B.E. Mechanical Engineering | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2019 Approved in IV Academic Council Meeting Held on 25.05.2019

E.G.S. PILLAY ENGINEERING COLLEGE

(Autonomous)

Approved by AICTE, New Delhi | Affiliated to Anna University, Chennai

Accredited by NAAC with 'A' Grade | Accredited by NBA (CSE, EEE, MECH)

NAGAPATTINAM - 611 002

B.E MECHANICAL ENGINEERING

First Year – First Semester

Course Code	Course Name	т	т	р	C	Maximum Marks			
Course Coue	Course Maine	L	L	L	C	CA	ES	Total	
Theory Course	e								
1901MA104	Engineering Mathematics –I (Linear Algebra, Calculus and Partial differentiation)	3	2	0	4	40	60	100	
1901PH101	Introduction to Mechanics	3	0	0	3	50	50	100	
1901GEX01	Basic Electrical and Electronics Engineering	3	0	0	3	40	60	100	
1901GEX02	Engineering Graphics	2	2	0	3	50	50	100	
Laboratory Co	ourse								
1901GEX51	CAD Lab	0	0	2	1	50	50	100	
1901GEX52	Basic Electrical and Electronics Engineering Lab	0	0	2	1	50	50	100	
1901PHX51	Engineering Physics Lab	0	0	2	1	50	50	100	
1901HS151	Engineering Intelligence - I	0	0	2	1	100	0	100	

L – Lecture | T – Tutorial | P – Practical | CA – Continuous Assessment | ES – End Semester

1901M	A104		I	ENGINE	ERING	MATH	EMA	TICS –I		L	Т	P	С
		((Linear)	Algebra	, Calculi	us and F	Partial	different	iation)	3	2	0	4
			(Comi	non for	ECE, M	ECH &	BME	Program	nme)	•	_	Ŭ	-
MODI	прт	МАТО	ICES								I	1 1 11.	
Invenio	LEI		ICES		11:4xy th		Creat	m of lin	an aquati			12 HO	urs
inverse	tric and c	K OI a I	naurix -	rank-nu	tormino	eorem -	Syste	luce and	Eigen voot	D = D	ymmet	nc-ske	ew-
synnie	Covic	unogon	al matrix	es – De	Orthogo	nol tron	oform	ation	Eigen vecu	DIS - DI	agonan	Zation	01
matrice	s – Cayle	ey – пап		eorem -	Orthogo		STOTIL	auon.					
MODU	JLE II	DIFFE	RENTL	AL CAI	LCULU	S						12 Ho	urs
Curvatu	ire in Ca	rtesian c	o-ordina	ates – Co	entre an	d radius	of cu	rvature –	- Circle of	curvatur	e- Evo	lutes a	and
involut	es.												
MODU	JLE III	INTEG	GRAL C	ALCUI	LUS]	2 Ho	urs
Double	integrati	ion – Ca	rtesian a	and pola	r coord	inates –	Char	ige the of	rder of Inte	egration	– App	licatio	ns:
Area of	f a curve	d surface	using d	louble in	tegral –	Triple	integr	ation in C	Cartesian co	o-ordina	tes – V	olume	as
triple ir	ntegral.												
MODI	JLE IV	SEOUI	ENCES	AND SH	ERIES							12 Ho	urs
Conver	gence of	sequence	ce and s	eries-Te	sts for	converg	ence	- Power	series - Ta	vlor's s	eries. S	Series	for
expone	ntial - tri	gonomet	ric and l	ogarithm	n functio	ns.				J	,		-
MODI		PARTI	AL DIF	FEREN	TIATI	ON						12 Ho	urs
Partial	derivativ	es. total o	lerivativ	e: Maxi	na. mini	ima and	saddl	e points:	Method of I	lagrang	e multi	pliers.	
	TOTAL: 60 HOURS												
COUD	SE OUT	COME	2.							IUIA	L. 00	nou	NO
COUR	SE UUI	COME											
On the	successfi	ıl comple	etion of t	the cours	se stude	nts will	he ah	e to					
CO1:	Calculat	e the nat	ure of th	e matrix	using (Orthogor	nal Tra	ansformat	ion.				
CO2:	Develop	the evol	lutes and	l envelor	bes of gi	ven curv	ves by	means of	f radius and	centre	of curva	ature	
CO3:	Calculat	the are	a and vo	olume of	a curve	using d	ouble	and triple	integration	۱.			
CO4:	Determi	ne the na	ature of s	series usi	ing com	parison,	Ratio	, Leibnitz	tests.				
CO5·	Examine	e the ma	xima/mi	inima fo	r the gi	ven fun	ction	with seve	eral variable	es by fi	nding s	station	ary
005.	points.												
<u> </u>	DO 14		N										
COs V	s POs M	APPING	j:										
COs	DO1	DO1	DO3	D O4	PO5	DO6	DO	7 009		DO10	PO11	DO1	2
C01	3	2	105	104	105	100	10	/ 100	103	1010	1011	101	4
C01	3	$\frac{2}{2}$	1										
CO2	3	2	1										
CO4	3	2	1										
CO5	3	2	1										
	•												
COs V	s PSOs N	APPIN	G :										
				C	Os PS	501 P	SO2	PSO3					
				C	01								
				C	02								
				C	03								
				C	04								
DEE	DENCE	1_		C	05								
	KENCES): m T E	ainaaria	~ Math -	motionf	on finat -		oto Mar	ILII N	arr Dall	: 2010	,	
1.	v e e raraja	$\frac{111.5 \text{ En}}{2000 \text{ cm}^{-1}}$	BI E	g wiather	mattes I	or mist y	ear, I	ata MCG	aw-Hill, N	Degrade	$\mathbf{n}, 2018$). Int 20	02
2.	U.D. 1110	mas and	K.L. FII	l Engine	oring M	nu Anal	yue ge	b Edition	John Wil-	rearson	$\frac{1}{100}$	mi, 20	02.
3 .		byszig, A	avanceo	i Engine	Mother	autica 7	$\cos, 9t$	a Eanton	JUIII WIIE	$y \propto SOT$	Dom:	.+ 201	0
4.	Kamana I	D. V., H1§	gner Eng	meering	wrathen	natics, I	ata IV	COTAW H	III New De	nn, 11th	Reprii	n, 201	υ.

5. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

 N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008

7. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010

1901PI	H101		I (Co	NTROE mmon f	OUC for C	ГІО ^t ivil	N T and	O M Mee	IEC ch P	HA rog	NICS ramm	e)		L 3	T 0	P 0	C 3
MODI															т. — Т.	0.11	
Forces	JLE I in Natur	INTRO e. Newto	DUCT: on's law	ION TO is and it		CH mpl	ANI etene	$\frac{ \mathbf{CS} }{ \mathbf{CS} }$	n de	scri	ihing r	article n	notion	- 50	lving]	9 Hou Newto	n's
equatio	ns of mo	tion in po	olar cooi	dinates	and r	elat	ed p	roble	ems.	5011	ionig p	article ii	lotion	- 50	iving i		11 5
MODU	JLE II	VECT	OR ME	CHANI	CS ()F I	PAR'	TIC	LES	5					(9 Hou	rs
Central	forces:	Conserva	ation of	Angula	. Mo	mer	ntum	; En	ergy	v eq	uation	and ene	rgy d	iagra	ms - l	Elliptio	cal,
parabol	ic and hy	perbolic	orbits -	Applica	tion:	Sat	ellite		noeu	vre	S.	Appli	antion	a. W	acthan	arista	
Five-te	It pendul	um - Hai	monic c	- Centr	ipeta	i an	u Co ed h:	armo	is ac	mot	ion	s - Appi	cation	S: W	eather	syster	ms,
MODU	JLE III	RIGID	BODY	MECH	ANI	CS		411110			1011.					18 Ho	urs
Definit	ion and i	notion c	of a rigi	d body i	in th	e pl	ane	- Ro	otati	on i	n the	plane; K	inema	tics	in a c	oordin	ate
system	rotating	and tran	slating i	n the pla	ane -	An	igula	r mo	omei	ntun	n abou	t a point	of a	rigid	body	in pla	nar
motion		<i>,</i> •	4 • •	1 1		c	ЪT		•		1	4.	•,		1 '1		• 1
Euler's	laws of	motion, Example	their in	aepenae	nce	Iron hroe	n Ne Aire	ewtoi	n's l	laws	s, and	their nec	essity	(1n)	lescrib	ing ri	gia
vector.	and its ra	te of cha	ange and	(b) Moi	nent	of i	nerti	a ter	ional isor.	112	ju oou	ly monoi	u — (<i>a)</i> A	ingulai	Veloc	Ity
MODU	JLE IV	STATI	CS	(0) 1/202		011									9	9 Hou	rs
Free bo	ody diagr	ams with	n examp	les on m	odel	ling	; of t	ypic	al sı	ippo	orts an	d joints;	Condi	tion	for eq	uilibri	um
in three	e- and two	o- dimen	sions; Fi	riction: 1	imiti	ng a	nd n	on-l	imit	ing	cases.						
			~										T	OTA	L: 45	HOU	RS
COUR	SE OUT	COMES	S:														
On the	successfi	il comple	etion of	the cour	se st	ude	nts u	vill h	e ah	le to)						
CO1:	Apply fi	indamen	tal conc	epts of k	inem	natic	s an	d kir	netic	s of	partic	es to the	analy	sis of	f simp	le	
	practical	l problen	ns.	1							•		•		•		
CO2:	Extend a	all of cor	ncepts of	linear k	ineti	cs to	o sys	tems	s in g	gene	eral pla	ne motio	<u>n.</u>			< 1	
CO3:	Apply b	asıc dyna	amics co	oncepts o	of for	ce, 1	mom	ientu	ım, v	vorl	c and e	nergy to	apply	ın N	ewton	's law	s
CO4:	Apply E	uler's Ec	uation a	ind cons	iderii	nge	nerg	v of	a sv	ster	n in ge	neral pla	ne mo	tion.	and th	e wor	k
	of coupl	es and m	oments	of force	s.	-8 -	8	J		~	81	F		,			
CO5:	Apply th	ne conce	pts of fri	ction an	d cor	nditi	ons	of ec	quili	briu	m in tv	vo and th	ree di	mens	sions.		
		A DDINI(۲.														
	S F US IVI		J.														
COs	PO1	PO2	PO3	PO4	PC)5	PC)6	PC)7	PO8	PO9	PO	10	PO11	POI	2
CO1	3	2	2	1							2	2					
CO2	3	2	2	1							2	2	_			-	
$\frac{C03}{C04}$	3	$\frac{2}{2}$	$\frac{2}{2}$	<u> </u>							2	$\frac{2}{2}$					
CO4	3	2	2	1							2	2					
	_																
COs V	s PSOs N	IAPPIN	IG:														
				C	$\frac{Os}{O1}$	PS	501	PS	02	PS	603						
					$\frac{01}{02}$												
				C	$\frac{02}{03}$												
				C	04												
				С	05												
REFE	RENCES	b:	·	1 1	M	7 11	1 1	1									
1.	Engineeri	ing Mech	nanics, 2	$\frac{1}{1}$ MV		K Ha	arbo	la									
2.	An Introd	luction to	o Mecha	$\frac{1}{1}$		enni	ner <i>k</i>	P R I	Kole	nko	117						
4.	Principle	s of Mec	hanics –	-JLSvi	ige &	$\frac{2}{2} B A$	A Gr	$\frac{1}{1}$ the	S	IIKU	**						
5.	Mechanic	s - JP	Den Har	tog	0-0												
6.	Engineeri	ng Mech	nanics -	Dynamio	cs <u>, 7</u> t	h ec	1 J	L M	eriar	n							
7.	Mechanic	al Vibra	tions —	JP Den	Hart	og											

1901GEX01		BAS	IC ELE	CTRIC	AL ANI	D ELE	CTI	RONI	CS ENGI	NEERIN	NG	L	Т	Р	С
											-	3	0	0	3
												-	Ŭ	Ū	
MODULE I		INTE	RODUC	TION 7	TO DC	AND A	AC	CIRC	UITS				'	7 Hou	rs
Introduction	to I	DC and	AC cir	cuits: O	hms lav	W - K	irch	hoff's	laws - N	Aesh ana	alysis	- N	odal a	nalysi	s -
Generation of	t AC	waver	orms - A	nalysis	of K-L,	K-C, I	K-L-	-C circ	cuits - Int	roduction	n to th	ree	phase	systen	1S -
MODULE I	[ELE	CTRIC	AL MA	CHINE	ES								6 Hou	rs
Electrical M	achi	nes: D	C Gene	erator.	DC M	otor. '	Trar	nsform	er. Indu	ction M	lotor:	We	orking	princ	iple.
construction	and a	applicat	ions.	Jucor,		0.01,	I I uI		ior, maa				,g	prine	
MODULE I	I	MEA	SURIN	G INST	RUME	ENTS							(6 Hou	rs
Measuring in	stru	ments:	Classif	ication	of instr	ument	s; V	/oltme	eter, Amr	neter, W	attme	eter,	Energ	gy me	ter,
Multimeter, O	CRO	: Princi	ples and	operatio	on.								-		
MODULE I	V	SEM	ICOND	UCTO	R DEV	ICES								7 Hou	rs
Semiconducto	or de	vices: V	/-I chara	cteristic	s of PN	juncti	on d	liode a	and Zener	diode; F	Rectifi	ers -	Half	wave a	ind
full wave rec	tifier	s; BJT	- config	urations;	Amplif	fiers &	Oso	cillator	rs: classifi	cation, c	perati	on a	ind app	olicatio	ns;
SCR: Constru	10101 7		$\frac{1}{TALS}$	vertem	Basic p	ower c	onve	erters (BIOCK dia	gram app	proach	oni	y).	6 Hou	PC
Digital system	I	Pooloon	algebra	Poduc	ution of	Poolo	on o	vpross	tions D	Morgar	's the	oror	n Io	o no	tos
Implementatio	ns. 1	² Boolea	n expres	- Reduc		DUDIC		expiess	SIONS - DO	-worgan	i s uie		II - LO	gic ga	ies -
MODULE V	T	COM	MUNI		N SYST	TEMS								6 Hou	rs
Communicati	on S	vstems:	Model of	of comm	unicatio	on syste	em -	- Anal	og and di	gital, Wi	red an	d wi	ireless	chann	
Block diagram	n of	, f variou	s comm	unicatio	n syster	ns - N	licro	owave	, satellite,	optical	fiber	and	cellula	ar mol	oile
system.		<u> </u>													
MODULE V	ΊΙ	ELE	CTRIC	AL SAF	ETY A	ND W	/IRI	ING					'	7 Hou	rs
Electrical safe	ety a	nd wiri	ng: Safe	ty meas	ures in	electric	cal s	system	- Safety	devices	- type	es of	f wirin	g - W	iring
accessories- s	accessories- staircase, fluorescent lamps and corridor wiring - Basic principles of earthing - Types of earthing -														
layout of gene	eratio	on, trans	mission	and distr	ibution	of pow	ver (S	Single	line diagr	am).					
											TC	TA	L: 45	HOU	RS
COURSE O	UTC	COMES	5:												
On the succe	seful	comple	etion of	he cour	se stud	ents w	ill h	e able	to						
CO1: Appl	v the	e fundar	nental c	oncepts	to solve	e probl	ems	in DC	C circuits	and AC	circui	ts.			
CO2. Expl	ain t	he cons	truction	and prin	ciple of	f opera	tion	of DO	C machine	es, AC n	nachin	es a	nd elec	ctrical	
meas	urin	g instru	ments.												
CO3: Eluci	date	the cha	racterist	ics of D	iode, Z	ener di	ode	, BJT,	SCR and	their ap	plicat	ions			
CO4: Imple	emei	nt Boole	ean expr	essions	using lo	gic ga	tes.			· 1 6 .		4			
CUS: Expla	US: Explain the operation of various communication system and electrical safety systems.														
COs Vs POs	MA	PPINC	5:												
						_							_	-	
COs PC)1	PO2	PO3	PO4	PO5	PO	6	PO7	PO8	PO9	PO1	.0	PO11	PO1	2
$\begin{array}{c c} CO1 & 3 \\ \hline CO2 & 3 \end{array}$		$\frac{3}{2}$	2												
$\begin{array}{c c} CO2 & 3 \\ \hline CO3 & 3 \end{array}$		$\frac{2}{2}$	1												
CO4 3		3	2												
CO5 3		1	1			1									
			<u>.</u>												
	S IVI	APPIN	G:	C	Os P	SO1	PS	02 P	PSO3						
				C	01	2	10		200						
				С	02	2									
				C	03		$\frac{2}{2}$,							

CO5

2

2

REFERENCES:
1. Smarajit Ghosh, "Fundamentals of Electrical and Electronics Engineering", 2 nd Edition, PHI
Learning, 2010.
2. R. Muthusubramaniam, S. Salaivahanan and K.A. Mureleedharan, "Basic Electrical Electronics and
Computer Engineering", Tata McGraw Hill, 2004.
3. D.P. Kothari and I.J. Nagrath, "Theory and Problems of Basic Electrical Engineering", PHI learning,
New Delhi, 2004
4. J.B. Gupta, "Fundamentals of Electrical Engineering and Electronics", S.K. Kataria and Sons,
Reprint 2012 Edition.
5. R.L. Boylestad and L. Nashelsky, "Electronic Devices and Circuit Theory", Pearson, 11th Edition,
2013.
6. George Kennedy and Bernard Davis, "Kennedy's Electronic communication Systems", McGraw
Hill Education, 5th Edition, 2011.
7. Donald P. Leach, Albert Paul Malvino and Goutam Saha, "Digital Principles and Applications",
McGraw-Hill Education, 8th Edition, 2014.

1901G	EX02		ENGINEERING GRAPHICSLTP(Common for all B.E./B.Tech. Programme)220											C
								-			2	2	U	
MODU	JLE I	CONC	CEPTS A	AND CO	ONVEN	TIONS	(Not for	Exami	nation)					
Importa specific	ance of grations – S	aphics i Size, lay	in engino out and f	eering ag folding o	pplication of drawin	ons – Us ng sheets	e of dra s – Letter	fting ins ring and	trument dimensi	s – BI oning.	S co	onvent	tions a	ınd
MODU	JLE II	PLAN	E CUR	VES AN	ND FRE	E HAN	D SKET	CHING	T T			ļ) Hou	rs
Basic C	Geometric	al const	ructions,	, Curves	used in	engine	ering pra	actices: (Conics -	- Cons	truc	tion o	f ellip	ose,
parabol	and circle	perbola Draw	by eccer	ntricity i	method	 Constant 	ruction (of cyclo	d - cor	istructi	on o	of inv	olutes	of
Visuali	zation co	ncepts	and Fre	e Hand	sketchi	ng: Vis	ualizatio	n princi	ples –	Represe	entat	ion o	f Thr	ee-
Dimens	sional obj	ects – L	Layout o	f views-	Free h	and sket	ching of	f multip	le views	from	pict	torial	views	of
Objects	5.	-												
MODU	JLE III	PROJ	ECTIO	N OF P	OINTS,	LINES	AND P	LANE S	SURFA	CES		9	Hou	rs
Orthog	raphic pro	jection-	princip	les-Princ	cipal Pla	nes-First	t angle p	projection	n-projec	tion of	t poi	nts. P	roject	ion
lengths	and true	inclina	tions by	rotatin	g line r	nethod a	and trace	es. Proje	ection o	f plan	es (polyg	onal a	ind
circular	r surfaces)	incline	d to both	the prin	cipal pla	anes by 1	otating	object m	ethod.	1	,	1 50		
MODU	JLE IV	PROJ	ECTIO	N OF S	OLIDS							9) Hou	rs
Project	ion of sim	ple soli	ds like p	risms, p	yramids	, cylinde	r and co	ne when	the axis	s is inc	line	d to o	ne of	the
princip	al planes l	by rotati	ng objec	t method	1. FCTIO	NED SO	TIDE A	ND DE'		MEN	ГО	F () H ou	PC
MODU	JLE V	SURF	ACES	N OF SI		NED SU	LID5 A	ND DE	VELUF	IVIEIN	1 0	r ;	7 nou	15
Section	ing of ab	ove soli	ds in sin	nple ver	tical pos	sition wh	ien the c	utting p	lane is i	ncline	d to	the o	ne of	the
principa	al planes	and perj	pendicul	ar to the	e other - Prisms	- obtaini	ng true	shape of	f section	1. Deve	elop	ment	of late	ral
Suitace				solius –) Uou	
Dringin	LE VI	150M	EIRIC	AND P	EKSPE		PKOJE	rojection	S	anla a	lide	and	rupoo	tod
solids -	· Prisms.	pvramid	s. cvlind	lers. con	leure se les- com	bination	of two	solid ob	is of sin	simple so	e vei	rtical	positio	ons
and mi	scellaneo	us probl	ems. Pe	rspective	e projec	tion of s	simple s	olids-Pri	isms, py	ramid	s an	d cyli	nders	by
visual r	ay metho	d.								TO	T A 1	. 45 1		DC
COUR	SE OUT	COMES	3:							10	IAI	J: 45]	HUUI	XD
cock														
On the	successfu	l comple	etion of t	he cours	se, stude	nts will l	be able to	0						
CO1:	Develop	various	types of	curves a	and free	hand ske	etches of	orthogr	aphic pr	ojectio	ns.			
CO2:	Draw the	e project	ion of po	oints, lin	es and p	lane surf	faces.							
CO3:	Draw the	e project	ion of sc	olids.										
CO4:	Model th	e section	n of soli	ds and d	emonstra	ate the d	evelopm	ent of su	irfaces.					
CO5:	Model th	odel the isometric and perspective projections of solids.												
COs V	s POs MA	APPING	;											
	DO1	DOA	DO1	DO 4	DO 5	DOC	DOF	DOG	DOA	DO1	0 1	011	DO1	
COs	POI	PO2	PO3	PO4	P05	PO6	PO7	P08	PO9	POI		2011	POI	.2
$\frac{\text{CO1}}{\text{CO2}}$	3	2	1	3	3			1	I	3				_
C02	3	2		2						3				
CO4	2	2 1	1	3	3			1	1	3				_
CO5	3	2	1	3	3			1	1	2				
		_				L	I						L	

COs Vs PSOs MAPPING:					
	COs	PSO1	PSO2	PSO3	
	CO1		2	3	
	CO2		2		
	CO3		2		
	CO4		2	3	
	CO5		3	3	
REFERENCES:					
1. Gopalakrishna K.R., "Engineer	ring Dra	wing" (V	/ol. I&II	combin	ed), Subhas Stores, Bangalore,2016.
2. Luzzader, Warren.J. and Duff,	John M.	, "Funda	mentals	of Engir	neering Drawing with an introduction
to Interactive Computer Grap	hics for	Design	and Pro	duction,	Eastern Economy Edition, Prentice
Hall of India Pvt. Ltd, New De	lhi, 200	5.			
3. Shah M.B., and Rana B.C., "En	ngineeri	ng Draw	ing", Pe	arson, 2r	nd Edition, 2015.
4. Venugopal K. and Prabhu Ra	ja V., "	Enginee	ring Gra	phics",	New Age International (P) Limited,
2017.		-	-	-	
5. Natrajan K.V., "A text book of	Engine	ering Gra	aphics",	Dhanala	kshmi Publishers, Chennai, 2015.
6. Basant Agarwal and Agarwa	al C.M.	., "Engi	neering	Drawin	g", Tata McGraw Hill Publishing
Company Limited, New Delhi,	2008.		C		
7. Bhatt N.D. and Panchal V.M.,	"Engine	ering Dr	awing",	Charota	r Publishing House, 50th Edition,
2016.	-	-	-		-

10010	FV51		CAD	COM			ора етт		D	T	Т	D	<u> </u>
1901G.	EX31		CAD (Co	(COMP mmon f	OIEK A for all B	AIDED I E./R.Teo	DKAF 11 vh. Prog	NG) LA ramme)	Б	L	L	P	C
					or an Da	, D. 10		annie)		0	0	2	1
T • 4 · 6	D •	4											
List of	Experim	ients:			1'	• 11		1		1 1'			
Basics	command	is of a C.	AD softv	ware- tw	o-dimen	isional di	rawing, e	editing, I	ayering	and dim	ensionir	ıg -	
coordin	ate Syste	ms-Drav	ving pra	ctice - or	thograp	hic view	s of sim	ple solid	s using (CAD soft	tware.		
1	Study of	capabiliti	ies of so	ftware for	or Drafti	ing and l	Modeling	g – Coor	dinate s	ystems (a	absolute	, relati	ve,
]	polar, etc.) – Creat	ion of siı	nple figu	res like	polygon	and gene	ral multi	-line figu	ires.			
2. 1	Drawing o	of a Title	Block w	ith neces	sary text	t and pro	jection sy	ymbol.					
3. 1	Drawing o	of curves	like para	ıbola, spi	iral, invo	lute usin	g B-splin	ne or cubi	c spline.				
4.]	Drawing	of front	view an	d top vi	ew of s	imple so	olids like	prism,	pyramid	, cylinde	r, cone,	etc, a	and
	dimensior	ning.											
5. 1	Drawing f	front viev	v, top vie	ew and s	ide view	of objec	ts from t	he given	pictorial	l views (e	eg. V-bl	ock, B	ase
	of a mixie	, Simple	stool, Ol	ojects wi	th hole a	nd curve	s).						
6.	Drawing s	sectional	views of	prism, p	yramid,	cylinder,	cone, et	с,					
7.]	Drawing i	sometric	projectio	on of sim	ple obje	cts.							
8.	Creation of	of 3-D m	odels of s	simple of	ojects an	d obtaini	ng 2-D n	nulti-viev	v drawin	gs from 3	3-D mod	el.	
							-			TOT	AL: 45	HOU	RS
COUR	SE OUT	COMES	5:										
On the	successfu	il comple	etion of t	the cours	se, stude	nts will	be able t	0					
CO1:	Ability t	o use the	e softwa	e packer	rs for dra	afting an	d model	ing.					
CO2:	Learned	basic co	ncept to	drawing	<u>g, edit, d</u>	imension	n, hatchi	ng etc. to	o develoj	p 2& 3D	Modell	ing.	
CO3:	Able to	create fro	ont view	and top	view of	simple s	solids						
CO4:	Able to	Create 1se	2D mod	projectio	n of sim	iple obje	cts.	nina) F) myylti	viore due			2 D
CO5:	model	Create :	SD mod	els of Si	Imple O	bjects a	nd obtai	ning 2-L) mulu-	view dra	iwings i	rom :	у- D
COs V	s POs M	APPING	;										
COa	DO1	DO3	DO3	DO4	DO5	DO(DO7	DOQ	DOO	DO10	DO11		
C0s	3	r02	rus	FU4	3	100	10/	FUo	2 2	2	2	2	.4
C01	3				3				$\frac{2}{2}$	$\frac{2}{2}$	$\frac{2}{2}$	$\frac{2}{2}$	_
CO2	3				3				2	2	2	1	
CO4	3				3				2	2	2	1	
CO5	3				3				2	2	2	1	
COs V	s PSOs N	IAPPIN	IG:										
				C	Os PS	501 PS	SO2 PS	503					
				C	01			3					
				C	02			3					
					03			3					
					04			3					
REEL	RENCES	•			05			J					
1	N.D. Bha	rt. Mach	ine Drav	ving Ch	arotar P	ublishing	House	Pvt. Ltd	. 2014				
2	P.S. Gill	A Texth	ook of N	Jachine	Drawing	. Katsor	books	2013	, 201 1.				
3.	R.K. Dha	wan, A	Textbool	c of Mac	hine Dr	awing, S	. Chand.	2012.					

1901G	EX53	BASI	C ELEC	CTRICA	L AN LA	D ELE BORA' B E /B	CTRO TORY	NICS	S ENGIN	IEERIN	G L 0	T 0	P 2	C 1
						D.L./D	<u>. 1 ech. 1</u>	riogi	(annie)					
List of	Experim	ents:												
1.	Experi	ments rel	ated to v	verificati	on of	Ohm's	law and	d Kir	chhoff's	s laws				
2.	Experi	ments inv	volving l	ogic gat	es									
3.	Fan an	d light co	ontrol us	ing regu	lators									
4.	Design	of 6V re	gulated	power s	upply									
5.	Energy	conserv	ation de	monstrat	tion ex	perimo	ent usin	g ene	ergy met	er				
6.	Wavefe	orm gene	ration a	nd calcu	lation	of rms	and ave	erage	values					
7.	IC 555	and IC 7	41 base	d experi	ments									
8.	Experi	ments in	earthing	-										
9	Stairca	se wiring	and res	idential	buildi	no wiri	inσ							
10	Speed	control o	f DC shi	int moto	r	115 W 111	m <u>8</u>							
	. speed				л 						тот	AT • 15 1		DC
COUR	SE OUT	COMES	5:								101	AL. 43 I	1001	10
0.1		1 1		1		1	• • • •	11.						
CO1:	Successfu Develor	il comple domesti	etion of t	the cours	se, stu tions	dents v	vill be a	ble to	0					
CO2:	Design a	and imple	ement el	ectrical	and el	ectroni	ic circui	ts us	ing basi	e elemen	ts, logic	gates an	d IC's	5.
CO3:	Elucidat	the cha	aracterist	tics of D	iode, l	Zener o	diode, B	JT, S	SCR and	their ap	plication	IS.		
COs V	s POs M	APPING	.											
COs	PO1	PO2	PO3	PO4	PO	5 PC	D6 P	07	PO8	PO9	PO10	PO11	PO1	2
$\frac{CO1}{CO2}$	3	3	2	$\frac{2}{3}$		1	-			3	$\frac{2}{3}$	3		
CO2	3	3	2	2		1	-			3	2	3		
COs V	s PSOs N	AAPPIN	G :		0	DCO1	DCO	DC						
						<u>PSOI</u> 3	PSO2	PS	503					
				C	$\frac{01}{02}$	3	3							
				С	03	3								
REFE	RENCES	5:	(T)1 · ·	1 77 1	1	11 5								
	Edward H	lughes,	Electric	al Lechr	nology	<i>',''</i> , Pea	Irson Ed		$\frac{100}{2012}$					
2.	D.r. Koti Paul Sche	erz and S	imon M	Dasic I	actical	$\frac{1}{\text{Flectr}}$	ivin Ed	ucati	ventors"	Mc Grav	v Hill Pr	hlicatio	ns 201	3
5.					icited	Licen	onies it	/1 111 V	CHIOIS		w 11111 I L	ioncatio.	1.5 201	

												_	
1901PH	HX51		ENG	GINEER	ING PH	IYSICS	LABOR	ATORY	7	L	Т	P	С
			(Co	ommon f	or all B.	.E./B.Te	ch. Prog	ramme)		0	0	2	1
T • 4 6	.												
List of	Experim	ients:	f	an ath af			<u></u>				anatin a		
1.	Determ	mation	JI waven	ength of	various	colours	or merce	iry speci	rum usn	ng Laser	grating		
2.	Determ	ination of	of veloci	ty of liqu	uids usin	ng ultraso	onic inte	rferomet	er				
3.	Determ	ine the c	lispersiv	e power	of a pris	sm using	spectron	neter					
4.	Determ	ine the u	inknown	resistan	ce of the	e given v	vire usin	g Carey	-Foster's	s Bridge			
5.	Determ	ine the b	oand gap	of the g	iven sen	niconduc	ctor						
6.	Determ	ine the a	cceptan	ce angle	and part	ticle size	using L	aser					
7.	Torsior	nal pendu	ulum – R	Rigidity r	nodulus	of a stee	el wire						
8.	Thickn	ess of a t	f a thin wire – Air Wedge										
9.	Measur	Measurement of Young's modulus – Uniform and Non-uniform bending											
10). Therma	al conduc	ctivity –	Lee's Di	sc metho	bd							
										ТОТ	AL: 45	HOU	RS
COUR	SE OUT	COMES	S:										
On the	successfu	il comple	etion of t	the cours	se, stude	nts will	be able t	0	1 4 1			· · · ·	41
CO1:	experim	ents.	retical d	concepts	or pny	ysics in	procedi	ares and	i techni	iques in	perfor	ming	the
CO2:	Apply a elastic p	nd demo roperties	onstrate, s of mate	thermal rials and	conduct l oscillat	tivity, el	ectrical ough exp	propertie eriential	es of me	etals and g.	semico	onducto	ors,
CO3:	Demons	trate the	use of ds speci	monochi fic engir	romatic	light, la	sers in o	ptical fi	ber com	municati	on and	quant	um
CO4·	Use dif	ferent n	neasurin	g devic	es/ met	ers to 1	record t	he data	with p	precision	and a	pply	the
04.	mathem	atical co	ncepts/e	quations	to obtai	n quanti	tative res	sults.					
CO5:	Develop	basic of basic of basic	commun by inter	preting t	skills th he result	rough v ts.	vorking	in grou	ps in p	ertormin	g the I	aborat	ory
	•		2										
COs V	s POs M	APPINO	; :										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	POQ	PO10	PO11	PO1	12
CO3	3	3	105	104	1		10/	3	3		1011		
CO2	3	3			1			3	3				
CO3	3	3			1			3	3	ļ			
								(1)					

COs Vs PSOs MAPPING:

3

3

COs	PSO1	PSO2	PSO3
CO1			
CO2			
CO3			
CO4			
CO5			

3

3

REFERENCES:

CO5

1. 'Practical Physics', R.K. Shukla, Anchal Srivastava, New age international (2011).

1

2. 'B.Sc. Practical Physics', C.L Arora, S. Chand & Co. (2012).