mech    | anics           | : Comb       | ined        | S and             |            | z Dvna           | mics Pre   | entice H  | on 4          | Asia l $\frac{1}{2009}$  | vt. L          | ,           |
| 4. R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 006.<br>R.C. Hibt<br>D. P. Shar                                                                                                                                                                                                                                                                                                                                                                 | beller, Er | , Enginee<br>ngineerin | ng Mech    | anics           | : Comb       | ined<br>Kir | I Stat            | ics &      | z Dyna<br>India) | mics, Pro  | entice H  | lall,<br>Delh | Asia l<br>2009<br>i. 201 | 0.             | ,           |

| 1902M                                                                     | E302                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                 | MA                                           | NUFAC                                                   | CTURI                                                                                                                             | NG TEO                                     | CHNO                                             | LOGY                                    | 7 – I                              |                                         | L                                         | T                                        | P                                                                                                   | С                         |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------|-----------------------------------------|------------------------------------|-----------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------|
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                 |                                              |                                                         |                                                                                                                                   |                                            |                                                  |                                         |                                    |                                         | 3                                         | 0                                        | 0                                                                                                   | 3                         |
| MODU                                                                      | JLEI                                                                                                                                                                                                                                                                                                                                                                                                                           | CASTI                                                                                                                                                           | NG PR                                        | OCESS                                                   | ES                                                                                                                                |                                            |                                                  |                                         |                                    |                                         |                                           |                                          | 9 Hou                                                                                               | rs                        |
| Introdu<br>Mouldi<br>Cupola<br>mouldi                                     | iction to<br>ing sand<br>and Inc<br>ng, Die c                                                                                                                                                                                                                                                                                                                                                                                  | production<br>- Types<br>luction.<br>asting, C                                                                                                                  | on proce<br>, Proper<br>Fettling<br>entrifug | esses and<br>ties and<br>and cle<br>al casting          | l its cla<br>Testing<br>aning.<br>g and In                                                                                        | ssificati<br>g. Moul<br>Sand ca<br>westmen | ons - 1<br>ding r<br>asting<br>nt casti          | Pattern<br>nachin<br>defect<br>ng.      | es ar<br>s. Sp                     | vpes, M<br>nd its ty<br>becial ca       | aterials<br>/pes. M<br>asting ]           | and Al<br>lelting<br>processe            | lowanc<br>furnace<br>es - Sh                                                                        | es.<br>s -<br>lell        |
| MODU                                                                      | JLE II                                                                                                                                                                                                                                                                                                                                                                                                                         | META                                                                                                                                                            | L JOIN                                       | ING PR                                                  | OCESS                                                                                                                             | SES                                        |                                                  |                                         |                                    |                                         |                                           |                                          | 9 Hou                                                                                               | rs                        |
| Introdu<br>Princip<br>butt an<br>Plasma<br>Brazing                        | iction to<br>ble of arc<br>d seam. I<br>a arc wel<br>g and sold                                                                                                                                                                                                                                                                                                                                                                | welding<br>welding<br>Principle<br>ding, Th<br>lering.                                                                                                          | process<br>- Electr<br>of Gas<br>termit w    | ses and<br>odes, Fl<br>metal ar<br>velding,             | its clas<br>uxes an<br>c weldi<br>Electror                                                                                        | sificatio<br>d filler<br>ng, Sub<br>n beam | ns - I<br>materi<br>merge<br>weldi               | Princip<br>als. Pr<br>d arc v<br>ng anc | le of<br>incip<br>veldin<br>1 Frio | Gas w<br>le of Re<br>ng, Tun<br>ction w | velding<br>esistanc<br>gsten In<br>elding | and its<br>e weldi<br>hert Gas<br>- Weld | flames<br>ng - Sp<br>s weldin<br>defects                                                            | s -<br>oot,<br>ng,<br>s - |
| MODU                                                                      | J <b>LE III</b>                                                                                                                                                                                                                                                                                                                                                                                                                | BULK                                                                                                                                                            | DEFOR                                        | RMATIO                                                  | )N PR(                                                                                                                            | DCESSI                                     | ES                                               |                                         |                                    |                                         |                                           |                                          | 9 Hou                                                                                               | rs                        |
| Introdu<br>equipm<br>Defects                                              | Introduction - Hot and cold working of metals - Forging processes - Open and close die forging, Forging equipment and operations. Rolling - Types of Rolling mills, shape rolling operations, Tube piercing and Defects. Principle of Extrusion and its types. Principle of rod and wire drawing.         MODULE IV       SHEET METAL FORMING AND SPECIAL FORMING PROCESSES       9 Hours                                      |                                                                                                                                                                 |                                              |                                                         |                                                                                                                                   |                                            |                                                  |                                         |                                    |                                         |                                           |                                          |                                                                                                     |                           |
| MODU                                                                      | <b>DDULE IV</b> SHEET METAL FORMING AND SPECIAL FORMING PROCESSES9 Hoursroduction - Shearing, bending and drawing operations - Stretch forming operations - Principle of special                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                              |                                                         |                                                                                                                                   |                                            |                                                  |                                         |                                    |                                         |                                           |                                          |                                                                                                     |                           |
| Introdu<br>forming<br>pulse fo                                            | Introduction - Shearing, bending and drawing operations - Stretch forming operations - Principle of special forming processes - Hydro forming, Rubber pad forming, Metal spinning, Explosive forming, Magnetic pulse forming, Peen forming and Super plastic forming.  MODULE V MOULDING AND FORMING OF PLASTICS 9 Hours                                                                                                       |                                                                                                                                                                 |                                              |                                                         |                                                                                                                                   |                                            |                                                  |                                         |                                    |                                         |                                           |                                          |                                                                                                     |                           |
| MODU                                                                      | IODULE V       MOULDING AND FORMING OF PLASTICS       9 Hours                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                 |                                              |                                                         |                                                                                                                                   |                                            |                                                  |                                         |                                    |                                         |                                           |                                          |                                                                                                     |                           |
| Introdu<br>and its<br>Thermo                                              | MODULE V         MOULDING AND FORMING OF PLASTICS         9 Hours           Introduction to plastics - Moulding of Thermoplastics - Principle and applications of Injection moulding and its types, Blow moulding, Rotational moulding, Thermoforming and Extrusion. Moulding of Thermosets - Principle and applications of Compression moulding and Transfer moulding Bonding of Thermoplastics - Eusion and solvent methods. |                                                                                                                                                                 |                                              |                                                         |                                                                                                                                   |                                            |                                                  |                                         |                                    |                                         |                                           |                                          |                                                                                                     |                           |
| Thermo                                                                    | opiastics                                                                                                                                                                                                                                                                                                                                                                                                                      | - Fusion                                                                                                                                                        |                                              | ent meu                                                 | ious.                                                                                                                             |                                            |                                                  |                                         |                                    |                                         | ТОТ                                       | AL: 45                                   | HOU                                                                                                 | RS                        |
| COUR                                                                      | SE OUT                                                                                                                                                                                                                                                                                                                                                                                                                         | COMES                                                                                                                                                           | 5:                                           |                                                         |                                                                                                                                   |                                            |                                                  |                                         |                                    |                                         |                                           |                                          |                                                                                                     |                           |
| On the                                                                    | successfu                                                                                                                                                                                                                                                                                                                                                                                                                      | ıl comple                                                                                                                                                       | etion of t                                   | the cours                                               | e, stude                                                                                                                          | ents will                                  | be abl                                           | e to                                    |                                    |                                         |                                           |                                          |                                                                                                     |                           |
| CO1:                                                                      | Explain<br>processe                                                                                                                                                                                                                                                                                                                                                                                                            | the pro                                                                                                                                                         | cess of sting def                            | making<br>fects.                                        | patter                                                                                                                            | ns, prep                                   | oaratio                                          | n of s                                  | and                                | mould,                                  | variou                                    | s speci                                  | al casti                                                                                            | ing                       |
| CO2:                                                                      | Describ                                                                                                                                                                                                                                                                                                                                                                                                                        | e various                                                                                                                                                       | fusion,                                      | friction a                                              | and spec                                                                                                                          | cial weld                                  | ling pr                                          | ocesse                                  | s, sol                             | dering a                                | and braz                                  | zing pro                                 | cesses.                                                                                             |                           |
| CO3:                                                                      | Employ etc.,                                                                                                                                                                                                                                                                                                                                                                                                                   | the appr                                                                                                                                                        | opriate                                      | metal for                                               | rming to                                                                                                                          | echnique                                   | es to p                                          | roduce                                  | com                                | ponents                                 | s like he                                 | exagona                                  | l bolt, 1                                                                                           | nut                       |
| <b>CO4</b> :                                                              | Illustrat                                                                                                                                                                                                                                                                                                                                                                                                                      | e the vari                                                                                                                                                      | ious shee                                    | et metal i                                              | forming                                                                                                                           | process                                    | ses for                                          | a speci                                 | ific a                             | pplicatio                               | on.                                       |                                          |                                                                                                     |                           |
| CO5:                                                                      | Describ                                                                                                                                                                                                                                                                                                                                                                                                                        | e the pro                                                                                                                                                       | perties a                                    | nd bondi                                                | ng tech                                                                                                                           | niques o                                   | of plast                                         | ics and                                 | l vari                             | ous plas                                | stic mol                                  | ding teo                                 | hnique                                                                                              | s.                        |
| COs V                                                                     | COs Vs POs MAPPING:                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                 |                                              |                                                         |                                                                                                                                   |                                            |                                                  |                                         |                                    |                                         |                                           |                                          |                                                                                                     |                           |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                 |                                              |                                                         |                                                                                                                                   |                                            | -                                                |                                         | 00                                 | DOA                                     |                                           | DO11                                     |                                                                                                     | 2                         |
| COs                                                                       | PO1                                                                                                                                                                                                                                                                                                                                                                                                                            | PO2                                                                                                                                                             | PO3                                          | PO4                                                     | PO5                                                                                                                               | PO6                                        | PO                                               | /   P                                   | 08                                 | PO9                                     | PO10                                      | POL                                      | .   PO1                                                                                             |                           |
| COs<br>CO1                                                                | <b>PO1</b> 3                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>PO2</b> 2                                                                                                                                                    | <b>PO3</b> 1                                 | PO4                                                     | <b>PO5</b><br>2                                                                                                                   | PO6                                        | PO                                               | / P0                                    | 08                                 | 2                                       | PO10                                      | POI                                      | <b>PO1</b>                                                                                          |                           |
| COs<br>CO1<br>CO2                                                         | <b>PO1</b> 3 2                                                                                                                                                                                                                                                                                                                                                                                                                 | PO2<br>2<br>2                                                                                                                                                   | <b>PO3</b> 1 1                               | PO4                                                     | <b>PO5</b><br>2                                                                                                                   | PO6                                        | PO                                               | / P0                                    | 08                                 | 2                                       | PO10                                      |                                          | PO1 1 1                                                                                             |                           |
| COs<br>CO1<br>CO2<br>CO3                                                  | <b>PO1</b> 3 2 3 3                                                                                                                                                                                                                                                                                                                                                                                                             | PO2<br>2<br>2<br>2                                                                                                                                              | <b>PO3</b> 1 1 1 1                           | <b>PO4</b>                                              | PO5<br>2<br>2<br>2                                                                                                                | PO6                                        |                                                  |                                         | 08                                 | 2<br>2<br>2<br>2                        | PO10                                      |                                          | PO1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                             |                           |
| COs<br>CO1<br>CO2<br>CO3<br>CO4                                           | PO1 3 2 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                | PO2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                               | PO3 1 1 1 2                                  | <b>PO4</b> 3 3                                          | PO5           2           2           2           2           2                                                                   |                                            |                                                  |                                         | 08                                 | 2<br>2<br>2<br>2                        | PO10                                      |                                          | PO1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                             |                           |
| COs           CO1           CO2           CO3           CO4           CO5 | PO1           3           2           3           3           3           3                                                                                                                                                                                                                                                                                                                                                    | PO2           2           2           2           2           2           2           2           2           2           2           2           2           2 | <b>PO3</b> 1 1 2                             | <b>PO4</b> 3 3                                          | PO5           2           2           2           2                                                                               | PO6                                        |                                                  |                                         | 8                                  | 2<br>2<br>2<br>2                        | PO10                                      |                                          | PO1           1           1           1           1           1           1           1           1 |                           |
| COs<br>CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>COs V                           | PO1 3 2 3 3 3 5 PSOs M                                                                                                                                                                                                                                                                                                                                                                                                         | PO2           2           2           2           2           2           2           2           3                                                             | <b>PO3</b> 1 1 2 <b>G</b> :                  | <b>PO4</b> 3 3                                          | PO5           2           2           2           2                                                                               | PO6                                        |                                                  |                                         |                                    | 2<br>2<br>2<br>2                        | PO10                                      |                                          | PO1           1           1           1           1           1           1                         |                           |
| COs<br>CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>COs V                           | PO1 3 2 3 3 3 5 PSOs N                                                                                                                                                                                                                                                                                                                                                                                                         | PO2           2           2           2           2           2           2           2           2           AAPPIN                                            | PO3 1 1 2 G:                                 | PO4 3 3 C                                               | PO5<br>2<br>2<br>2<br>2<br>2<br>0s Pf                                                                                             | PO6                                        |                                                  | PSO3                                    |                                    | 2<br>2<br>2                             | PO10                                      |                                          | PO1           1           1           1           1           1           1                         |                           |
| COsCO1CO2CO3CO4CO5                                                        | PO1 3 2 3 3 3 5 PSOs N                                                                                                                                                                                                                                                                                                                                                                                                         | PO2           2           2           2           2           2           2           2           2           APPIN                                             | PO3 1 1 2 G:                                 | PO4 3 3 C(0) C(0) C(0) C(0) C(0) C(0) C(0) C(0)         | PO5           2           2           2           2           0s           01                                                     | SO1 P                                      | <b>PO</b><br><b>SO2</b><br>3                     | PSO3                                    |                                    | 2<br>2<br>2                             | PO10                                      |                                          | PO1           1           1           1           1           1                                     |                           |
| COs<br>CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>COs V                           | PO1 3 2 3 3 3 5 PSOs N                                                                                                                                                                                                                                                                                                                                                                                                         | PO2           2           2           2           2           2           2           2           2           APPIN                                             | PO3 1 1 2 G:                                 | PO4 3 3 C0          | PO5           2           2           2           2           2           0s           PS           01           02           03  | SO1 P                                      | <b>PO</b><br><b>SO2</b><br>3<br>2<br>3           | PSO3                                    |                                    | PO9           2           2           2 | PO10                                      |                                          | PO1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                             |                           |
| COsCO1CO2CO3CO4CO5                                                        | PO1 3 2 3 3 3 5 PSOs N                                                                                                                                                                                                                                                                                                                                                                                                         | PO2           2           2           2           2           2           2           2           3                                                             | PO3 1 1 2 G:                                 | PO4<br>3<br>3<br>C(<br>C(<br>C(<br>C(<br>C(<br>C(<br>C( | PO5         2           2         2           2         2           0s         P1           02         03           04         04 | SO1 P                                      | <b>PO</b><br><b>SO2</b><br>3<br>2<br>3<br>3<br>3 | PSO3                                    |                                    | 2<br>2<br>2                             | PO10                                      |                                          | PO1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                             |                           |

| <b>REFERENCES:</b>                                                                               |
|--------------------------------------------------------------------------------------------------|
| 1. P. N. Rao, Manufacturing Technology vol. I, Tata McGraw-Hill Publishing Company private       |
| Limited, New Delhi, 2010.                                                                        |
| 2. SeropeKalpakjian, Steven R. Schmid, Manufacturing Engineering and Technology, Pearson         |
| Education Limited, New Delhi, 2013                                                               |
| 3. J. P. Kaushish, Manufacturing Processes, Prentice Hall of India Learning Private Limited, New |
| Delhi, 2013                                                                                      |
| 4. P.C. Sharma, Manufacturing Technology - I, S Chand and Company Private Limited, New Delhi,    |
| 2010.                                                                                            |
| 5. S K HajraChoudhury, Elements of Workshop Technology - Vol. I, Media Promoters & Publishers    |
| Private Limited, Mumbai,2013.                                                                    |
| 6. http://nptel.ac.in/courses/112107144/1                                                        |

| 10000              | <b>F</b> 202                                                                                                                                                                                                                                                                   |           |            |            |                 | MAG             |              |           |           |          |           |        | T      |          | D        | C        |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|------------|-----------------|-----------------|--------------|-----------|-----------|----------|-----------|--------|--------|----------|----------|----------|
| 1902MI             | E303                                                                                                                                                                                                                                                                           |           | F          |            | IECHA           | NICS            | AN           | ID M      | AC        | HINES    |           |        | L      | 1        | P        | C        |
|                    |                                                                                                                                                                                                                                                                                |           |            |            |                 |                 |              |           |           |          |           |        | 2      | 2        | 0        | 3        |
| MODU               | LEI                                                                                                                                                                                                                                                                            | INTI      | RODUC      | TION T     | O FLU           | ID A            | ND           | FLI       | JID       | ΜΟΤΙ     | ON        |        |        |          | 7 Hou    | irs      |
| Fluid- F           |                                                                                                                                                                                                                                                                                | hanics .  | J aws of   | f Fluid N  | /echani         | cs-Pr           | onei         | rties     | of f      | luid an  | d its An  | nlicat | ion-   | Types (  | of flu   | <br>id _ |
| Types              | of fluid                                                                                                                                                                                                                                                                       | Flow-N    | leasuren   | nent of    | Pressur         | e-U-t           | ube          | and       | dif       | fferenti | al mano   | mete   | r- N   | leasure  | ment     | of       |
| velocity           | using Di                                                                                                                                                                                                                                                                       | scharge   | -Flow c    | haracter   | istics-M        | lomen           | ntum         | 1 -coi    | ntinu     | uity equ | ation.    |        | ,      |          |          | 01       |
| MODU               |                                                                                                                                                                                                                                                                                | FLU       | ID DYN     | AMICS      | AND             | FLUI            | D F          | LOV       | <b>VO</b> | VER (    | CONDU     | ITS    |        | 1        | 11 Ho    | ours     |
| Forces             | acting on                                                                                                                                                                                                                                                                      | a fluid   | element    | - Eulers   | and Be          | ernoul          | 11i t1       | heore     | em /      | Applica  | tion in i | ntern  | al ar  | d exte   | rnal f   | lows     |
| measuri            | ng instru                                                                                                                                                                                                                                                                      | ments -   | Major 1    | losses ar  | nd Mino         | or loss         | ses          | in pi     | pes       | using    | standard  | chart  | s an   | d table  | s pip    | es in    |
| series a           | nd pipes i                                                                                                                                                                                                                                                                     | n parall  | el Dar     | cv Weisl   | ach ear         | uation          | n. Id        | lentif    | icati     | on of l  | aminar a  | nd tu  | rbule  | ent flov | v in cl  | osed     |
| conduits           | s, flow in                                                                                                                                                                                                                                                                     | circular  | pipe.      |            |                 |                 |              |           |           |          |           |        |        |          |          |          |
| MODU               |                                                                                                                                                                                                                                                                                | DIM       | ENSIO      | NAL AN     | D MOI           | DEL             | AN           | ALY       | SIS       | )        |           |        |        | ļ        | ) Hov    | irs      |
| Need fo            | or dimens                                                                                                                                                                                                                                                                      | ional an  | alysis - o | dimensio   | nal ana         | lysis           | usin         | ıg Bu     | ckir      | ngham    | pi theore | em – S | Simi   | litude - | type     | s of     |
| similitu           | de - Dim                                                                                                                                                                                                                                                                       | ensionle  | ess parar  | neters- a  | pplicati        | on of           | dir          | nensi     | ionle     | ess par  | ameters   | - Mo   | del a  | nalysis  | thro     | ugh      |
| Reynold            | olds and Froudes Model law.         ULE IV       HYDRAULIC TURBINES         9 Hours                                                                                                                                                                                            |           |            |            |                 |                 |              |           |           |          |           |        |        |          |          |          |
| MODU               | ULE IV HYDRAULIC TURBINES 9 Hours                                                                                                                                                                                                                                              |           |            |            |                 |                 |              |           |           |          |           |        |        |          |          |          |
| Definitio          | ition of turbine - Classification -Types of head and efficiencies of turbine-Impulse turbine - Reaction                                                                                                                                                                        |           |            |            |                 |                 |              |           |           |          |           |        |        |          |          |          |
| turbine-l          | ntion of turbine - Classification - Types of head and efficiencies of turbine-Impulse turbine - Reaction<br>ne-Francis turbine, Kaplan turbine - working principles and velocity triangle- Work done by water on the<br>er Specific speed - unit quantities performance curves |           |            |            |                 |                 |              |           |           |          |           |        |        |          |          |          |
| runner S           | er Specific speed - unit quantities performance curves.                                                                                                                                                                                                                        |           |            |            |                 |                 |              |           |           |          |           |        |        |          |          |          |
| MODU               | LE V                                                                                                                                                                                                                                                                           | HYD       | RAULI      | C PUM      | PS              |                 |              |           |           |          |           |        |        | 9        | ) Hou    | Irs      |
| Definition         | on -Centr                                                                                                                                                                                                                                                                      | ifugal p  | ump Cla    | ssificatio | n Const         | ructio          | n w          | orkir     | ng pi     | rinciple | and vel   | ocity  | Tria   | igle De  | efinitio | on of    |
| heads-L            | osses and                                                                                                                                                                                                                                                                      |           | ncies-Mu   | Itistage   | Centrifu        | gal pi          | ump          | o-Spe     |           | speed    | - Primi   | ng and | d cav  | vitation | effec    | ts of    |
| centrifug          | gal pump                                                                                                                                                                                                                                                                       | . Recipi  | rocating   | pump C     |                 | ation           | Wo           | orking    | g Pr      | inciple  | Coeffici  | ent o  | of dis | scharge  | and      | slıp-    |
| Indicato           | r diagram                                                                                                                                                                                                                                                                      | (Descri   | ptive trea | itment or  | ily).           |                 |              |           |           |          |           | т      |        | T . 45   |          | DC       |
| COURS              | SE OUT                                                                                                                                                                                                                                                                         | COME      | 5.         |            |                 |                 |              |           |           |          |           | 10     | JIA    | L: 45    |          | no       |
| COUR               |                                                                                                                                                                                                                                                                                |           | 5.         |            |                 |                 |              |           |           |          |           |        |        |          |          |          |
| On the s           | successfu                                                                                                                                                                                                                                                                      | l comple  | etion of   | the cours  | se, stude       | ents w          | vill b       | be ab     | le to     | )        |           |        |        |          |          |          |
| CO1:               | Explain                                                                                                                                                                                                                                                                        | various   | propertie  | es of flui | ds and f        | low n           | neas         | suren     | nent      | s.       |           |        |        |          |          |          |
| CO2:               | Calculate                                                                                                                                                                                                                                                                      | e the ene | ergy loss  | es in pip  | es.             |                 |              |           |           |          |           |        |        |          |          |          |
| CO3:               | Explain                                                                                                                                                                                                                                                                        | the dime  | ensional   | analysis   | of fluid        | S.              |              | 1: .      | 41        |          |           |        |        |          |          |          |
| $\frac{CO4:}{CO5}$ | Calculate                                                                                                                                                                                                                                                                      | the per   | formanc    | re charac  | teristics       | $\frac{1}{100}$ | iyar<br>vdra | ulic 1    | num       | ns       |           |        |        |          |          |          |
|                    | Calculat                                                                                                                                                                                                                                                                       |           | Tormane    | e charac   |                 | or ny           | yura         | lune      | Jum       |          |           |        |        |          |          |          |
| COs Vs             | s POs MA                                                                                                                                                                                                                                                                       | APPINO    | 3:         |            |                 |                 |              |           |           |          |           |        |        |          |          |          |
| COa                | DO1                                                                                                                                                                                                                                                                            | DO1       | DO3        | DO4        | DO5             | DO              |              | DO        | 7         | DOQ      | DOO       | DO     | 10     |          |          | 12       |
| CO1                | 3                                                                                                                                                                                                                                                                              | 1<br>1    | <b>PO5</b> | <b>PO4</b> | P05             | <b>PU</b><br>2  | 0            | <b>PO</b> | ·/        | PUð      | P09       | PU     | 10     | PUII     | 1        | 12       |
| CO2                | 3                                                                                                                                                                                                                                                                              | 2         | 1          | 2          |                 | 1               |              | 1         |           |          |           |        |        |          | 1        | _        |
| <b>CO3</b>         | 3                                                                                                                                                                                                                                                                              | 2         |            | 1          | 2               |                 |              |           |           | 1        | 1         |        |        | 2        |          |          |
| <u>CO4</u>         | 3                                                                                                                                                                                                                                                                              | 2         | 1          | 2          |                 | 2               |              | 2         |           | 1        | 1         |        |        |          | 1        |          |
| CO5                | 3                                                                                                                                                                                                                                                                              | 2         | 1          | 2          |                 | 2               |              | 2         |           | 1        | 1         |        |        |          | 1        |          |
| COs Vs             | s PSOs M                                                                                                                                                                                                                                                                       | IAPPIN    | IG:        |            |                 |                 |              |           |           |          |           |        |        |          |          |          |
| 000 12             | 10001                                                                                                                                                                                                                                                                          |           |            | С          | Os PS           | <b>SO1</b>      | PS           | <b>O2</b> | PS        | 03       |           |        |        |          |          |          |
|                    |                                                                                                                                                                                                                                                                                |           |            | C          | 01              | 2               |              |           | 2         |          |           |        |        |          |          |          |
|                    |                                                                                                                                                                                                                                                                                |           |            | C          | $\frac{02}{02}$ | 2               |              |           | 2         |          |           |        |        |          |          |          |
|                    |                                                                                                                                                                                                                                                                                |           |            |            | 03              | $\frac{1}{2}$   |              |           |           |          |           |        |        |          |          |          |
|                    |                                                                                                                                                                                                                                                                                |           |            |            | 05              | -               |              |           |           |          |           |        |        |          |          |          |

#### **REFERENCES:**

1. R.K.Bansal, A Textbook of Fluid Mechanics and Machinery, Laxmi Publications Ltd., New Delhi, Revised Tenth edition, 2018.

- Bruce R Munson , Donald F Young, Theodore H Okiishi and Wade W. Huebsch, Fundamentals of Fluid Mechanics, John Wiley & Sons, Sixth edition 2009.
   Pijush K Kundu and Ira M Cohen, Fluid Machines, Academic Press, Burlington, United states of america, 2010.
   YunusCengel and John Cimbala, Fluid Mechanics Fundamentals and Application, Tata McGraw Hill Publishing Company Pvt. Ltd., New Delhi 2009.
   Robert and W Fox, Introduction to Fluid Machines, John Wiley Eastern Pvt. Ltd., New Delhi, 6<sup>th</sup> edition,2006.
  - 6. http://nptel.ac.in/courses/112105182/

| 1902M      | E304                                                            |                      |                   | STRE                 | ENGT            | H OI           | F MA          | TER                 | RIAL           | S                  |                |               | L            | Т        | Р                      | С    |
|------------|-----------------------------------------------------------------|----------------------|-------------------|----------------------|-----------------|----------------|---------------|---------------------|----------------|--------------------|----------------|---------------|--------------|----------|------------------------|------|
|            |                                                                 |                      |                   |                      |                 |                |               |                     |                |                    |                |               | 3            | 2        | 0                      | 4    |
|            |                                                                 | 1                    |                   |                      |                 |                |               |                     |                |                    |                |               |              |          |                        |      |
| MODU       | JLEI                                                            | STRE                 | SS, STR           | AIN AN               | ND DI           | EFOI           | RMA           | TIO                 | N OI           | F SOL              | IDS            | -             | <u> </u>     | ]        | 12 Ho                  | urs  |
| Introdu    | ction to r                                                      | naterial             | properti          | es. Stres            | sses ar         | nd str         | ains (        | due t               | to ax          | ial for            | ce, shear      | force         | , im         | pact f   | orce a                 | ind  |
| and bri    | l effect-ste<br>ttle materi                                     | epped al             | na comp<br>ko law | Eactor of            | rs-uni          | ty Po          | y var         | ying<br>ratic       | cros           | s sections         | on. Stres      | s-stra        | in cu        | Irve IC  | or auc                 | tile |
|            |                                                                 |                      |                   |                      |                 |                | TWO           |                     | MEN            |                    |                | inu un        | л I <b>с</b> |          | ыпр.<br>1 <b>2 н</b> о | urc  |
| State o    | f stresses                                                      | at a po              | int- Nor          | mal and              | shear           | stres          | ses o         | n in                | cline          | d plane            | s<br>es - Prin | cipal         | nlan         | es and   | stres                  | ses  |
| Plane of   | of maximu                                                       | im shear             | r stress -        | Mohrs                | -circle         | e for          | biaxia        | al str              | ess v          | with sh            | ear stres      | s. Ho         | op a         | nd lon   | gitudi                 | nal  |
| stresses   | s in thin cy                                                    | ylindrica            | and spi           | herical s            | hells -         | Char           | nges i        | n dir               | nens           | ions an            | d volum        | e.            | 1            |          | C                      |      |
| MODU       | JLE III                                                         | LOAI                 | OS AND            | STRES                | SES 1           | IN BI          | EAM           | S                   |                |                    |                |               |              | ]        | 12 Ho                  | urs  |
| Types      | of beam                                                         | s- Supp              | ports an          | d Load               | s, Sh           | ear f          | orce          | and                 | Ber            | nding              | Moment         | in            | bean         | ns, Ca   | antilev                | ver, |
| simply     | supported                                                       | l and ove            | erhangin          | g beams              | - Poir          | nt of o        | contra        | a flex              | ure.           | Theory             | of simp        | le bei        | ıdinş        | g - ben  | ding a                 | ind  |
| shear st   | tress - stre                                                    | ss varia             | tion alon         | g the ler            | ngth ai         | nd sec         | ction         | of the              | e bea          | ım, Sec            | tion mod       | lulus.        |              |          | A 11                   |      |
| MODU       | JLE IV                                                          | DEFL                 | ECTIO             | N OF B               | EAM             | S AN           | D CC          | )LU                 | MNS            | 5                  |                |               |              |          | 12 Ho                  | urs  |
| Slope a    | and Deflec                                                      | tion of c<br>Equival | cantileve         | r, simply<br>h Euler | y supp<br>and R | orted<br>ankin | ,Dou<br>e for | ble i<br>mula       | ntegi<br>e- Sl | ration r<br>endern | nethod a       | nd Ma         | icaul        | lay"s    | metho                  | d.   |
| MODI       | JLE V                                                           |                      | ION IN            | SHAF                 |                 | ) HE           |               |                     | PRI            | NG                 |                |               |              | []       | <b>12 Ho</b>           | urs  |
| Analys     | is of tors                                                      | sion of              | circular          | solid                | and h           | ollow          | sha           | fts-st              | teppe          | ed shaf            | t-compo        | und           | shaft        | - She    | ar str                 | ess  |
| distribu   | ition, angl                                                     | le of twi            | st and to         | orsional             | stiffne         | ess. C         | losed         | coil                | heli           | cal spri           | ng- stres      | sses a        | nd d         | eflecti  | on un                  | der  |
| axial lo   | ad-Maxin                                                        | num she              | ar stress         | in sprin             | g secti         | on.            |               |                     |                |                    |                |               |              |          |                        |      |
| COUD       | al load-Maximum shear stress in spring section. TOTAL: 60 HOURS |                      |                   |                      |                 |                |               |                     |                |                    |                |               |              |          |                        |      |
| COUR       | SE OUT                                                          | COMES                | <b>S</b> :        |                      |                 |                |               |                     |                |                    |                |               |              |          |                        |      |
| Ore the a  |                                                                 | 1                    | tion of t         | <b>h</b>             |                 | danta          | : 11 1        |                     | 10.40          |                    |                |               |              |          |                        |      |
| On the     | Successiu<br>Eind the                                           | i comple             |                   | ne cours             | se, stud        |                | WIII (        |                     |                |                    |                |               | ب ام م       |          | 11001                  |      |
|            | Find the                                                        | stress di            | stributio         | n and su             | rains i         | n regi         | ular a        | $\frac{1}{1}$       |                |                    | in aution      | subjec        |              | to axia  | 1 10au                 | 5.   |
| CO2:       | Evaluate                                                        |                      | ipound s          | tresses 1            | n two           |                | h su d        | ar sy               | stem           | s and u            |                | ders.         |              |          | ما أنه م               |      |
| CO3:       | Assess tr                                                       | the snear            | lorce, be         | ending in            | iomen           | t and          | bend          | $\frac{1100}{1100}$ | tress          |                    |                | $\frac{1}{1}$ | nsve         | erse loa | adıng.                 |      |
| CO4:       | Evaluate                                                        | the slop             | e and de          |                      | of dea          | ams u          | nder          |                     |                |                    | ry condi       | tions.        |              |          |                        |      |
| C05:       | Apply to                                                        | rsion eq             | uation if         | i design             | of circ         | cular s        | snarts        | and                 | nenc           | cal spri           | ngs.           |               |              |          |                        |      |
| COs V      | s POs MA                                                        | APPINC               | <b>;</b> :        |                      |                 |                |               |                     |                |                    |                |               |              |          |                        |      |
|            |                                                                 |                      |                   | 201                  |                 |                |               |                     |                |                    |                |               |              |          |                        |      |
| COs        | PO1                                                             | PO2                  | PO3               | PO4                  | PO5             | 5 P            | 06            | PO                  | 07             | PO8                | PO9            | POI           | 0            | PO11     | PO1                    | .2   |
| <u>CO1</u> | 3                                                               | 1                    | 1                 |                      |                 |                |               |                     |                |                    |                |               |              |          | 1                      |      |
| CO2        | 3                                                               | 2                    | 2                 |                      |                 |                |               | 1                   |                |                    |                |               | $\perp$      |          | 1                      |      |
| CO3        | 3                                                               | 2                    | 2                 |                      |                 |                |               | 1                   |                |                    |                |               | $\perp$      |          | 1                      |      |
| CO4        | 3                                                               | 2                    | 2                 |                      |                 |                |               | 1                   |                |                    |                |               | $\square$    |          | 1                      |      |
| CO5        | 3                                                               | 1                    | 2                 |                      |                 |                |               | 1                   |                |                    |                |               |              |          | 1                      |      |
| COs V      | s PSOs M                                                        | IAPPIN               | G:                |                      |                 |                |               |                     |                |                    |                |               |              |          |                        |      |
| 005 (      | 5100510                                                         |                      | 0.                | C                    | Os ]            | PSO1           | l PS          | <b>502</b>          | <b>PS</b>      | 03                 |                |               |              |          |                        |      |
|            |                                                                 |                      |                   | С                    | 01              |                |               |                     | 2              |                    |                |               |              |          |                        |      |
|            |                                                                 |                      |                   | C                    | 02              |                | _             |                     | 2              |                    |                |               |              |          |                        |      |
|            |                                                                 |                      |                   |                      | 03              |                | _             |                     | $\frac{2}{2}$  |                    |                |               |              |          |                        |      |
|            |                                                                 |                      |                   |                      | 05              |                | -             |                     | 2              |                    |                |               |              |          |                        |      |
| REFE       | RENCES                                                          | :                    |                   |                      | ~~              |                |               |                     |                | I                  |                |               |              |          |                        |      |
| 1. ]       | Egor P. Po                                                      | opov, Er             | ngineerir         | ig Mech              | anics o         | of Sol         | ids, F        | Prenti              | ice H          | [all of I          | ndia Lea       | rning         | Pvt.         | Ltd, I   | New                    |      |
| 2.         | S.S. Ratta                                                      | n. Streng            | gth of M          | aterials             | Tata N          | McGr           | aw H          | ill.Γ               | Delhi          | Secon              | d Edition      | n. 201        | 1.           |          |                        |      |
| 3. 1       | D. K. Sing                                                      | gh, Mecl             | hanics of         | f Solids,            | Pears           | on Ed          | lucati        | on N                | ew L           | Delhi, 2           | 006.           | , 201         |              |          |                        |      |

4. F. P. Beer and R. Johnston, Mechanics of Materials, Tata McGraw Hill Publishing Company Pvt Ltd., New Delhi, Third edition,2002.
5. B. K. Sarkar, Strength of Materials, Tata McGraw Hill Publishing Company Pvt. Ltd, New Delhi, Second Reprint, 2007.
6. http://www.nptel.ac.in/courses/Webcourse-contents/IIT

| 1902M    | E305                                                                                                                                                                                                                                                                                                                                                                                                           |           |            | Т          | HERM      | ODYNA                 | MICS      |            |              | L         | Т           | Р                      | С    |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|------------|-----------|-----------------------|-----------|------------|--------------|-----------|-------------|------------------------|------|--|--|
|          |                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |            |           |                       |           |            |              | 3         | 2           | 0                      | 4    |  |  |
| ΜΟΡΙ     | прт                                                                                                                                                                                                                                                                                                                                                                                                            | ІЛТД      | חחוריז     |            |           | оти і                 |           | г тибр     | ΜΟΡΥ         | NAMIC     |             | 1) Un                  | ure  |  |  |
| Macros   | copic ar                                                                                                                                                                                                                                                                                                                                                                                                       | d Mier    | osconic    | approa     | ches D    | efinition             | A W U     | concept    | s- heat      | work      | thermo      | 12 <b>f10</b><br>dvnat | nic  |  |  |
| equilib  | rium, syst                                                                                                                                                                                                                                                                                                                                                                                                     | em and    | types, su  | irroundi   | ngs, Proi | perties- i            | ntensive  | e and ex   | tensive i    | propertie | s, Path a   | and po                 | oint |  |  |
| functio  | ns, Energ                                                                                                                                                                                                                                                                                                                                                                                                      | y- macr   | oscopic    | and mic    | roscopic  | modes                 | of energy | gy, Ther   | modyna       | mic proc  | esses a     | nd cyc                 | cle, |  |  |
| State po | ostulate, Z                                                                                                                                                                                                                                                                                                                                                                                                    | Zeroth la | w of the   | rmodyna    | amics- te | emperatu              | re scale. | , perfect  | gas scal     | e         |             | -                      |      |  |  |
| MODU     | JLE II                                                                                                                                                                                                                                                                                                                                                                                                         | FIRST     | Г LAW      | OF TH      | ERMOI     | DYNAM                 | ICS       |            |              |           | 1           | 2 Ho                   | urs  |  |  |
| First la | w of the                                                                                                                                                                                                                                                                                                                                                                                                       | ermodyn   | amics, I   | law for    | r Closed  | l system              | is - con  | istant pro | essure p     | process,  | constant    | volu                   | me   |  |  |
| process  | , constan                                                                                                                                                                                                                                                                                                                                                                                                      | t temper  | ature pr   | ocess, a   | diabatic  | process,              | , polytro | opic proc  | ess, through | ottling p | rocess. ]   | l law                  | for  |  |  |
| open sy  | stems - S                                                                                                                                                                                                                                                                                                                                                                                                      | Steady s  | tate flow  | v proces   | ses, Stea | ady flow<br>brottling | v energy  | equation   | n (SFEE      | e), Appli | cation c    | of SFE                 | ±E-  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                | SECO      |            | W OF T     | THERM     |                       | MICS      | lieat exc  | nangers      | •         | 1           | 2 Ho                   | urs  |  |  |
| Limitat  | ions of I                                                                                                                                                                                                                                                                                                                                                                                                      | law of    | thermod    | vnamics    | Second    | d law of              | thermo    | dynamic    | s- Kelv      | in - Plan | ck and      |                        | ins  |  |  |
| stateme  | ents. Hea                                                                                                                                                                                                                                                                                                                                                                                                      | t Engin   | e. heat    | nump       | and ref   | rigerator             | : Reve    | rsibility  | and irr      | eversibil | itv- irr    | eversi                 | ble  |  |  |
| and rev  | versible p                                                                                                                                                                                                                                                                                                                                                                                                     | rocesses  | , Carnot   | t's princi | iples, Ca | arnot cyc             | cle, Car  | not engi   | ne, The      | rmodyna   | mic ten     | perat                  | ure  |  |  |
| scale,   | le, Clausius inequality, Entropy- principle of entropy increase, Availability & irreversibility –<br>roduction about third law of thermodynamics.                                                                                                                                                                                                                                                              |           |            |            |           |                       |           |            |              |           |             |                        |      |  |  |
| Introdu  | roduction about third law of thermodynamics. DDULE IV PROPERTIES OF PURE SUBSTANCES 12 Hours                                                                                                                                                                                                                                                                                                                   |           |            |            |           |                       |           |            |              |           |             |                        |      |  |  |
| MODU     | c, Clausius inequality, Entropy- principle of entropy increase, Availability & irreversibility – duction about third law of thermodynamics.         DULE IV       PROPERTIES OF PURE SUBSTANCES         modynamic properties of fluids. Pure substance-phases - Phase change processes, Property diagrams - sure-volume (P-v), pressure-temperature (P-T), temperature volume (T-v), temperature entropy (T-s) |           |            |            |           |                       |           |            |              |           |             |                        |      |  |  |
| Inermo   | rmodynamic properties of fluids. Pure substance-phases - Phase change processes, Property diagrams -<br>ssure-volume (P-v), pressure-temperature (P-T), temperature volume (T-v), temperature entropy (T-s)<br>enthalpy entropy (h s) diagrams. Steam tables. Problems on flow processes                                                                                                                       |           |            |            |           |                       |           |            |              |           |             |                        |      |  |  |
| and ent  | essure-volume (P-v), pressure-temperature (P-T), temperature volume (T-v), temperature entropy (T-s)<br>ad enthalpy-entropy (h-s) diagrams. Steam tables - Problems on flow and non-flow processes.                                                                                                                                                                                                            |           |            |            |           |                       |           |            |              |           |             |                        |      |  |  |
| MODI     | d enthalpy-entropy (h-s) diagrams. Steam tables - Problems on flow and non-flow processes.         ODULE V       GAS MIXTURES AND PSYCHROMETRIC PROPERTIES         12 Hours                                                                                                                                                                                                                                    |           |            |            |           |                       |           |            |              |           |             |                        |      |  |  |
| Thermo   | DDULE V         GAS MIXTURES AND PSYCHROMETRIC PROPERTIES         12 Hours           ermodynamics of ideal gas mixture- mixture of ideal gas, mixture of perfect gases, Dalton's law of         12 Hours                                                                                                                                                                                                       |           |            |            |           |                       |           |            |              |           |             |                        |      |  |  |
| partial  | hermodynamics of ideal gas mixture- mixture of ideal gas, mixture of perfect gases, Dalton's law of artial pressure, Amagat's law, Thermodynamics properties, Ideal gas – equation of state, Van derWaals                                                                                                                                                                                                      |           |            |            |           |                       |           |            |              |           |             |                        |      |  |  |
| equatio  | n and cor                                                                                                                                                                                                                                                                                                                                                                                                      | npressib  | ility cha  | rt. Psych  | rometric  | propert               | ies and j | processes  | s – Psyc     | hrometri  | c chart.    |                        |      |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |            |           |                       |           |            |              | TOTA      | AL: 60 ]    | HOU                    | RS   |  |  |
| COUR     | SE OUT                                                                                                                                                                                                                                                                                                                                                                                                         | COMES     | 5:         |            |           |                       |           |            |              |           |             |                        |      |  |  |
| On the   | successfy                                                                                                                                                                                                                                                                                                                                                                                                      | l compl   | ation of t | he cour    | e etudo   | nte 1111              | ne obla + | 0          |              |           |             |                        |      |  |  |
| CO1.     | Understo                                                                                                                                                                                                                                                                                                                                                                                                       | and conc  | ente and   | ne cours   | es of the | nts will (            | amice     | U          |              |           |             |                        |      |  |  |
|          | Utilizo f                                                                                                                                                                                                                                                                                                                                                                                                      | iret lour | opis and   | odynami    | cs for al | osed and              | l open er | vetemo     |              |           |             |                        |      |  |  |
| CO2:     | Use soor                                                                                                                                                                                                                                                                                                                                                                                                       | not law ( | of therm   | odynami    | cs for h  | oscu alle             | ne heat   | y sterins. | d refrige    | rator     |             |                        |      |  |  |
| CO3:     | Explain                                                                                                                                                                                                                                                                                                                                                                                                        | thermod   | vnamio     | propertie  | es for no | a cubeter             | ne, indi  | its phase  | a change     | nrocoss   | <b>A</b> C  |                        |      |  |  |
| CO4:     | Detormi                                                                                                                                                                                                                                                                                                                                                                                                        |           | rties of   | propertie  | urec      | e substal             | ices allu | ns phas    | c change     | process   | <b>U</b> 3. |                        |      |  |  |
| 005:     | Determin                                                                                                                                                                                                                                                                                                                                                                                                       | ne prope  |            | zas mixt   | u108.     |                       |           |            |              |           |             |                        |      |  |  |
| COaV     |                                                                                                                                                                                                                                                                                                                                                                                                                | A DDING   | ۲.         |            |           |                       |           |            |              |           |             |                        |      |  |  |
|          | 5 I US IVI/                                                                                                                                                                                                                                                                                                                                                                                                    |           | J.         |            |           |                       |           |            |              |           |             |                        |      |  |  |
| COs      | PO1                                                                                                                                                                                                                                                                                                                                                                                                            | PO2       | PO3        | PO4        | PO5       | PO6                   | PO7       | PO8        | PO9          | PO10      | PO11        | POI                    | 12   |  |  |
| CO1      | 2                                                                                                                                                                                                                                                                                                                                                                                                              | 1         |            |            |           |                       |           |            |              |           |             | 2                      |      |  |  |
| CO2      | 3                                                                                                                                                                                                                                                                                                                                                                                                              | 2         | 1          | 1          |           |                       | 1         | 1          |              |           |             | 2                      |      |  |  |
| CO3      | 3                                                                                                                                                                                                                                                                                                                                                                                                              | 2         | 1          | 1          |           |                       | 1         | 1          |              |           |             | 2                      |      |  |  |
| CO4      | 2                                                                                                                                                                                                                                                                                                                                                                                                              | 1         |            |            |           |                       |           | 2          |              |           |             | 2                      |      |  |  |
| CO5      | 2                                                                                                                                                                                                                                                                                                                                                                                                              | 1         |            |            |           |                       |           |            |              |           |             | 2                      |      |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                |           | I          | I          | I         | 1                     | I         | 1          | I            | 1         | <u> </u>    |                        |      |  |  |
| COs V    | s PSOs N                                                                                                                                                                                                                                                                                                                                                                                                       | IAPPIN    | G:         |            |           |                       |           |            |              |           |             |                        |      |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                |           |            | C          | Os PS     | SO1 PS                | SO2 PS    | 503        |              |           |             |                        |      |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                |           |            | C          | 01        | 1                     |           |            |              |           |             |                        |      |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                |           |            | C          | 02        | 2                     |           |            |              |           |             |                        |      |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |            | 03 $1$    | <u> </u>              |           |            |              |           |             |                        |      |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                |           |            | C          | 05        | <u>.</u><br>1         |           |            |              |           |             |                        |      |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |            | ·         | I                     | I         |            |              |           |             |                        |      |  |  |

| REFERENCES:                                                                                   |
|-----------------------------------------------------------------------------------------------|
| 1. R.K.Rajput, "A Text Book Of Engineering Thermodynamics ", Fifth Edition, 2017.             |
| 2. Y. Cengel and Boles, Thermodynamics - An Engineering Approach, Tata McGraw Hill Publishing |
| Company Pvt. Ltd, New Delhi,2003.                                                             |
| 3. R.S. Khurmi, Steam table with Psychometric chart, S. Chand Publications, New Delhi, 2009.  |
| 4. J.P. Holman, Thermodynamics, Tata McGraw Hill Publishing Company Pvt Ltd., New Delhi,2002. |
| 5. P.K. Nag, Engineering Thermodynamics, Tata McGraw-Hill, New Delhi, 2007.                   |
| 6. C.P. Arora, Thermodynamics, Tata McGraw Hill Publishing Company Pvt. Ltd., New Delhi,2003  |
| 7. https://onlinecourses.nptel.ac.in/noc18_ae05/preview.                                      |
| 8. <u>https://onlinecourses.nptel.ac.in/noc18_ch03/preview.</u>                               |

| 1902M             | E351       |             | FLUI       | D MEC      | HANIC           | S AND I       | MACHI      | INES LA    | B         | L           | Т       | Р       | С   |
|-------------------|------------|-------------|------------|------------|-----------------|---------------|------------|------------|-----------|-------------|---------|---------|-----|
|                   |            |             |            |            |                 |               |            |            |           | 0           | 0       | 2       | 1   |
|                   |            |             |            |            |                 |               |            |            |           | ł           |         |         |     |
| List of           | Experim    | ents:       |            |            |                 |               |            |            |           |             |         |         |     |
| 1.                | Experii    | nental ve   | erificatio | on of Ber  | moulli"s        | theorem       | in a pip   | be flow.   |           |             |         |         |     |
| 2.                | Measu      | rement of   | f flow ra  | te using   | venturin        | neter and     | a calcula  | te the co  | efficien  | t of disch  | arge.   |         |     |
| 3.                | Measu      | ement of    | f flow ra  | te using   | orificen        | neter and     | calcula    | te the co  | efficient | of discha   | rge.    |         |     |
| 4.                | Perform    | nance tes   | st on tan  | giantial f | flow imp        | oulse (Pe     | lton whe   | eel) turbi | ne agair  | nst consta  | nt head |         |     |
| 5.                | Perform    | nance tes   | st on Fra  | ncis turb  | ine agai        | nst const     | tant head  | 1.         |           |             |         |         |     |
| 6.                | Perform    | nance tes   | st on rea  | ction (Ka  | aplan) tu       | ırbine ag     | ainst co   | nstant he  | ad.       |             |         |         |     |
| 7.                | Perform    | nance ch    | aracteris  | tics of a  | reciproc        | cating pu     | mp.        |            |           |             |         |         |     |
| 8.                | Perform    | nance ch    | aracteris  | tics of a  | gear put        | mp.           |            |            |           |             |         |         |     |
| 9.                | Perform    | nance tes   | st on cen  | trifugal   | pump.           |               |            |            |           |             |         |         |     |
| 10                | ). Perform | nance tes   | st on sub  | mersible   | e pump.         |               |            |            |           |             |         |         |     |
| 11                | l. Determ  | ination of  | of loss c  | f head i   | ndiffere        | nt pipes      | (major 1   | loss) and  | fittings  | s (minor l  | oss) fo | r vario | ous |
|                   | flow ra    | tes.        |            |            |                 |               |            |            |           |             |         |         |     |
|                   |            |             |            |            |                 |               |            |            |           | TOTA        | L: 30 ] | HOUI    | RS  |
| COUR              | SE OUT     | COMES       | S:         |            |                 |               |            |            |           |             |         |         |     |
| On the            | successfi  | loompl      | tion of    | ha cour    | a studa         | nto will 1    | na abla t  | 0          |           |             |         |         |     |
| CO1:              | Underst    | and the v   | arious h   | asic exp   | eriences        | in flow       | of measure | urements   |           |             |         |         |     |
| CO1:              | Measure    | the mai     | or and n   | inor los   | ses asso        | ciated in     | a pipe f   | low        | •         |             |         |         |     |
| <b>CO3:</b>       | Experim    | iental ver  | rification | of Berr    | noullis th      | neorem in     | n a pipe   | flow.      |           |             |         |         |     |
| CO4:              | Perform    | the char    | acteristi  | es study   | on impu         | llse, reac    | tion and   | axial tu   | bine.     |             |         |         |     |
| <b>CO5</b> :      | Perform    | the char    | acteristi  | cs study   | on diffe        | rent type     | s of wat   | er pump    | S.        |             |         |         |     |
| CO6:              | Perform    | the char    | acteristi  | cs study   | on gear         | oil pump      | ).         |            |           |             |         |         |     |
| COs V             | s POs M    | APPING      |            |            |                 |               |            |            |           |             |         |         |     |
| 0051              | 51 05 111  |             |            |            |                 |               |            |            |           |             |         |         |     |
| COs               | <b>PO1</b> | PO2         | PO3        | PO4        | PO5             | PO6           | <b>PO7</b> | PO8        | PO9       | <b>PO10</b> | PO11    | PO1     | 2   |
| <u>CO1</u>        | 3          | 3           | 1          | 1          |                 |               |            |            |           |             |         | 1       |     |
| $\frac{CO2}{CO2}$ | 3          | 3           | 1          | 2          |                 |               |            |            | 1         |             |         | 1       |     |
| $\frac{CO3}{CO4}$ | 3          | 3           | <u> </u>   | 1          |                 |               |            |            | <u> </u>  |             |         | 1       |     |
| C04               | 3          | 3           | 1          | 2          |                 |               |            |            | 1         |             |         | 1       |     |
| CO6               | 3          | 3           | 1          | 1          |                 |               |            |            | -         |             |         | 1       |     |
|                   |            |             |            |            |                 |               |            |            |           |             |         |         |     |
| COs V             | s PSOs N   | IAPPIN      | G:         | ~          | 0 20            |               |            |            |           |             |         |         |     |
|                   |            |             |            | C          | Os PS           | <u>501 PS</u> | 5O2 PS     | 503        |           |             |         |         |     |
|                   |            |             |            |            | $\frac{01}{02}$ | 2             |            |            |           |             |         |         |     |
|                   |            |             |            |            | 02 $03$         | 1             |            |            |           |             |         |         |     |
|                   |            |             |            | C          | 04              | 2             |            |            |           |             |         |         |     |
|                   |            |             |            | С          | <b>05</b>       | 2             |            |            |           |             |         |         |     |
|                   |            |             |            | C          | 06              | 2             |            |            |           |             |         |         |     |
| REFE              | RENCES     | <b>6</b> 17 |            |            |                 |               |            |            |           |             |         |         |     |
| 1.                | WWW.CS.C   | t.ac.uk/l   | Jave/C/    | /bull to   | ton html        |               |            |            |           |             |         |         |     |
| <u> </u>          | http://ww  | wikihool    | s org/w    | ki/Data    | Structure       | res/Intro     | duction    |            |           |             |         |         |     |
| 5.                | 1          |             | 0.00m/     | scs/cclas  | sc/notes/       | ton html      | <u></u>    |            |           |             |         |         |     |

| 1902M      | E352             |               | S             | TREN      | GTH               | OF MA     | ATERI     | ALS        | LAB        |            |            | L    | Т        | Р      | С    |
|------------|------------------|---------------|---------------|-----------|-------------------|-----------|-----------|------------|------------|------------|------------|------|----------|--------|------|
|            |                  |               |               |           |                   |           |           |            |            |            | _          | 0    | 0        | 2      | 1    |
|            |                  |               |               |           |                   |           |           |            |            |            |            | -    |          |        |      |
| List of    | Experim          | ents:         |               |           |                   |           |           |            |            |            |            |      |          |        |      |
| 1.         | Find th          | e hardne      | ss of the     | materia   | al usin           | g Rock    | well ha   | rdnes      | ss tester. |            |            |      |          |        |      |
| 2.         | Calcula          | te the ha     | urdness c     | of the m  | aterial           | using l   | Brinell   | hardı      | ness test  | er.        |            |      |          |        |      |
| 3.         | Experin          | nentally      | calculat      | e the sti | ain en            | ergy of   | a mate    | rial s     | ubjected   | l to impa  | ct load    | ling | g. (Izod | testir | ig)  |
| 4          | Experin          | nental a      | nalvsis       | of an a   | ixial b           | oar und   | er tens   | ion t      | o obtaiı   | the str    | ess st     | rain | curve    | and    | the  |
|            | strengt          | noniui u<br>1 | inarysis      | or un c   | and c             | ur unu    |           |            | 0 0000     | i uie su   | 000 00     |      | i cuive  | una    | liic |
| 5          | Dotorm           | ina tha V     | Joung         | odulua    | and at            | iffnoor   | ofom      | tol h      | oom thr    | ugh log    | d dofle    | otic |          | •      |      |
| 5.         | Determ           |               | roung-n       |           | and st            | inness    |           |            |            | Jugii 10a0 | 1 dene     | cuc  |          | е.     |      |
| 6.         | Experii          | nentally      | calculat      | e the co  | mpres             | sive str  | ength c   | t the      | materia    | IS.        |            |      |          |        |      |
| 7.         | Experii          | nentally      | calculat      | e the do  | uble s            | hear str  | ength of  | of the     | materia    | ls.        |            |      |          |        |      |
| 8.         | Experii          | nentally      | calculat      | te the s  | train             | energy    | of a n    | nateri     | al subje   | ected to   | impac      | t lo | bading.  | (Cha   | rpy  |
|            | testing)         | )             |               |           |                   |           |           |            |            |            |            |      |          |        |      |
| 9.         | Determ           | ination of    | of spring     | consta    | nt thro           | ugh loa   | d vs de   | flecti     | on curv    | e.         |            |      |          |        |      |
| 10         | ). Experii       | nental ai     | nalysis o     | f a bar   | under             | torsion   | to obta   | n sti      | ffness ai  | nd angle   | of twi     | st.  |          |        |      |
|            |                  |               |               |           |                   |           |           |            |            |            | TO         | TA   | L: 30 1  | HOU    | RS   |
| COUR       | COURSE OUTCOMES: |               |               |           |                   |           |           |            |            |            |            |      |          |        |      |
|            | COURSE OUTCOMES: |               |               |           |                   |           |           |            |            |            |            |      |          |        |      |
| On the     | successfu        | il comple     | etion of      | the cour  | se, stu           | idents v  | vill be a | ble t      | 0          |            |            |      |          |        |      |
| CO1:       | Perform          | the tensi     | ile, com      | pressive  | and s             | hear tes  | st on U   | niver      | sal testir | ig machi   | ne.        |      |          |        |      |
| CO2:       | Determi          | ne the to     | rsion of      | metals    | by test           | ting.     |           |            |            |            |            |      |          |        |      |
| CO3:       | Determi          | ne the ha     | ardness p     | property  | of me             | etals by  | testing   | •          |            |            |            |      |          |        |      |
| CO4:       | Determi          | ne the st     | atorial p     | ropertie  | s or n            | elical sp | oring.    | otior      | tost       |            |            |      |          |        |      |
| 005.       | Determi          |               | ateriar p     | ropertie  | s by u            | sing ioa  |           | cuor       | i test.    |            |            |      |          |        |      |
| COs V      | s POs M          | APPING        | <b>;</b>      |           |                   |           |           |            |            |            |            |      |          |        |      |
|            |                  |               |               |           |                   |           |           |            |            |            |            |      |          |        |      |
| COs        | <b>PO1</b>       | PO2           | PO3           | PO4       | PO                | 5 PC      | )6 P      | 07         | PO8        | <b>PO9</b> | <b>PO1</b> | 0    | PO11     | PO1    | 2    |
| CO1        | 3                | 2             | 2             | 2         |                   |           |           |            |            |            |            |      |          | 1      |      |
| <b>CO2</b> | 3                | 2             | 2             | 2         |                   |           |           |            |            |            |            |      |          | 1      |      |
| CO3        | 3                | 2             | 2             | 2         |                   |           |           |            |            |            |            |      |          | 1      |      |
| <u>CO4</u> | 3                | 2             | 2             | 2         |                   |           |           |            |            |            |            |      |          | 1      |      |
| CO5        | 3                | 2             | 2             | 2         |                   |           |           |            |            |            |            |      |          | 1      |      |
| COaV       |                  |               | <u>.</u>      |           |                   |           |           |            |            |            |            |      |          |        |      |
|            | s PSUs N         | IAPPIN        | 6:            |           | 'Oc               | DSO1      | DSO       |            | 503        |            |            |      |          |        |      |
|            |                  |               |               |           | 208<br>101        | 1501      | 1502      |            | 2          |            |            |      |          |        |      |
|            |                  |               |               |           | $\frac{102}{102}$ |           |           |            | 2          |            |            |      |          |        |      |
|            |                  |               |               |           | :03               |           |           |            | 2          |            |            |      |          |        |      |
|            |                  |               |               | C         | :04               |           |           |            | 2          |            |            |      |          |        |      |
|            |                  |               |               | C         | 205               |           |           |            | 2          |            |            |      |          |        |      |
| REFE       | <b>RENCES</b>    | 5:            |               |           |                   |           |           | ·          | <u> </u>   |            |            |      |          |        |      |
| 1          | Joseph A         | . Unfene      | r, Rober      | t L. Mo   | tt, "A            | Text B    | ook Of    | Appl       | ied Stre   | ngth of N  | Aateria    | als" | , sixth  |        |      |
|            | Edition.         |               |               |           |                   |           |           |            |            |            |            |      |          |        |      |
| 2.         | S.S.Bhav         | ikatti, "A    | <u>Text B</u> | ook Of    | Streng            | gth of M  | laterial  | <u>s".</u> |            |            |            |      |          |        |      |
| 3.         | Esor P. p        | opov, "A      | Text B        | ook Of    | Streng            | th of M   | laterials |            |            |            |            |      |          |        |      |

| 1902M                           | E353                    |                       | MAN                   | UFACI                  | URIN            | IG TE          | CHNOI     | L <b>O</b> ( | GY-I         | LAB    |               | L           | Т        | P       | C   |
|---------------------------------|-------------------------|-----------------------|-----------------------|------------------------|-----------------|----------------|-----------|--------------|--------------|--------|---------------|-------------|----------|---------|-----|
|                                 |                         |                       |                       |                        |                 |                |           |              |              |        |               | 0           | 0        | 2       | 1   |
| List of                         | Experim                 | ents:                 |                       |                        |                 |                |           |              |              |        |               |             |          |         |     |
| 1.                              | Taper 7                 | Turning               | using Ta              | ilstock s              | et ove          | r metho        | od        |              |              |        |               |             |          |         |     |
| 2.                              | Taper 7                 | Turning               | using Co              | mpound                 | l rest n        | nethod         |           |              |              |        |               |             |          |         |     |
| 3.                              | Externa                 | l Thread              | d cutting             | -                      |                 |                |           |              |              |        |               |             |          |         |     |
| 4.                              | Internal                | l Thread              | Cutting               |                        |                 |                |           |              |              |        |               |             |          |         |     |
| 5.                              | Eccentr                 | ic Turni              | ng                    |                        |                 |                |           |              |              |        |               |             |          |         |     |
| 6.                              | Knurlin                 | ıg                    |                       |                        |                 |                |           |              |              |        |               |             |          |         |     |
| 7.                              | Push fit                | t                     |                       |                        |                 |                |           |              |              |        |               |             |          |         |     |
| 8.                              | Clearan                 | ice fit               |                       |                        |                 |                |           |              |              |        |               |             |          |         |     |
| 9.                              | Force f                 | it                    |                       |                        |                 |                |           |              |              |        |               |             |          |         |     |
| 10                              | ). Measur               | ement o               | f cutting             | forces i               | n turni         | ing pro        | cess      |              |              |        |               |             |          |         |     |
| 11                              | . Simple                | turning               | using ca              | pstan lat              | the.            |                |           |              |              |        |               |             |          |         |     |
|                                 |                         |                       |                       |                        |                 |                |           |              |              |        |               | TOT         | AL: 30   | HOU     | RS  |
| COUR                            | SE OUT                  | COME                  | S:                    |                        |                 |                |           |              |              |        |               |             |          |         |     |
| On the                          |                         | 1 1                   | ation of              |                        | ~ ~ ~ +         |                |           | -1- 4        |              |        |               |             |          |         |     |
|                                 | Use lath                | e machii              | ne to mai             | nufactur               | ing ec          | centric        | turning   | ope          | 0<br>ration  | s      |               |             |          |         |     |
| CO2:                            | Use lath                | e machii              | ne to mai             | nufactur               | ing Va          | arious t       | apper tu  | rnin         | g ope        | ration | s.            |             |          |         |     |
| <b>CO3:</b>                     | Use vari                | ous diffe             | erent ma              | chine to               | ols for         | finishi        | ng oper   | atio         | ns of s      | imple  | step          | turning     | in caps  | tan lat | he. |
| CO4:                            | Use lath                | e machi               | ne to ma              | nufactur               | ing th          | read cu        | tting op  | erati        | ons.         |        |               |             |          |         |     |
| CO5:                            | Experier                | nce on va             | arious fit            | s operat               | ions in         | <u>1 lathe</u> | machine   | es.          |              |        |               |             |          |         |     |
| 00:                             | Lathe to                | ol dynar              | nometer               | for mea                | suring          | the cu         | ting for  | ces          |              |        |               |             |          |         |     |
| COs V                           | s POs M                 | APPINO                | <b>G:</b>             |                        |                 |                |           |              |              |        |               |             |          |         |     |
| COs                             | PO1                     | PO2                   | PO3                   | PO4                    | PO              | 5 PC           | )6 P(     | <b>D7</b>    | PO           | 8 P    | 09            | <b>PO10</b> | PO11     | PO      | 12  |
| <b>CO1</b>                      | 3                       | 3                     | 1                     |                        | 2               |                |           |              |              |        | 2             |             |          | 1       |     |
| CO2                             | 2                       | 3                     | 1                     |                        |                 |                |           |              |              |        |               |             |          | 1       |     |
| $\frac{\text{CO3}}{\text{CO4}}$ | 3                       | 3                     | 1                     | 3                      | 2               |                |           |              |              |        | $\frac{2}{2}$ |             |          | 1       |     |
| C04                             | 3                       | 3                     | 2                     | 3                      | 2               |                |           |              |              |        | Z             |             |          | 1       |     |
| CO6                             | 3                       | 3                     | 2                     |                        | 2               |                |           |              |              |        | 2             |             |          | 1       |     |
|                                 |                         |                       |                       |                        |                 |                |           |              |              |        |               |             |          |         |     |
| COs V                           | s PSOs N                | IAPPIN                | IG:                   |                        |                 |                |           | -1           |              |        |               |             |          |         |     |
|                                 |                         |                       |                       | C                      | Os 1            | PSO1           | PSO2      | PS           | 503          |        |               |             |          |         |     |
|                                 |                         |                       |                       |                        | $\frac{01}{02}$ |                | 3         |              |              |        |               |             |          |         |     |
|                                 |                         |                       |                       | C                      | 02              |                | 3         |              |              |        |               |             |          |         |     |
|                                 |                         |                       |                       | C                      | 04              |                | 3         |              |              |        |               |             |          |         |     |
|                                 |                         |                       |                       | С                      | 05              |                | 3         |              |              |        |               |             |          |         |     |
| DEEE                            |                         |                       |                       | C                      | 06              |                | 3         |              |              |        |               |             |          |         |     |
|                                 | RENCES                  | Monuf                 | ooturing              | Tashno                 | logy            | al I T         | oto MoC   | rou          | <b>U</b> :11 | Dublic | hing          | Compar      |          | to      |     |
| 1.                              | Limited, I              | New Del               | <u>lhi, 2010</u>      |                        |                 | 01. 1, 1       |           | ла»<br>- •   | ·-miii .     |        |               | Compar      |          | le      |     |
| 2.                              | Serope Ka<br>Educatior  | alpakjiai<br>1 Limite | n, Stever<br>d, New I | n R. Schi<br>Delhi, 20 | mid, N<br>)13.  | lanutad        | cturing I | Engi         | neerin       | ig and | Tec           | hnology,    | Pearso   | n       |     |
| 3.                              | J. P. Kaus<br>Delhi, 20 | shish, M<br>13.       | anufactu              | ring Pro               | cesses          | , Prent        | ice Hall  | of I         | ndia L       | earnii | ng Pi         | rivate Lii  | mited, I | New     |     |
| 4.                              | P.C. Shar<br>Delhi 20   | ma, Mai<br>10         | nufacturi             | ng Tech                | nolog           | y - I, S       | Chand a   | and          | Comp         | any Pı | rivate        | e Limiteo   | d, New   |         |     |
| 5.                              | S K Hajra               | Choud                 | hury, Ele             | ements o               | of Wor          | kshop [        | Fechnol   | ogy          | - Vol.       | I, Me  | edia I        | Promoter    | rs & Pu  | blishei | S   |
| 6.                              | http://npte             | el.ac.in/c            | courses/1             | 121071                 | 44/1.           |                |           |              |              |        |               |             |          |         |     |
|                                 |                         |                       |                       |                        |                 |                |           |              |              |        |               |             |          |         |     |

| 1904G                         | E351                                                                                                                                                                                                                                                                             |                       |                      | LIFF                  | SKII               | LS: S             | OFT               | SKI           | LLS             |             |                   | L                    | Т                | Р       | C    |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------|--------------------|-------------------|-------------------|---------------|-----------------|-------------|-------------------|----------------------|------------------|---------|------|
| 1,010                         | 2001                                                                                                                                                                                                                                                                             |                       |                      |                       |                    |                   |                   |               |                 |             |                   | 0                    | 0                | 2       | 1    |
|                               |                                                                                                                                                                                                                                                                                  |                       |                      |                       |                    |                   |                   |               |                 |             |                   | Ŭ                    | Ũ                |         |      |
| MODU                          | JLE I                                                                                                                                                                                                                                                                            | INTR                  | ODUCT                | TION TO               | ) SOI              | T SK              | ILLS              |               |                 |             |                   |                      |                  | 6 Hoi   | irs  |
| Soft Sk<br>Percep             | tills an Ov<br>tion and fo                                                                                                                                                                                                                                                       | verview<br>orming v   | - Basics<br>values – | of Cor<br>Commu       | nmuni<br>nicatir   | cation            | - Bo              | ody<br>rs.    | Langua          | age -       | – Posit           | ive atti             | tude –           | [mprov  | ring |
| MODU                          | ULE II                                                                                                                                                                                                                                                                           | TEAN                  | I VS TF              | RUST                  |                    |                   |                   |               |                 |             |                   |                      |                  | 6 Hoi   | irs  |
| Interpe<br>team -             | ersonal ski<br>Individua                                                                                                                                                                                                                                                         | lls – Un<br>al and gi | derstand             | ing othe<br>sentation | ers – A<br>1s - Gr | rt of I<br>oup in | Listeni<br>teract | ing -<br>ions | Group<br>– Impr | Dyn<br>oved | amics -<br>work I | -Essenti<br>Relation | al of a<br>ship. | n effec | tive |
| MODU                          | J <b>LE III</b>                                                                                                                                                                                                                                                                  | SELL                  | ING ON               | NESELI                | <u>ج</u>           | -                 |                   |               |                 |             |                   |                      | -                | 6 Hoi   | irs  |
| How to<br>Intervie            | o brand or<br>ew skills –                                                                                                                                                                                                                                                        | neself –<br>- Mock I  | social m             | nedia – j<br>v.       | ob hu              | nting -           | - Resi            | ume           | writing         | g – G       | roup D            | Discussio            | on – M           | ock G.  | D -  |
| MODU                          | ULE IV                                                                                                                                                                                                                                                                           | CORI                  | PORAT                | E ETIQ                | UETI               | E                 |                   |               |                 |             |                   |                      |                  | 6 Hou   | irs  |
| What i<br>Dining              | s Etiquette                                                                                                                                                                                                                                                                      | e – Key<br>– Dressi   | Factors<br>ng etiqu  | – Greet<br>ette.      | ings –             | Meeti             | ng eti            | quet          | te – Te         | elepho      | one etic          | quette –             | email            | etiquet | te – |
| MODU                          | DULE V         LEARNING BY PRACTICE         6 Hours           amily – Myself – Meeting people – Making Contacts – A city – Getting about town – Our flat – Home         Image: Contacts – A city – Getting about town – Our flat – Home                                          |                       |                      |                       |                    |                   |                   |               |                 |             |                   |                      |                  |         |      |
| My fan<br>life – T<br>a phone | family – Myself – Meeting people – Making Contacts – A city – Getting about town – Our flat – Home<br>– Travelling – Going abroad – Going through Customs – At a hotel – Shopping – Eating out – Making<br>none call – A modern office – Discussing business.<br>TOTAL: 30 HOURS |                       |                      |                       |                    |                   |                   |               |                 |             |                   |                      |                  |         |      |
|                               | me call – A modern office – Discussing business.<br>TOTAL: 30 HOURS                                                                                                                                                                                                              |                       |                      |                       |                    |                   |                   |               |                 |             |                   |                      |                  |         |      |
| COUR                          | TOTAL: 30 HOURS URSE OUTCOMES:                                                                                                                                                                                                                                                   |                       |                      |                       |                    |                   |                   |               |                 |             |                   |                      |                  |         |      |
| 0 1                           | C .                                                                                                                                                                                                                                                                              | 1 1                   |                      | 1                     |                    | 1 4               | .11.1             | 1 1           |                 |             |                   |                      |                  |         |      |
| On the                        | successiu                                                                                                                                                                                                                                                                        | l comple              | etion of t           | the cours             | se, stu            | dents v           | vill be           | e able        | e to            |             |                   |                      |                  |         |      |
| $\frac{CO1}{CO2}$             | Gather in                                                                                                                                                                                                                                                                        | worus i<br>formati    | on swift             | ay to da<br>ly while  | y com<br>readir    | munica<br>og nass | auon.             |               |                 |             |                   |                      |                  |         |      |
| CO2:                          | Students                                                                                                                                                                                                                                                                         | are prof              | Ficient du           | ring the              | ir oral            | and w             | vritten           | com           | munic           | ation       |                   |                      |                  |         |      |
| CO4:                          | Rearrang                                                                                                                                                                                                                                                                         | re the se             | ntences              | and able              | to ide             | ntify t           | he voi            | ice of        | f the se        | entenc      | ce.               |                      |                  |         |      |
| CO5:                          | Students                                                                                                                                                                                                                                                                         | use thei              | r knowle             | edge of t             | he bes             | t praci           | tices t           | o cra         | ft effec        | ctive       | busines           | s docun              | nents.           |         |      |
|                               | Stadems                                                                                                                                                                                                                                                                          |                       |                      |                       |                    | e prae            |                   | 0 010         |                 |             | o usino:          | ,5 docum             |                  |         |      |
| COs V                         | 's POs MA                                                                                                                                                                                                                                                                        | APPINO                | <b>;</b> :           |                       |                    |                   |                   |               |                 |             |                   |                      |                  |         |      |
| COs                           | PO1                                                                                                                                                                                                                                                                              | PO2                   | PO3                  | PO4                   | PO5                | 5 P(              | <b>D6</b>         | PO7           | / PC            | )8          | PO9               | <b>PO10</b>          | <b>PO1</b>       | PO      | 12   |
| C01                           |                                                                                                                                                                                                                                                                                  |                       |                      |                       |                    |                   |                   |               |                 |             |                   | 3                    |                  |         |      |
| CO2                           |                                                                                                                                                                                                                                                                                  |                       |                      |                       |                    |                   |                   |               |                 |             |                   | 3                    |                  |         |      |
| CO3                           |                                                                                                                                                                                                                                                                                  |                       |                      |                       |                    |                   |                   |               |                 |             |                   | 3                    |                  |         |      |
| <b>CO4</b>                    |                                                                                                                                                                                                                                                                                  |                       |                      |                       |                    |                   |                   |               |                 |             |                   | 3                    |                  |         |      |
| CO5                           |                                                                                                                                                                                                                                                                                  |                       |                      |                       |                    |                   |                   |               |                 |             |                   |                      |                  | 3       |      |
| <u> </u>                      |                                                                                                                                                                                                                                                                                  |                       | 0                    |                       |                    |                   |                   |               |                 |             |                   |                      |                  |         |      |
| COs V                         | s PSOs M                                                                                                                                                                                                                                                                         | IAPPIN                | G:                   | C                     |                    | PSO1              | DS(               | 12            | PSU3            |             |                   |                      |                  |         |      |
|                               |                                                                                                                                                                                                                                                                                  |                       |                      |                       | 01                 | 1501              | 150               |               | 1505            |             |                   |                      |                  |         |      |
|                               |                                                                                                                                                                                                                                                                                  |                       |                      | C                     | 02                 |                   |                   |               |                 |             |                   |                      |                  |         |      |
|                               |                                                                                                                                                                                                                                                                                  |                       |                      | C                     | 03                 |                   |                   |               |                 | _           |                   |                      |                  |         |      |
|                               |                                                                                                                                                                                                                                                                                  |                       |                      |                       | 04                 |                   |                   |               |                 | _           |                   |                      |                  |         |      |
| REFE                          | RENCES                                                                                                                                                                                                                                                                           | :                     |                      |                       |                    |                   | 1                 | l             |                 |             |                   |                      |                  |         |      |
| 1.                            | Dr.k.Alex                                                                                                                                                                                                                                                                        | , "soft s             | kills "Th            | ird Edit              | ion, S.            | Chand             | & Pu              | blish         | ing Pvt         | t Lim       | ited, 20          | )09                  |                  |         |      |
| 2.                            | Arunakon                                                                                                                                                                                                                                                                         | eru, "Pr              | ofession             | al Comn               | nunica             | tion" S           | Secon             | d Ed          | ition, T        | Tata N      | AcGrav            | v-Hill E             | ducatio          | n, 200  | 8    |
| 3.                            | D.K.Sarm                                                                                                                                                                                                                                                                         | a,"You                | & Your               | Career,               | First I            | dition            | Whe               | eler          | Publish         | ting &      | <u>¢ Co L</u>     | td, 1999             | 2007             |         |      |
| 4.                            | Shiv Kher                                                                                                                                                                                                                                                                        | a,, You               | Can Wir              | n Third               | Editic             | n Mac             | M111              | an Pi         | Joiishe         | r Indi      | ia Pvt L          | limited,             | 2005             |         |      |

| 1901M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CX01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ENVIRONMENTAL SCIENCE                                                                                                                                                                                                                                                                                                                                                                                                          | L                                                        | Т                                                      | P                                                       | С                                        |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Common to all Branches of B.E/ B.Tech)                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                        | 0                                                      | 0                                                       | 0                                        |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | Ū                                                      | Ū                                                       |                                          |  |  |  |  |
| MODU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JLE I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ECOSYSTEMS AND BIODIVERSITY                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                                        | 10 Ho                                                   | urs                                      |  |  |  |  |
| NODULE IICOSTSTENDS AND BIODIVERSITY10 HoursConcept of an ecosystem – structure and function of an ecosystem – producers, consumers and<br>decomposers- Oxygen cycle and Nitrogen cycle – energy flow in the ecosystem – ecological succession<br>processes – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b)<br>grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans,<br>estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – value<br>of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – hot-spots of<br>biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered<br>and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of<br>biodiversity. Doutentation of the medicinal plants in your native place.10 HoursMODULE IINATURAL RESOURCES10 HoursForest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams<br>and their effects on forests and tribal people – Water resources: Use and exploitation, environmental<br>effects of extracting and using mineral resources, case studies – Food resources: World food problems,<br>changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems,<br>water logging, salinity, case studies – Energy resources: Energy Conversion processes – Biogas –<br>production and uses, anaerobic digestion; case studies – Land resources: Land as a resource, land |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                        |                                                         |                                          |  |  |  |  |
| degrad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | degradation, man induced landslides, soil erosion and desertification - role of an individual in conservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                        |                                                         |                                          |  |  |  |  |
| of natu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ral resource                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the effect of modern Agriculture in your nearby Village                                                                                                                                                                                                                                                                                                                                                                        |                                                          |                                                        |                                                         |                                          |  |  |  |  |
| MODI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ENVIRONMENTAL POLLUTION                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          | 1                                                      | 9 Hou                                                   | irs                                      |  |  |  |  |
| Definit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{1}{100} - Southernormalized in the second secon$ | rce, causes, effects and control measures of: (a) Air pollution - Mi                                                                                                                                                                                                                                                                                                                                                           | tigatio                                                  | on pro                                                 | cedu                                                    | res-                                     |  |  |  |  |
| Control<br>CO2 (i<br>pollutio<br>Marine<br>prevent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l of particu<br>metallo of<br>on - soil v<br>pollution<br>tion of pol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ulate and gaseous emission, Control of SOX, NOx, CO and HC) -Tech<br>rganic frame works)(b) Water pollution – Waste water treatment<br>waste management: causes, effects and control measures of municipa<br>(e) Noise pollution (f) Thermal pollution (g) Nuclear hazards–role<br>llution – pollution case studies.                                                                                                           | nolog<br>proce<br>il soli<br>of ar                       | y for o<br>esses.<br>d was<br>n indi                   | captur<br>(c) S<br>stes –<br>vidual                     | ing<br>Soil<br>(d)<br>I in               |  |  |  |  |
| MODI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SOCIAL ISSUES AND THE ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                              |                                                          | •                                                      | 8 Hou                                                   | rc                                       |  |  |  |  |
| From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | neustainal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ble to sustainable developmenturban problems related to energy                                                                                                                                                                                                                                                                                                                                                                 | wata                                                     | <u> </u>                                               | orvoti                                                  | 15                                       |  |  |  |  |
| rain wa<br>Princip<br>Water<br>Handlin<br>(Ecoma<br>awaren<br>Clean I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ater harve<br>les of gree<br>act – Wild<br>ng) Rules<br>ark) centra<br>ess. Analy<br>(ndia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sting, watershed management -environmental ethics: Issues and pos<br>en chemistry – consumerism and waste products – environment prote<br>dlife protection act – Forest conservation act – The Biomedical Wast<br>s;1998 and amendments- scheme of labeling of environmentally<br>al and state pollution control boards- disaster management: floods,<br>yze the recent steps taken by government of India to prevent pollutio | sible<br>ction<br>ction<br>(Ma<br>frie<br>earth<br>on (G | solutio<br>act –<br>anager<br>ndly<br>nquako<br>reen 1 | ons –<br>Air ac<br>ment a<br>produ<br>e- Pul<br>India a | 12<br>2t –<br>and<br>1cts<br>blic<br>and |  |  |  |  |
| MODU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JLE V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HUMAN POPULATION AND THE ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                           |                                                          | 8                                                      | 8 Hou                                                   | Irs                                      |  |  |  |  |
| Popula<br>enviror<br>– Envir<br>and hur<br>Docum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion grow<br>ment and<br>conmental<br>man health<br>eentation s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rth, variation among nations – population explosion – family we<br>human health – human rights – value education – HIV / AIDS – wom<br>impact analysis (EIA) -GIS-remote sensing-role of information techno<br>h – Case studies.<br>tudy of the Human health and the environment in nearby Hospital (Sta                                                                                                                       | lfare<br>en and<br>logy i<br>tistica                     | progr<br>d child<br>in env<br>d repc                   | amme<br>d welf<br>ironm                                 | e –<br>čare<br>ient                      |  |  |  |  |
| COLIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SE OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COMES:                                                                                                                                                                                                                                                                                                                                                                                                                         | JIAI                                                     | J. <b>-1</b> J                                         | 100                                                     |                                          |  |  |  |  |
| COUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                        |                                                         |                                          |  |  |  |  |
| On the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | successfu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l completion of the course, students will be able to                                                                                                                                                                                                                                                                                                                                                                           |                                                          |                                                        |                                                         |                                          |  |  |  |  |
| CO1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Describe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the physical, chemical and biological components of the ecosystem an                                                                                                                                                                                                                                                                                                                                                           | d thei                                                   | r func                                                 | ction.                                                  |                                          |  |  |  |  |
| CO2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Describe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the water quality parameters and removal of pollutants                                                                                                                                                                                                                                                                                                                                                                         |                                                          |                                                        |                                                         |                                          |  |  |  |  |
| CO3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Describe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the scientific principles to analysis various environmental implication                                                                                                                                                                                                                                                                                                                                                        | s in da                                                  | ay to c                                                | lay lif                                                 | e.                                       |  |  |  |  |

#### B.E. Mechanical Engineering | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2019 Approved in IV Academic Council Meeting Held on 25.05.2019

| <b>CO4:</b>                                                                                                                                                                                                                                                                                                | Describe                                                                                               | Describe the various environmental protection acts for key social system affecting the environment. |     |     |     |     |     |     |     |      |      |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO5:                                                                                                                                                                                                                                                                                                       | Summarize the major diseases, women welfare, child development and the impacts of population explosion |                                                                                                     |     |     |     |     |     |     |     |      |      |      |
| COs Vs POs MAPPING:                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                     |     |     |     |     |     |     |     |      |      |      |
| COs                                                                                                                                                                                                                                                                                                        | PO1                                                                                                    | PO2                                                                                                 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| <b>CO1</b>                                                                                                                                                                                                                                                                                                 |                                                                                                        |                                                                                                     |     |     |     |     | 3   |     |     |      |      |      |
| CO2                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                     |     |     |     |     | 3   |     |     |      |      |      |
| CO3                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                     |     |     |     |     | 3   |     |     |      |      |      |
| <b>CO4</b>                                                                                                                                                                                                                                                                                                 |                                                                                                        |                                                                                                     |     |     |     |     | 3   |     |     |      |      |      |
| CO5                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                     |     |     |     |     | 3   |     |     |      |      |      |
|                                                                                                                                                                                                                                                                                                            |                                                                                                        |                                                                                                     |     |     |     |     |     |     |     |      |      |      |
| COs Vs PSOs MAPPING:                                                                                                                                                                                                                                                                                       |                                                                                                        |                                                                                                     |     |     |     |     |     |     |     |      |      |      |
| COs       PSO1       PSO2       PSO3         CO1            CO2            CO3            CO4            CO5                                                                                                                                                                                               |                                                                                                        |                                                                                                     |     |     |     |     |     |     |     |      |      |      |
| REFE                                                                                                                                                                                                                                                                                                       | RENCES                                                                                                 | :                                                                                                   |     |     |     |     |     |     |     |      |      |      |
| <ol> <li>Trivedi.R.K., "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards",<br/>Vol. I and II, Enviro Media, 3rd edition, BPB publications, 2010.</li> <li>Cunningham, W.P. Cooper, T.H. Gorhani, "Environmental Encyclopedia", Jaico Publ., House,<br/>Mumbai, 2001</li> </ol> |                                                                                                        |                                                                                                     |     |     |     |     |     |     |     |      |      |      |
| 3. Dharmendra S. Sengar, "Environmental law", Prentice hall of India PVT LTD, New Delhi,2007.                                                                                                                                                                                                              |                                                                                                        |                                                                                                     |     |     |     |     |     |     |     |      |      |      |
| 4. Rajagopalan, R, "Environmental Studies-From Crisis to Cure", Oxford University Press, 2005.                                                                                                                                                                                                             |                                                                                                        |                                                                                                     |     |     |     |     |     |     |     |      |      |      |
| 5. Benny Joseph, "Environmental Science and Engineering", Tata McGraw-Hill, New Delhi, 2006.                                                                                                                                                                                                               |                                                                                                        |                                                                                                     |     |     |     |     |     |     |     |      |      |      |
| 6. Ravikrishnan "Environmental Science and Engineering" Sri Krishna Hi-tech Publishing Company<br>Pvt.                                                                                                                                                                                                     |                                                                                                        |                                                                                                     |     |     |     |     |     |     |     |      |      |      |
| 7. https://en.wikipedia.org/wiki/Carbon_capture_and_storage                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                     |     |     |     |     |     |     |     |      |      |      |