E.G.S. PILLAY ENGINEERING COLLEGE

(Autonomous)

NAGAPATTINAM-611002

(Affiliated to Anna University, Chennai | Accredited by NAAC with 'A++'Grade|Accredited by NBA T1(B.E. – CSE, CIVIL, ECE, EEE, MECH& B.Tech – IT) | Approved by AICTE, New Delhi)

M.E. - POWER ELECTRONICS AND DRIVES R- 2024

SECOND YEAR

CURRICULUM AND SYLLABUS FOR THIRD SEMESTER

Course						M	aximur	n Marks	Category
Code	Course Name	L	T	P	C	CA	ES	Total	
	Theory Course								
	Program Elective–IV	3	0	0	3	40	60	100	PEC
	Program Elective–IV	3	0	0	3	40	60	100	PEC
	Open Elective	3	0	0	3	40	60	100	OEC
	Laboratory Course								
2404PE301	Project Work–Phase I	0	0	20	10	50	50	100	EEC
	Total	9	0	20	19	170	230	400	

L-Lecture |T -Tutorial |P- Practical |CA - Continuous Assessment |ES - End Semester

PROGRAM ELECTIVE - IV

Course Category	Course Name	L	Т	P	С
2403PE013	IOT FOR POWER ELECTRONIC SYSTEM	3	0	0	3
2403PE014	NONLINEAR DYNAMICS FOR POWER ELECTRONIC CIRCUITS	3	0	0	3
2403PE015	ELECTRIC VEHICLES AND POWER MANAGEMENT	3	0	0	3
2403PE016	MICRO ELECTRO MECHANICAL SYSTEMS	3	0	0	3

PROGRAM ELECTIVE - V

Course Category	Course Name	L	Т	P	С
2403PE017	DISTRIBUTED GENERATION AND MICRO GRIDS	3	0	0	3
2403PE018	POWER CONVERTERS FOR SOLAR AND WIND ENERGY CONVERSION SYSTEM	3	0	0	3
2403PE019	APPLICATIONS OF POWER ELECTRONICS IN UTILITY SYSTEMS	3	0	0	3
2403PE020	ENERGY MANAGEMENT AND AUDITING	3	0	0	3

OPEN ELECTIVE COURSES

Course Category	Course Name	L	Т	P	С
2403PE021	SMART GRID	3	0	0	3
2403PE022	RENEWABLE ENERGY TECHNOLOGY	3	0	0	3
2403PE023	ELECTRIC AND HYBRID VEHICLES	3	0	0	3
2403PE024	INDUSTRIAL CONTROL ELECTRONICS	3	0	0	3

2403PE013	IOT FOR POWERELECTRONIC SYSTEMS	L	T	P	C
		3	0	0	3
PREREQUIS	ITE:	•		•	,
	Basics of Power Electronics and Electrical Machines				
	Fundamentals of Microcontrollers and Embedded Systems				
	Computer Programming (preferably Python or C)				
	Basic Concepts of Communication Networks and Protocols				
COURSE OB	JECTIVES:				
1	To introduce the fundamentals of IoT devices, platforms, and their in power electronics.	ntegra	tion	with	
2	To analyze the role of IoT in industrial automation, smart grids, and systems.	renev	able	energ	<u>3</u> y
3	To evaluate IoT applications in modern electric vehicles and emerging systems	ng po	wer e	electro	onic
COURSE OU	TCOMES:				
	After completion of the course, Student will be able to				
CO1:	Explain the architecture, devices, and interfaces used in IoT systems	S.			
CO2:	Demonstrate IoT applications in power electronics for monitoring a	nd co	ntrol.		
CO3:	Analyze the integration of IoT with industrial systems for automation	n and	prod	uctiv	ity
CO4:	Evaluate IoT-enabled smart grid, renewable energy, and energy man applications.	nagen	nent		
CO5:	Apply IoT concepts in electric vehicle systems including charging, naturaffic management	nonito	oring,	, and	
	•				
COs Vs POs	MAPPING:				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	2	_	_	_	_	_	_	1	3	2	_
CO2	3	2	2	2	3	_	_	_	_	_	_	1	3	2	_
CO3	3	3	2	3	3	_	_	_	_	_	_	2	3	3	_
CO4	3	2	3	3	3	_	_	_	_		_	2	3	3	_
CO5	3	2	3	3	3	_	_	_	_	_	_	2	3	3	_

COURSE CONTENTS:

MODULE I BASIC CONCEPTS OF 10T

8 Hours

Introduction and evolution of IoT from internet, IOT Physical Devices & Endpoints - Basic building blocks and Exemplary IOT Device: Raspberry Pi, Linux on Raspberry Pi, Raspberry Pi Interfaces - Serial, SPI, I2C, Programming Raspberry Pi with Python - Controlling LED with Raspberry Pi, Interfacing an LED and Switch with Raspberry Pi.

MODULE II IOT POWERELECTRONICS

9 Hours

Power Electronics with IoT – Introduction, Power electronics 2.0: IoT-connected and Al-controlled powerelectronicsoperatingoptimallyforeachuser-IoTAssistedPowerElectronicsforModernPower Systems – Benefits and disadvantages of IoT Power Electronics – Applications of IoT Power Electronics

MODULE III INDUSTRIES

9 Hours

Connecting sensors, actuators, control systems, and machines to optimize production and supply chain networks in manufacturing- automation of process controls in process industries- service information systems, and operator toolstoin crease productivity and safety. Impact of IoT: real time monitoring and controlling operations- deploying intelligent equipment, sensors, and controllers - Automation and control

MODULE IV ENERGY

9 Hours

Smart grid - automation, distribution, and monitoring - Advanced Infrastructure for Measuring - SCADA - Smart Inverters - Remote operation of devices that use energy - connecting solar panels, rainwater harvesters, smartroof,and windows in one system -Observable, automated, and controllable green energy using IoT sensors - IoT solutions in renewable energy power production.

MODULE V ELECTRIC VEHICLE

9 Hours

Intelligentsmartcontrollers-EVchargingstationlocator-Smartchargingstations-Batterymonitoring management - Vehicular traffic and smart parking – case studies

and

TOTAL: 45 HOURS

FURTHER READING / CONTENT BEYOND SYLLABUS / SEMINAR

1. 1.Role of Artificial Intelligence and Machine Learning in IoT-enabled Power Electronics.

2.	2.Cybersecurity challenges and solutions in IoT-based energy and industrial systems.
REFI	ERENCES:
1.	ArshdeepBahga, Vijay Madisetti, Internet of Things: A Hands-On Approach, Universities Press.
2.	RajkumarBuyya, Amir VahidDastjerdi, Internet of Things: Principles and Paradigms, Elsevier.
3.	Jeeva Jose, Internet of Things, Khanna Publishing.
4.	Oliver Hersent, David Boswarthick, Omar Elloumi, The Internet of Things: Key Applications
	and Protocols, Wiley.
5	SudipMisra, Anand Kumar, Anandarup Mukherjee, Introduction to IoT, Cambridge University Press

2403PE	014	N	ON LI	NEAR	R DYN		S FOI RCUI		ER E	LECT	RONI	С	L	T	P	C
						CI	KCUI	15					2	•	0	_
													3	0	0	3
REREC)UISI	TE:														
1		Basics	of Por	war Fl	actron	ics (C	onvort	ore on	d Inva	rtore)						
2		Contro				` `										
3		Differe							recut	Jack)						
4		Fundar		-												
4		Fundar	nentai	S OI E	lectric	ai Mac	enines	and D	rives							
COURSE	7 OR I	ECTI	ÆÇ.													
OUKSI	2 OD	ECITY	VES.													
1		To intr	oduce	the fu	ndame	entals	of non	linear	dynan	nics ar	nd cha	os in e	lectric	cal an	ıd po	wer
		electro														
2		To ana	lyze n	online	ar beh	avior	in con	verters	s and d	drives i	using 6	experi	menta	l and		
		numeri	ical ted	chniau	es.											
3 COURSE		To expl	ore co			for ch	aos an	d apply	them	to stabi	ilize po	ower el	ectron	ic sys	tems	
COURSE	E OUT	To expl	ES:	ntrol m	ethods											.1
COURSE	E OUT	To expl	ES:	oncepts	s of no	nlinear	dynan	nics, at	tractors	s, bifur	cations	s, and c	chaos i	n dyn	amica	
COURSE	O1:	FCOMI Explain systems Apply	ES: In the cost. analyti	oncepts	s of nor	nlinear	dynan	nics, at	tractors	s, bifur ques to	cations	s, and c	chaos i	n dyn	amica	na.
COURSE	O1: O2:	FCOMI Explain systems Apply Analyzo	ES: n the cos. analyti	oncepts	s of nor	nlinear	dynan	nics, at	tractors	s, bifur ques to	cations	s, and c	chaos i	n dyn	amica	na.
COURSE	O1: O2:	FCOMI Explain systems Apply	ES: n the cos. analyti	oncepts	s of nor	nlinear	dynan	nics, at	tractors	s, bifur ques to	cations	s, and c	chaos i	n dyn	amica	na.
COURSE	O1: O2:	FCOMI Explain systems Apply Analyzo	ES: In the cos. analytic e nonlices.	oncepts cal, nu	s of nor	nlinear	dynan experin	nics, at	tractors technic	s, bifur ques to haos in	cations investi	s, and congress of the second	chaos i	n dyn ar phe	amica	na.
COURSE	O1: O2:	FCOMI Explain systems Apply Analyze	ES: In the cost analytic e nonlines.	oncepts cal, nu	s of normerica	nlinear al, and a	dynan experii as bifu	nics, at mental urcation	tractors technic n and c	s, bifur ques to haos in	cations investi variou	s, and c	chaos i onlinea	n dyn ar phe onvert	amica enome	na.
COURSE	O1: O2: O3: O4: O5:	FCOMI Explain systems Apply Analyze inverter	ES: In the cos. analyti e nonli rs. te nonli chaos o	oncepts cal, nu near be	s of normerica chavior	nlinear s such	dynan experii as bifu	nics, at mental urcation	tractors technic n and c	s, bifur ques to haos in	cations investi variou	s, and c	chaos i onlinea	n dyn ar phe onvert	amica enome	na.
COURSE	O1: O2: O3: O4: O5:	Explain systems Apply Analyze inverter Evalua Apply	ES: In the cos. analyti e nonli rs. te nonli chaos o	oncepts cal, nu near be	s of normerica chavior	nlinear s such	dynan experii as bifu	nics, at mental urcation	tractors technic n and c	s, bifur ques to haos in	cations investi variou	s, and c	chaos i onlinea	n dyn ar phe onvert	amica enome	na.
COURSE	O1: O2: O3: O4: O5:	Explair systems Apply Analyze inverter Evalua Apply electror	e nonlicas.	oncepts cal, nu near be	s of normerica chavior	nlinear s such	dynan experii as bifu	nics, at mental urcation	tractors technic n and c	s, bifur ques to haos in	cations investi variou	s, and c	chaos i onlinea	n dyn ar phe onvert	amica enome	na.
COURSE	O1: O2: O3: O4: O5:	Explair systems Apply Analyze inverter Evalua Apply electror	e nonlicas.	oncepts cal, nu near be	s of normerica chavior	nlinear s such	dynan experii as bifu	nics, at mental arcation ical drivesis, Sl	tractors technic and convessinc vessinc iding N	s, bifur ques to haos in luding Mode, C	cations investivariou DC an	igate notes as DC-	chaos i onlinea -DC co	n dyn ar phe onvert ves. in po	amica enome ers ar	nd d
COS VS	O1: O2: O3: POs 1	Explair systems Apply Analyze inverter Evalua Apply electror	ES: In the cost analytic e nonlices. Ite nonlices. ING:	oncepts cal, nu near be	s of normerical chavior technid drive	nlinear s such	experin as bifu electri	nics, at mental arcation ical drivesis, Sl	tractors technic and convessinc vessinc iding N	s, bifur ques to haos in	cations investivariou DC an	igate notes as DC-	chaos i onlinea -DC co	n dyn ar phe onvert ves. in po	amica enome ers ar	na.
COs Vs	O1: O2: O3: POs 1	Explains systems Apply Analyze inverter Evalua Apply electror	ES: n the cos. analyti e nonli es. te nonli chaos onic circ	oncepts cal, nu near be	s of normerica chavior bhenom technid drive	nlinear al, and a rs such nena in ques (l	experin as bifu electri	nics, at mental arcation ical drivesis, Sl	tractors technic and convessinc vessinc iding N	s, bifur ques to haos in luding Mode, C	cations investivariou DC an	igate notes as DC-	chaos i onlinea -DC co	n dyn ar phe onvert ves. in po	amica enome ers ar	nd d
COs Vs	O1: O2: O3: POs 1	Explair systems Apply Analyze inverter Evalua Apply electror	ES: In the cost analytic e nonlices. Ite nonlices. ING:	oncepts cal, nu near be	s of normerical chavior technid drive	nlinear al, and a rs such nena in ques (l	experin as bifu electri	nics, at mental arcation ical drivesis, Sl	tractors technic and convessinc vessinc iding N	s, bifur ques to haos in luding Mode, C	cations investivariou DC an	gate notes by the second of th	chaos i onlinea -DC co	n dyn ar phe onvert ves. in po	amica enome ers ar	na.

CO3 3

CO4 3

CO	5 3	2	3	3	3	_	_	_	_	_	_	2	3	3	_	
																J
COLID	EE CO	NITTONI	TC.													
COURS	SE CO	NIEN.	15:													
MODU	LE I	BA	SICSO	FNO	NLINE	CARDY	NAM	ICS						9	Hours	
Dogina	of No.	lingon	Drmon	ning. (Stratam	atata	and at	oto on	200 100	adal V	Jaatan	field	Mod	alina	of Line	
Basics of nonlinear			•		•			•						_		
Lyapun				•						•	•				•	
crossing	_							1	,		~ r				·r · · · · ·	
MODU						INVES	TIGA	TION	OF N	ONLIN	EAR	PHEN	OME	NA 9	Hours	
Techniq	ues for															
under cl	naos, C	Computa	ations o	of spec	ctral pe	aks, Co	omputa	tion of	the bi	furcati	on and	l analyz	zing st	ability	·.	
MODU	LE III	NO	NLIN	EARI	PHENC	MEN	AIND(C-DCC	ONV	ERTE	RS			9	Hours	
Border										,						_
controll											-					
without		Bifurca	tion ar	nd cha	os in C	uk Cor	iverter	. Nonli	near p	henom	enon i	n the i	nvertei	unde	r tolerai	nce
band co		hio	NIT TN1	EADI	NAMES TO	N STINI	. T. I. I							la	**	
MODU					PHENC					- 1 DC	D.:	. NT	.1:		Hours	
Nonline PMSM			on in C	Jurren	it contr	oned a	na voi	tage-c	ontroll	ea DC	Drive	es, inor	iiinear	Pnen	omenon	. in
MODU	LE V	CO	NTRO	DL OF	CHAC	OS								9	Hours	
Hystere			_			_							s metł	nod, T	ime De	lay
control.	Appli	cation o	f the to	echniq	ues to 1	the Pov	ver ele	ctronic	s circu	iit and	drives	•				
TOTAI	L: 45 H	OURS														
FURTE	IER R	EADIN	IG / C	ONTE	ENT BE	EYONI	O SYL	LABU	S / SE	MINA	R					
1.	Appli	cation o	of Mac	chine	Learni	ng in p	redict	ing an	d cont	rolling	chao	tic beh	avior	in pov	wer	
	electro	onic sy	stems.													
2.	Nonli	near ph	enom	ena in	renew	able e	nergy	convei	ters (s	solar iı	nverte	rs, win	d ene	rgy sy	stems)	
REFER	RENCE	ES:														
1.	Steve	1 H. St	rogatz	z, Noi	nlinear	Dyna	mics a	nd Ch	aos:	With A	Applic	ations	to Pl	nysics	, Biolo	gy,
			_		ring, W	-								•		
2.	Leon	O. Chu	a, Nor	nlinea	r Circu	its, W	orld S	cientif	ic.							
3.	Guanr	ong Cl	nen &	Γetsus	shiUeta	ı, Chac	s in C	ircuits	and S	ystem	s, Wo	orld Sc	ientifi	c.		

4. Banerjee, S., & Verghese, G.C., Nonlinear Phenomena in Power Electronics: Attractors,

Bifurcations, Chaos, and Nonlinear Control, IEEE Press.

1. Khalil, H.K., Nonlinear Systems, Prentice Hall

2403PE015	ELECTRIC VEHICLES AND POWER MANAGEMENT	L	T	P	C
		3	0	0	3
REREQUIS	ITE:				<u> </u>
1	Fundamentals of Electrical Machines and Power Electronics				
2	Basics of Control Systems and Drives				
3	Energy Storage Technologies and Batteries				
4	Fundamentals of Automotive Engineering and Vehicle Mechanics				
COURSE OB	JECTIVES:				
1	To understand the fundamentals, architecture, and powertrain comp hybrid vehicles.	onents	of e	ectric	c ai
2	To analyze the operation and control of various electric drives used	in EV	appl	icatio	ns.
3	To explore different energy storage technologies including batteries, fuel ultracapacitors for EV power management	cells, a	nd		
COURSE OU	TCOMES:				
CO1:	Explain the principles of EVs, HEVs, and fundamentals of vehicle mecha	nics			
CO2:	Analyze the architecture and powertrain components of EVs and HEVs				
CO3:	Demonstrate control techniques for DC and AC drives used in EV propuls	sion.			
CO4:	Evaluate the characteristics, modeling, and performance of battery energy	storag	e syst	ems	
CO5:	Compare and assess alternative energy storage systems like fuel cells and applications.	ultraca	pacito	ors for	r E
	MAPPING:				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	2	_	_	_	_		_	1	3	2	2
CO2	3	3	2	2	3	_	_	_	_	_	_	1	3	3	2
CO3	3	3	2	3	3	_	_	_	_	_	_	2	3	3	3
CO4	3	2	3	3	3	_	_	_	_	_	_	2	3	3	3
CO5	3	2	3	3	3	-	_	_	_		_	2	3	3	3

COURSE CONTENTS:

MODULE I ELECTRIC VEHICLES AND VEHICLE MECHANICS

9 Hours

Electric Vehicles (EV), Hybrid Electric Vehicles (HEV), Engine ratings, Comparisons of EV with internal combustion engine vehicles, Fundamentals of vehicle mechanics.

MODULE II ARCHITECTURE OF EV'S AND POWER TRAIN COMPONENTS

9 Hours

Architecture of EV's and HEV's -Plug-in Hybrid Electric Vehicles (PHEV); Power train components and sizing, Gears, Clutches, Transmission and Brakes.

MODULE III CONTROL OF DC AND AC DRIVES

9 Hours

DC/DC chopper based four quadrant operations of DC drives—Inverter based V/f Operation (motoring and braking) of induction motor drive system; Induction motor and permanent motor based vector control operation; Switched reluctance motor (SRM) drives.

MODULE IV BATTERY ENERGY STORAGE SYSTEM

9 Hours

Battery basics, Different types, Battery parameters, Battery modeling, Traction Batteries.

MODULE V ALTERNATIVE ENERGY STORAGE SYSTEMS

9 Hours

Fuelcell – Characteristics, types, hydrogen storage systems and fuelcellEV; Ultracapacitors.

TOTAL: 45 HOURS

FURTHER READING / CONTENT BEYOND SYLLABUS / SEMINAR

- 1. Role of Artificial Intelligence and IoT in Smart EV Charging Infrastructure.
- 2. Wireless Power Transfer Technologies for Electric Vehicle Charging.

- 1. MehrdadEhsani, YiminGao, Ali Emadi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, CRC Press.
- 2. Husain, Iqbal, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press.
- 3. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley.
- 4. Chan, C.C., and Chau, K.T., Modern Electric Vehicle Technology, Oxford University Press.
- 5. Ali Emadi, Advanced Electric Drive Vehicles, CRC Press

2 Fu 3 Ba 4 Fu DURSE OBJE 1 To m 2 To an 3 To	asics of Semi undamentals of asics of Elect undamentals of ECTIVES: to introduce the echanical below study different of piezoelectronical	of Solid crical Ci of Cont ne conce havior. rent sens	Mecha reuits an rol Syste	nics and Sensems and	d Stressors d Instr	ss–Stra rument	ation	nalysis		3	0	0
1 Ba 2 Ft 3 Ba 4 Ft OURSE OBJE 1 To m 2 To an 3 To	asics of Semi undamentals of asics of Elect undamentals of ECTIVES: to introduce the echanical below study different of piezoelectronical	of Solid crical Ci of Cont ne conce havior. rent sens	Mecha reuits an rol Syste	nics and Sensems and	d Stressors d Instr	ss–Stra rument	ation	alysis				
2 Fu 3 Ba 4 Fu DURSE OBJE 1 To m 2 To an 3 To	asics of Electundamentals of ECTIVES: o introduce the echanical below study different piezoelectro analyze cas	of Solid crical Ci of Cont ne conce havior. rent sens	Mecha reuits an rol Syste	nics and Sensems and	d Stressors d Instr	ss–Stra rument	ation	alysis				
3 Ba 4 Fu OURSE OBJE 1 To m 2 To an 3 To	asics of Electundamentals of ECTIVES: o introduce the echanical beloo study differ and piezoelectro analyze cas	ne conce havior.	rcuits ar	nd Sens ems an	ors d Instr	rument	ation	alysis				
4 Function of the following states of the following st	controduce the echanical below study differ and piezoelectro analyze cas	ne conce havior.	rol Syste	ems an	d Instr							
1 To m 2 To an 3 To	o introduce the chanical beloo study differ ad piezoelectro analyze cas	ne conce havior. rent sens	epts of N									
1 To m 2 To an 3 To	o introduce the chanical below study differ diezoelectro analyze cas	havior. ent sens ric princ		ИЕМS	fabrica	otion t						
2 To an 3 To	echanical beloo study differ nd piezoelectro o analyze cas	havior. ent sens ric princ		MEMS	fabrica	otion t						
2 To an 3 To	echanical beloo study differ nd piezoelectro o analyze cas	havior. ent sens ric princ		IEMS	fabrica	otion t		. — —				
2 To an 3 To	o study differ nd piezoelectr o analyze cas	ent sens	sing and			ation t	echno	logies,	mate	rials, a	ınd el	ectro
an 3 To	nd piezoelectro o analyze cas	ric princ	sing and		•	1 .	•	1 1'		4 4	1	
3 To	o analyze cas		_	actuat	ion me	ecnani	sms in	ciuain	g elec	etrosta	tic, th	erma
		e studie		al-wor	ld ann	licatio	ns of I	MEMS	in en	ngineer	ring a	nd
111	edical system		s and re	ai-woi	iu app	iicatio.	113 01 1	VILIVIA	, III CII	igilicci	ing a	iiu
	edicai system	.15.										
OURSE OUT	COMES:											
	Explain the fund	damenta	ls of mic	ro-fabr	ication	proces	ses, m	aterials	, and ϵ	electro-	-mech	anical
co	oncepts.											
CO2: A	nalyze the pri	nciple, d	esign, ar	d fabrio	cation o	of elect	rostati	c senso	ors and	l actuat	ors	
		_										
CO3: Do	emonstrate the	workin	g princip	les of th	nermal	sensor	s and a	ctuato	s with	applic	ations	S.
CO4: E	Evaluate piezoe	electric s	encing a	nd actus	ation m	echani	eme fo	r pract	ical sv	eteme		
CO4.	valuate prezoc	iccurc s	chsing a	iu actua	itiOii iii	icchain	51115 10	i pract	icai sy:	stems.		
CO5: A ₁	pply MEMS co	oncepts	in real-w	orld cas	se studi	ies incl	uding	medica	l, opti	cal, and	d mici	ofluic
ap	plications											
COs Vs POs M	A DDING.											
OS VS PUS M	APPING:											
		DO 4 D) = DO	100=	DOO	DOO	D O 10	DO 11	DO 10	- 201		1=22
GO POS	DOA BOAT	V(1/1 D ()5 PO6	PO7	PO8	PO9	PO10	PO11		PSO1		
			_	_	1 —	_	_	-	1	3	2	2
COs PO1 CO1 3		1 2					l		' 			

CO3 3

CO4	3	2	3	3	3	_	_	_	_	_	-	2	3	3	3	
CO5	3	2	3	3	3	_	-	-	-	-	_	2	3	3	3	

COURSE CONTENTS:

MODULE I MICRO- FABRICATION, MATERIALS AND ELECTRO - 9 Hours MECHANICAL CONCEPTS

Overview of micro fabrication; Silicon and other material based fabrication processes—Concepts, conductivity of semiconductors, crystal planes, orientation-stress and strain; Flexural beam bending analysis - Torsional deflections, intrinsic stress, resonant frequency and quality factor.

MODULE II ELECTRO STATIC SENSORS AND ACTUATION

9 Hours

Principle, material, design and fabrication of parallel plate capacitors as electrostatic sensors and actuators; Applications.

MODULE III THERMAL SENSING AND ACTUATION

9 Hours

Principle, material, design and fabrication of thermocouples, thermal bimorph sensors, thermal resistor sensors; Applications.

MODULE IV PIEZO ELECTRIC SENSING AND ACTUATION

9 Hours

Piezoelectric effect-cantilever piezoelectric actuator model-properties of piezoelectric materials-Applications.

MODULE V CASE STUDIES

9 Hours

Case study- Piezoresistivesensors, magnetic actuation, micro fluidics applications, medical applications, optical MEMS-NEMS devices.

TOTAL: 45 HOURS

FURTHER READING / CONTENT BEYOND SYLLABUS / SEMINAR

- 1. Nano-Electro-Mechanical Systems (NEMS) and their future applications in smart devices.
- 2. Integration of MEMS with IoT and Artificial Intelligence for biomedical and industrial applications

- 1. Chang Liu, Foundations of MEMS, Pearson Education.
- 2. NadimMaluf, Kirt Williams, An Introduction to Microelectromechanical Systems Engineering, Artech House.

- 3. Stephen D. Senturia, Microsystem Design, Springer.
- 4. Marc Madou, Fundamentals of Microfabrication: The Science of Miniaturization, CRC Press.
- 5.Tai-Ran Hsu, MEMS and Microsystems: Design, Manufacture, and Nanoscale Engineering, Wiley

PROGRAM ELECTIVE - V

2403PE017	DISTRIBUTED GENERATION AND MICRO GRIDS	L	T	P	C
		3	0	0	3
REREQU	ISITE:	<u> </u>		ı	ı
1	Fundamentals of Electrical Engineering				
2	Power Electronics and Drives				
3	Power System Analysis				
4	Renewable Energy Sources				
COURSE C	DBJECTIVES:				
1	To provide knowledge on conventional and non-conventional powers and their challenges.	er gene	eratio	n syst	tems
2	To analyze distributed generation concepts, optimization, and integgrids.	gration	with	utilit	у
3	To understand microgrid architecture, control strategies, and the rotechnologies	le of s	mart g	grid	
	Stul completion of this course, the students will be able to:				
CO1:	stur completion of this course, the students will be able to.				
0020	Explain conventional and non-conventional energy resources and advantages.	their c	ompa	rative	;
CO2:	Analyze the principles, regulation, and market aspects of distribute	d gene	ratio	1.	
CO3:	Evaluate the impact of integrating distributed generation with the u	tility g	rid.		
CO4:	Demonstrate knowledge of microgrid components, configurations and control methods.	, opera	tion 1	nodes	S,
CO5:	Assess the role of smart grid technologies and sustainable energy in power systems	ntegrat	ion fo	or fut	ure
	AND PGO MA PRIVI				
COS VS PC	Os AND PSO MAPPING:				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	2	2	-	-	-	1	2	3	2	-
CO2	3	3	2	2	-	2	2	-	-	-	-	2	3	3	-
CO3	3	3	3	2	2	2	2	-	-	-	-	3	3	3	-
CO4	3	3	3	3	2	2	3	-	-	-	-	3	3	3	3
CO5	3	3	2	3	2	2	3	2	-	-	-	3	3	3	3

COURSE CONTENTS:

MODULE I INTRODUCTION

9 Hours

Conventional power generation - Advantages and disadvantages; Energy crisis; Non - conventional energy (NCE) resources; Review of solar PV; Wind energy systems; Fuel cells; Micro turbines; Biomass; Tidal resources.

MODULE II DISTRIBUTED GENERATION

9 Hours

Distributed generation – Description, Regulation; Compensation schemes of distributed generations; Market designs for distributed generations; Role of distributed generations in electricity market; Distributed generation optimization methods.

MODULE III GRID INTEGRATION

9 Hours

Direct machine coupling with the grid; Distributed power electronics interface; Local control of distributed generation; Overloading of radial distribution networks; Losses &loadability; Impact of grid integration with non-conventional energy resources.

MODULE IV MICROGRID

9 Hours

Micro grid- Components, review ,control; Control methods for a micro grid systems; Structure and configuration of micro grid; AC and DC microgrids; Power electronics interfaces in DC and AC micro grids; Modes of operation of micro grid; Communication infrastructure of micro grid; Power quality issues in micro grids; Micro grid economics.

MODULE V SMART GRID

9 Hours

Introduction to smart grid; Functions of smart grid components; Communication measurement and monitoring technologies of smart grid; Stability analysis for smart grid; Sustainable energy options for the smart grid; Micro grid and smart grid comparison.

TOTAL: 45 HOURS

FURTHER READING / CONTENT BEYOND SYLLABUS / SEMINAR:

- 1. Hybrid Energy Storage Systems for Microgrids
- 2. Artificial Intelligence and Machine Learning Applications in Smart Grids

- 1. Hatziargyriou, N. Microgrids: Architectures and Control. Wiley-IEEE Press, 2014.
- 2. Ackermann, T. *Distributed Generation: A Definition*. Electric Power Systems Research, Elsevier.
- 3. Lasseter, R. H. Microgrids and Distributed Generation. IEEE Power Engineering Society.
- 4. Rashid, M. H. Power Electronics: Circuits, Devices, and Applications. Pearson, 2018.
- 5. Guerrero, J. M., Vasquez, J. C., and Loh, P. C. *Advanced Control Architectures for Intelligent Microgrids*. IEEE Transactions.

2403PE018	POWER CONVERTERS FOR SOLAR AND WIND ENERGY CONVERSION SYSTEM	L	Т	P	С
		3	0	0	3
PREREQUI	ISITE:	1			
1	Fundamentals of Electrical Engineering				
2	Power Electronics and Drives				
3	Renewable Energy Sources				
4	Power System Analysis				
1	To understand the fundamentals of solar and wind energy systems with an and global energy scenarios.	ith er	nphas	sis on	
-	Indian and global energy scenarios. To analyze the design, operation, and control of power converters us				
	wind energy systems.				
3	To develop knowledge of grid integration, distributed generation, an hybrid renewable systems.	d opt	imiza	tion o	of
COURSE O	OUTCOMES:				
	CO1: Explain the energy scenario, solar/wind survey, and the need technologies	for rei	newal	ole en	ergy
CO2:	Analyze PV cell, module, array characteristics, and apply MPPT tec	hniqu	es foi	rsola	r PV

	systems.
CO3:	Evaluate wind energy conversion systems, their components, and associated power conditioning methods
CO4:	Examine grid integration issues, converter topologies, and control methods for solar and wind systems.
CO5:	Assess hybrid renewable energy systems, cogeneration processes, storage, and optimization strategies.

COs Vs POs MAPPING:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	2	3	-	-	-	-	2	3	2	-
CO2	3	3	2	2	-	2	2	-	-	-	-	2	3	3	-
CO3	3	3	3	2	2	2	2	_	-	-	-	3	3	3	-
CO4	3	3	3	3	2	2	3	-	-	-	-	3	3	3	3
CO5	3	3	2	3	2	2	3	2	-	-	-	3	3	3	3

COURSE CONTENTS:

MODULE I INTRODUCTION

9 Hours

Energy consumption; World energy scenario - Energy source and their availability, Conventional and renewable source; Need to develop new energy technologies; MNRE Rules and Regulations; TEDA; Wind and solar survey in India and World.

MODULE II PHOTOVOLTAIC ENERGY CONVERSION

9 Hours

Solar radiation and measurements - Solar cells, Panels and their characteristics, Influence of insulation and temperature; PV arrays –Maximum power point tracking, Applications; Water pumping, Street lighting; DC-DC converters for solar PV systems.

MODULE III WIND ENERGY SYSTEMS

9 Hours

Basic principle of Wind Energy Conversion System; Nature of Wind; Components of Wind Energy; Conversion System; Generators for WECS; Classifications of WECS; Self excited induction generator, synchronous generator, Power conditioning schemes.

MODULE IV GRID CONNECTED WECS AND SECS

9 Hours

Grid connectors; Wind farm and its accessories; Grid related problems; Generator control; Performance improvements; Different schemes – Matrix converters, Line commutated inverters, Multilevel inverters, Power converters for Grid connected WECS; Grid connected solar energy converter systems.

MODULE V DISTRIBUTED POWER GENERATION SYSTEMS

9 Hours

Solar, PV, Hybrid Systems; Selection of power conversion ratio; Optimization of System components; Storage; Reliability evolution; Types of Cogeneration processes; Power converters for distributed power systems.

TOTAL: 45 HOURS

FURTHER READING / CONTENT BEYOND SYLLABUS / SEMINAR

- 1. Grid Integration of EV Charging with Solar and Wind Hybrid Systems
- 2. Blockchain Technology for Peer-to-Peer Renewable Energy Trading

- 1. Rashid, M. H. Power Electronics: Circuits, Devices and Applications, Pearson, 2018.
- 2. Rai, G. D. Non-Conventional Energy Sources, Khanna Publishers, 2011.
- 3. Godfrey Boyle, *Renewable Energy Power for a Sustainable Future*, Oxford University Press, 2012.
- 4. Bimal K. Bose, *Power Electronics and Motor Drives Advances and Trends*, Academic Press, 2006.
- 5. FredeBlaabjerg, *Power Electronics for Renewable Energy Systems, Transportation, and Industrial Applications*, IEEE Press, 2014.

403PE020	ENERGY MANAGEMENT AND AUDITING	L	Т	P	C
		3	0	0	3
REREQU	ISITE:				l
1	Fundamentals of Electrical Engineering				
2	Power Systems				
3	Electrical Machines				
	Power Electronics				

1		impa alysis.		wledge	e on e	nergy	mana	gemen	t princ	ciples,	auditi	ing pro	ocedui	res, ar	nd cost
2				ergy ef	fficien	cy op	portun	ities i	n elect	trical e	quipn	nent, s	ystem	s, and	l utilitie
3			lop ski				ing, n	neterir	ig tech	nnique	s, and	cogen	eratio	n for	
OURSI	E OU T	ГСОМ	IES:												
		Δ1	ter cor	nnletic	n of th	e cour	se Stu	ident v	ill be :	able to					
CO	1: Ex		the ne	_							ocess				
CO2			econo										lity m	onitor	ing.
CO	3: E		e ener												
CO	4: De	emons			_	f mete	ring s	ystems	s, tech	niques	s, and	measu	iremei	nt pra	ctices f
CO:			ighting	gsyste		ogenei	ation	teciiii	ques,	and pe		cost-	benen	t anai	ysis 10 .
COs Vs	I		ptimiz	cation.											
	POs l	MAPP	PING:			P06	PO7	PO8	PO9	PO10		PO12	PSO1	PSO2	
COs	PO1	MAPP				PO6 3	PO7 2	PO8	PO9 -	PO10		PO12 2	PSO1 3	PSO 2	2 PSO3
COs	PO1 3	MAPP	PING:					PO8 -	PO9 -	PO10 -					
COs CO1	PO1 3	MAPP PO2 2	PO3	PO4 -	PO5	3	2	-	PO9	PO10 - -	PO11 -	2	3	2	
COs CO1	PO1 3 3 3	PO2 2 3	PO3 - 2	PO4 - 2	PO5 -	3	2	-	-	-	PO11 - -	2	3	3	2 PSO3
COs CO1 CO2	PO1 3 3 3 3	MAPP PO2 2 3 3	PO3 - 2 3	PO4 - 2 2	PO5 2	3 3	2 2 3	-	-	-	PO11 - -	2 2 3	3 3 3	3 3	2 PSO3 - -

Need for energy management – Role of energy manager and auditor – energy basics- designing and starting an energy management program – energy accounting -energy monitoring, targeting and reporting- energy audit process

9 Hours

MODULE I

INTRODUCTION

MODULE II	ENERGYCOSTANDLOADMANAGEMENT	9 Hours

Important concepts in an economic analysis - Economic models-Time value of money-Utility rate structures-costofelectricity-Lossevaluationfortransformerandmotors-Loadmanagement:Demand control techniques-Utility monitoring and control system-HVAC and energy management-Economic justification.

MODULE III ENERGYMANAGEMENTFORMOTORS,SYSTEMS,ANDELECTRICAL EQUIPMENT

Systemsandequipment-Electricmotors-BasicsonDCandACmotors,Motorsizingfordifferentduty cycles,Energyefficientmotor,andpaybackanalysis.Transformers-Basicsandtransformerlosses,Loss ratio, energy saving recommendations, transformer sizing, and parallel operation. Reactors- energy saving opportunities. Quality of power and harmonics, Power factor improvement and benefits, AutomaticPowerfactorcontroller,sizingofacapacitor,capacitorandsynchronousmachinesforplant power factor

MODULE IV METERINGFORENERGYMANAGEMENT

9 Hours

9 Hours

Relationships between parameters-Units of measure-Typical cost factors- Utility meters - Timing of meterdiscforkilowattmeasurement-Demandmeters-Parallelingofcurrenttransformers-Instrument transformer burdens-Multitasking solid-state meters - Metering location vs. requirements- Metering techniques and practical examples.

MODULE V LIGHTINGSYSTEMS&COGENERATION

9 Hours

Concept of lighting systems - The task and the working space -Light sources - Ballasts - Luminaries - Lightingcontrols-Optimizinglightingenergy-Costanalysistechniques-Lightingandenergystandards Cogeneration: Forms of cogeneration - feasibility of cogeneration- Electrical interconnection.

Beyond the Syllabus / Seminar Topics (Any 2):

- 1. IoT and Smart Metering in Energy Auditing
- 2. Artificial Intelligence for Predictive Energy Management

TOTAL:

45 hours

improvement.

- 1. W.R. Murphy and G. McKay, *Energy Management*, Butterworth-Heinemann, 2009.
- 2. Wayne C. Turner, Energy Management Handbook, CRC Press, 2007.
- 3. Steve Doty and Wayne C. Turner, *Energy Management Handbook*, Fairmont Press, 2012.
- 4. Paul O'Callaghan, Energy Management, McGraw Hill Book Company, 1993.
- 5. Albert Thumann, Handbook of Energy Audits, The Fairmont Press Inc., 2013.

2403PE01	19	APP	LICA	FIONS	S OF P		R ELI STEM		ONIC	S IN U	TILIT	Y	L	Т	P	C
													3	0	0	3
PREREQ	UIS	ITE:														
1	F	undame	entals	of Pov	ver El	ectron	ics (C	onver	ters, Iı	nverte	rs, and	Cont	rol)			
2	P	ower S	ystem	s Anal	ysis (Transr	nissio	n, Dis	tributi	on, an	d Stab	ility C	Conce	epts)		
3	Е	lectrica	l Mac	hines	and D	rives (Synch	ronou	is and	Induc	tion m	achine	es)			
4	C	ontrol S	Syster	ns Eng	gineeri	ing (B	asic fe	edbac	k and	stabil	ity cor	ncepts))			
COURSE	OB	JECTI	VES:													
1		o under			_			onics	in mod	dern u	tility s	ystem	s inc	ludin	g H	VDC
2	Т	o analy	ze the					f pow	er elec	ctronic	conve	erters	in hig	gh-po	ower	,
3		o evalu uality a					ontroll	ers an	d their	appli	cation	s in in	nprov	ving 1	pow	er
COURSE	OU	TCOM	ES:													
		Af	ter cor	npletio	n of th	e cour	se Stu	dent w	ill be a	able to						
CO1:	: E	Explain t		_							sed in	utility	appli	cation	ıs.	
CO2:		Analyze reactive					-phase	and th	ree-ph	ase co	nverte	s with	respe	ect to	harn	nonics,
CO3:		Demons					l, and	limitat	ions of	HVD	C trans	missio	n sys	tems.		
CO4:	:	Apply d	ifferen	t reacti	ive pov	ver coi	mpensa	ation te	echniqu	ues for	enhan	cing sy	stem	perfo	orma	
CO5	_	Evaluate UPS, an					ver elec	ctronic	s in uti	ility sy	stems s	such as	excit	tation	syst	ems,
		,			ai nacci	J.										
COs Vs l	POs	MAPP	ING:													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO10	PO11	PO12	PSO	1 PS/)2P	SO3
CO1		2	2	1	2	-	-	-	-	_	-	1	3	2	- I	-
CO2	3	3	2	2	2	_	_	_	_	_	_	1	3	2		2
CO3	3	2	2	3	2	_	_	_	_	_	_	2	3	3		2
CO4	3	2	3	2	2	_	_	_	_	_	_	2	3	3	;	3

CO5	3	2	3	2	2	_	_	_	_	-	_	2	3	2	_
COURSI	E CON	NTEN	TS:												
MODUL	E I	INTI	RODU	CTIO)N										9 Hours
High Pow	ver dri	ves for	r Powe	er syste	ems cor	ntroller	rs –Ch	aracte	ristics–	- Conv	erters (Configu	ıration	for La	arge power
MODUL	E II	SING	GLE P	HASE	E AND	THRE	EE PH	IASE (CONV	ERTI	ERS				9 Hours
	Reactiv	e pow	er con	ntrol –	Applic										Stability of col- Source
MODUL	E III	HVD	C												9 Hours
filter. Rea of 12- pul current c	active lse cor control and b	powe nverter , volta y- pa	r supp r. Con age de ssing,	oort, op trol of epende	peration HVDC ent curi	n of 6- C systement on	pulse em, R rder l	control ectifier imit, c	lledrece and it is an in the combination of the c	tifierir nverte ed rec	inverti r chara ctifier-i	ingmod acteristi inverter	leofope ics, me r char	eration ode sta acteris	, harmonio a.Operation abilization tics, valve ern HVDC
MODUL	EIV	REA	CTIV	E PO	WER C	COMP	ENSA	TION	1						9 Hours
compensa	ation, capaci	Comp ty, Co	ensation ensens	onbya ation l	series by STA	capaci TCON	tor co	onnecte SSSC	ed at t , Fixed	he mid	dpoint itor-Tl	of the hyristor	line,	Effect olled r	on Power
MODUL	EV	STA	TIC A	PPLI	CATIO	NS									9 Hours
		-	ynchro	nous g	generato	ors-Sol	id sta	te tap	change	ers for	transfo	ormer-U	JPS S	ystems	s-Induction
furnace co	ontrol.														

TOTAL: 45 HOURS

Beyond the Syllabus / Seminar Topics (Any 2):

- 1. Role of Power Electronics in Smart Grid and Renewable Energy Integration.
- 2. Wide Bandgap (SiC and GaN) Devices for High Power Utility Applications.

- 1. Mohan, Ned, Undeland, T.M., and Robbins, W.P., *Power Electronics: Converters, Applications and Design*, John Wiley & Sons.
- 2. Rashid, M.H., Power Electronics: Circuits, Devices, and Applications, Pearson Education.
- 3. Arrillaga, J., High Voltage Direct Current Transmission, IET Power Engineering Series.
- 4. Hingorani, N.G., and Gyugyi, L., *Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems*, Wiley-IEEE Press.
- 5. Padiyar, K.R., HVDC Power Transmission Systems, New Age International Publishers

OPEN ELECTIVE COURSES

2403PE021	SMART GRID	L	T	P	C
		3	0	0	3
PREREQU	ISITE:				
1	Fundamentals of Power Systems (Generation, Transmission & Distri	ibutio	n)		
2	Basics of Power Electronics and FACTS Controllers				
3	Communication Systems and Protocols				
4	Control Systems and SCADA Basics				
COURSE	DBJECTIVES:				
COURSE	DDJECTIVES:				
1	To understand the evolution, need, and attributes of Smart Grids alor Indian initiatives.	ng wit	th glo	bal a	nd
2	To study the infrastructure, technologies, and communication system Smart Grids.	is esso	ential	for	
3	To analyze the role of power electronics, automation, and informatio Smart Grid systems	n seci	urity i	in mo	dern
COURSE C	OUTCOMES:				
	After completion of the course, Student will be able to				
CO1:	Explain the evolution, need, challenges, and initiatives of Smart Grid	ls at r	ation	al and	i
	international levels.				
CO2:	Analyze smart grid infrastructure components such as smart meters	s, AM	I, IE	Ds, ar	ıd
	SCADA systems.				
CO3:	Evaluate distribution and transmission system management techniquand modeling tools	ues w	ith au	ıtoma	tion

CO4:	Assess the role of power electronics, energy storage, and renewable integration in Smart Grids.
CO5:	Apply communication technologies, standards, and cybersecurity principles in Smart Grid applications

COs Vs POs MAPPING:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	2			_	_	_		1	3	2	2
CO2	3	3	2	2	3	_	_	_	_	_	_	1	3	3	2
CO3	3	3	2	3	3	_	_	_	_	_	_	2	3	3	3
CO4	3	2	3	3	3	_	_	_	_	_	_	2	3	3	3
CO5	3	2	3	3	3	_	_	_	_	_	_	2	3	3	3

COURSE CONTENTS:

MODULE I INTRODUCTION TO SMART GRID

9 Hours

Evolution of Electric Grid, Need for Smart Grid, Smart grid attributes, challenges and benefits, Overview of technologies required for the smart grid- National and International Initiatives in Smart Grid- Smart grid projects in India

MODULE II SMART GRID INFRASTRUCTURE

9 Hours

Introduction to Smart Meters- AMI Hardware components- communications infrastructure and protocols - Substation automation equipment: current transformer, voltage transformer, Intelligent ElectronicDevices(IED),Baycontrollers,RemoteTerminalUnit(RTU),Switchgears,RingMainUnit (RMU),RecloserandSectionalizer-Transmissionsystem:SCADA,PhasorMeasurementUnit(PMU), Visualization techniques.

MODULE III DISTRIBUTION AND TRANSMISSION SYSTEM MANAGEMENT

9 Hours

Distribution Automation & Management: Smart energy resources - smart substations, Substation and Feeder Automation, Effect of Partial and full automation in Fault isolation & Restoration and Loss of supply—StructureandcomponentsofDistributionManagementSystem—Modelling&AnalysisTools — Applications: System operation & management — Outage Management System (OMS) Transmission systems: Energy Management System (EMS), Data sources, Wide area Monitoring, Protection and Control (WAMPAC).

MODULE IV POWER ELECTRONICS IN SMART GRID

9 Hours

Voltage and Current source Inverters (Qualitative analysis) – Distributed Generators & Electric Vehicles–FaultCurrentlimiting-Shuntandseriescompensation–FACTS&HVDC–EnergyStorage Technologies- Power Quality issues of Grid connected Renewable Energy Sources- Power Quality Audit.

MODULE V COMMUNICATION TECHNOLOGIES

9 Hours

Switching Techniques-Communication Channels—Layeredarchitecture & Protocols—Communication technologies- Standards for information exchange — Information Security: Encryption, decryption, Authentication, Digital signatures- Cyber security standards - Basics of Web Service, CLOUD Computing and IoT to make Smart Grids smarter.

TOTAL: 45 HOURS

FURTHER READING / CONTENT BEYOND SYLLABUS / SEMINAR

- 1. Artificial Intelligence and Machine Learning applications in Smart Grid operation and predictive maintenance.
- 2. Blockchain technology for secure energy trading in peer-to-peer Smart Grid systems.

- 1. Ali Keyhani, Mohammad N. Marwali, Min Dai, *Integration of Green and Renewable Energy in Electric Power Systems*, Wiley, 2010.
- 2. James Momoh, Smart Grid: Fundamentals of Design and Analysis, Wiley-IEEE Press, 2012.
- 3. Stuart Borlase, Smart Grids: Infrastructure, Technology, and Solutions, CRC Press, 2013.
- 4. Jean-Claude Sabonnadiere, NouredineHadjsaid, Smart Grids, Wiley-ISTE, 2012.
- 5. Qiuwei Wu, Yonghua Song, Smart Grid Technologies and Applications, Wiley, 2015.

2403PE022	RENEWABLE ENERGY TECHNOLOGY	L	T	P	C
		3	0	0	3
PREREQUIS	ITE:				
1	Fundamentals of Electrical and Electronics Engineering				
2	Basics of Energy Conversion and Power Systems				
3	Fundamentals of Power Electronics				
4	Engineering Physics (Solar radiation, Wind mechanics basics)				
	•				

1		To unde	erstand	d the f	undan	nentals	s of so	lar and	d wind	l energ	y cor	versio	n syst	ems.	
2		To anal													ybrid
		renewal	•	•	_					1					•
3		To expl	ore en	nergin	g rene	wable	energ	y tech	nolog	ies for	susta	inable	powe	r gene	eratio
URSE	OU'	TCOM	ES:												
CO	1:	CO1: E	Explair	the b	asic p	rincip	les of	solar r	adiati	on and	phote	ovolta	ic ene	rgy co	nvers
CO	2:	Desig and M			_	grid-co	onnect	ed pho	otovol	taic sy	stems	with	approp	oriate	storaș
CO	3:	Analy	ze wii	nd ene	rgy ch	naracte	eristics	, turb	ine aeı	rodyna	mics,	and d	esign	consid	lerati
CO	4:	Evalua													
		applica													
CO	·5• T	A .	tha fo	acibil	ity and	1 inted	ration	of hy	hrid a	nerav	cvetar	ne inc	luding	solar	wind
	,,,	Assess			-	_	gration	or my	bria e	ncigy	Syster	113 1110.	ludilig	501ai	,
		bioma	ss, and		-	_	gration	or my	oria e	nergy	syster	115 1110	idding	Bolar	
s VsP	os M	bioma:	ss, and	l ocea	n ener	gy									
	os M	bioma:	ss, and	l ocea	-	gy	PO7 2			PO10					
s VsP	os M PO1 3	biomas APPIN PO2	G:	l ocea	PO5	gy	PO7					PO12	PSO1	PSO2	PSO
s VsPo	901 3 3	I PO2	G: PO3	PO4	PO5	gy	PO7 2	PO8				PO12	PSO1 3	PSO2 2	PSO 2
Cos CO1	700 M	I PO2 2 3	FO3 1 2	PO4	PO5 2 3	gy	PO7 2 2	PO8				PO12 1 2	PSO1 3	PSO2 2 3	2 2
Cos CO1 CO2	PO3 3 3 3	IAPPIN PO2 2 3 3	FO3 1 2 2	PO4 - 2 2	PO5 2 3 3	gy	PO7 2 2 2 2	PO8				PO12 1 2 2	PSO1 3 3	PSO2 2 3 3	2 2 3
Cos CO1 CO2 CO3 CO4	PO) 3 3 3 3 3	IAPPIN PO2 3 3 2	FO3 1 2 2 3 3	PO4	PO5 2 3 3 3 3	gy	PO7 2 2 2 2	PO8				PO12 1 2 2 2	PSO1 3 3 3 3	PSO2 2 3 3 3	2 2 3 3
Cos CO1 CO2 CO3 CO4	PO) 3 3 3 3 3		FO3 1 2 2 3 3	PO4	PO5 2 3 3 3 3	gy	PO7 2 2 2 2	PO8				PO12 1 2 2 2	PSO1 3 3 3 3	PSO2 2 3 3 3	2 2 3 3

9 Hours

MODULE II

PHOTOVOLTAIC SYSTEMS

PV systems – Design of PV systems, Standalone system with DC/AC loads and with/without battery storage, Grid connected PV systems, Maximum Power Point Tracking.

MODULE III WIND ENERGY SYSTEMS

9 Hours

Wind energy – Energy in the wind, Aerodynamics, Rotor types, Forces developed by blades, Aerodynamic models, Braking systems, Tower, Control and monitoring system, Design considerations, Power curve, Power speed characteristics, Choice of electrical generators.

MODULE IV WIND ENERGY CONVERSION SYSTEMS

9 Hours

Wind turbine generator systems: Fixed speed induction generator – Performance analysis; Semi variable speed induction generator, Variable speed induction generators with full and partial rated power converter topologies, Isolated systems, Self-excited induction generator, Permanent magnet alternator, Performance analysis.

MODULE V HYBRID ENERGY SYSTEMS

9 Hours

Hybrid energy systems — Wind — Diesel system, Wind — PV system, Micro hydro — PV system, Biomass — PV — Diesel system, Geothermal-Tidal and OTEC systems.

FURTHER READING / CONTENT BEYOND SYLLABUS / SEMINAR

- 1. Artificial Intelligence and IoT applications in smart renewable energy management.
- 2. Hydrogen fuel cells and green hydrogen technology for future sustainable power systems

- 1. Boyle, G., Renewable Energy: Power for a Sustainable Future, Oxford University Press, 2012.
- 2. Godfrey Boyle, Renewable Energy Systems and Applications, CRC Press, 2017.
- 3. B.H. Khan, Non-Conventional Energy Resources, McGraw Hill, 2017.
- 4. Eldon D. Hansen & S. Rahman, *Renewable and Efficient Electric Power Systems*, Wiley-IEEE, 2013.
- 5. .P. Kothari, K.C. Singal, RakeshRanjan, *Renewable Energy Sources and Emerging Technologies*, PHI Learning, 2019.

2403PE023	ELECTRIC AND HYBRID VEHICLES	L	T	P	С
		3	0	0	3
PREREQUIS	ITE:	1			

	1		Fundan	nentals	s of El	ectrica	al Mac	hines	and D	rives							
	2		Basics	of Pov	ver Ele	ectron	ics and	d Ener	gy Co	nversi	ion						
	3		Fundan	nental	s of Co	ontrol	Syster	ms									
	4		Electric	al Pov	wer Sy	stems	and E	nergy	Stora	ge Ba	sics						
CO	URSE	OB	JECTIV	VES:													
	1			To introduce the fundamentals, evolution, and importance of electric, hybrid, fuel-cell vehicles.													1
	2		To anal used in	-	arious	energ	y stora	ige tec	hnolo	gies, c	chargii	ng sys	tems,	and p	ropuls	ion dri	ives
	3		To expl	lore er	_	g tech	nolog	ies in	vehicl	e-to-g	rid int	egrati	on, sn	nart ch	nargin	g, and	
CO	HDCE	OI	TCOM	FC.													
CO	UKSE	00	I COMI	LS:													
	CO		Explain vehicles		evoluti	on, in	ıportaı	nce, ar	nd cha	llenge	s of el	lectric	, hybr	id, and	d sola	r-basec	1
	CC)2:	Analy	ze diff	erent	battery	techr	nologi	es, cha	arging	requi	remer	its, and	d stora	age		
			hybrid	izatio	n techi	niques											
	CO)3:	Evalua advanc			and st	arting	syste	ms inc	luding	g diag	nosis	of faul	lts and	l new		
	CC)4:	Compa	re diff	erent e	electri	prop	ulsion	syste	ms and	d asse	ss the	ir perf	orman	nce		
			charact														
	CC		Assess			_	ng E	/ techi	nologi	es in s	mart g	grids,	vehicl	e-to-g	grid in	tegration	on,
			and roa	d safe	ty ethi	cs.											
CO	Os V P	POs I	MAPPI	NG:													
	COs	DO	1 PO2	PO3	PO4	PO5	PO6	PO7	DO	DOG	DO10	DO11	DO12) DCC1	1 DCO	2 PSO3	
	CO ₁		2	1	FU4 _	2	- FU0	3		FU9	- LO10	-	1	3	2	2 PSO 3	4
	CO2	3	3	2	2	3	_	2	_	_	_	_	2	3	3	2	
	CO3	3	3	2	2	3	_	2	_	_	_	_	2	3	3	3	
	CO4	3	2	3	3	3	_	2	_	_	_	_	2	3	3	3	

CO5 3

COURSE CONTENTS: MODULE I ELECTRIC VEHICLES 9 Hours History of modern transportation; Introduction to electric vehicles; History of EVs, hybrid electric vehicles and fuel cell vehicles; Solar based EVs; Social, environmental importance and key challenges of hybrid and electric vehicles. MODULE II ENERGY STORAGE AND BATTERY TECHNOLOGY 9 Hours Introduction to energy storage system; Battery requirements for HEVs, PHEVs, and EVs; Types of batteries; Properties of batteries; Working principle and construction of lead-acid, nickel cadmium, nickel metal hydride, lithium ion Batteries; Maintenance and charging of batteries; Diagnosing lead-acid battery faults; Advanced battery technology; Developments in electrical storage; Flow batteries; Hybridization of energy storage systems; Case studies. MODULE III CHARGING AND STARTING SYSTEMS 9 Hours Requirements of the charging system; Charging system principles; Alternators and charging circuits; Diagnosing charging system faults; Advanced charging system technology; New developments in charging systems; Requirements of the starting system; Starter motors and circuits; Types of starter motor; Diagnosing starting system faults; Advanced starting system technology; New developments in starting systems; Case studies. MODULE IV **ELECTRIC PROPULSION SYSTEMS** 9 Hours Electric motors used in EVs; DC motor drives, Induction motor drives, PMBLDC motor drives, SRM drives Principle and modes of operation, Speed control and performance characteristics. MODULE V EMERGING TECHNOLOGIES 9 Hours Introduction-Electric vehicle supply equipment, Smart vehicles in smart grid; Vehicle-to-grid technologies-Unidirectional and bidirectional; Need of charging station selection (CSS) server, Smart grid technologies-Applications / benefits, smart meter, smart charger; Purpose and benefits; Ethics in road safety. **TOTAL: 45 HOURS** FURTHER READING / CONTENT BEYOND SYLLABUS / SEMINAR 1. Role of Artificial Intelligence and IoT in autonomous electric mobility. 2. Wireless power transfer technologies for EV charging. REFERENCES: 1. Iqbal Husain, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2011.

- 2. MehrdadEhsani, YiminGao, Sebastien E. Gay, Ali Emadi, *Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design*, CRC Press, 2018.
- 3. James Larminie & John Lowry, Electric Vehicle Technology Explained, Wiley, 2012.
- 4. Chris Mi, M. AbulMasrur, David WenzhongGao, *Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives*, Wiley-IEEE Press, 2017.
- 5 . Ron Hodkinson& John Fenton, *Lightweight Electric/Hybrid Vehicle Design*, Butterworth-Heinemann, 2020

2403PE024	INDUSTRIAL CONTROL ELECTRONICS	L	T	P	С
		3	0	0	3
PREREQUISI	TE:	<u> </u>			
1.	Fundamentals of Power Electronics				
2.	Electrical Machines and Drives				
3.	Control Systems Engineering				
4.	Basics of Sensors and Instrumentation				
COURSE OBJ	ECTIVES:				
1.	To impart knowledge on UPS topologies, advanced energy storage, a controllers.	and sol	id-sta	te po	wer
2.	To understand the role of sensors, controllers, and signal conditioner applications.	s in inc	lustri	al cor	itrol
3.	To familiarize students with PLC, SCADA systems, and their applica automation.	itions i	n ind	ustria	1
COURSE OUT	TCOMES:				
CO1:	Explain the concepts of UPS topologies, solid-state power devices, a storage technologies.	and adv	vance	d ene	rgy
CO2:	0 0	rical ar	nd the	rmal	
CO3:	Apply concepts of analog controllers and signal conditioners in indu	ıstrial	contr	ol sys	tems
CO4:	Evaluate solid-state control of welding and heating systems with su	itable c	harac	terist	tics
	and techniques				
		on and			

	111		•
ar	าทไว	ıcat:	ions
u		cui.	10110

COs Vs POs MAPPING:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂	PSO3
CO1	3	2	1	_	2	_	3	_	_	_	_	1	3	2	2
CO2	3	3	2	2	3	_	2	_	_	_	_	2	3	3	2
CO3	3	3	2	2	3	_	2	_	_	_	_	2	3	3	3
CO4	3	2	3	3	3	_	2	_	_	_	_	2	3	3	3
CO5	3	2	3	3	3	_	3	_	_	_	_	3	3	3	3

COURSE CONTENTS:

MODULE I UPS AND STORAGE SYSTEMS

9 Hours

Review of uninterrupted power supplies, Offline and on-line topologies, Analysis of UPS topologies, Solid state circuit breakers and Solid-state tap changing of transformer; Advanced energy storage systems — Advanced chemistry batteries, Ultra-capacitors, Flywheel energy storage, Fuel cells characteristics and applications.

MODULE II SENSORS

9 Hours

Overview of sensors in industrial applications, Current sensors, Current transformer, Hall effect sensors, Voltage sensors, Non-isolated measurement, Hall effect, Temperature sensors, Thermal protection of power components, Speed sensors, Position sensors.

MODULE III CONTROLLERS AND SIGNAL CONDITIONERS

9 Hours

Analog controllers—P, PI and PID controllers, Derivative overrun, Integral windup, Cascaded control, Feed forward control

Signal conditioners - Instrumentation amplifiers, Voltage to current, Current to voltage, Voltage to frequency, Frequency to voltage converters.

MODULE IV SOLID STATE CONTROL

9 Hours

Solid state welding power source - Introduction, Classification, Basic characteristics, Volt ampere relationship and its measurements, Control of volt ampere characteristics, Volt control, Slope control and Dual control, Pulsing techniques, Testing of welding power source; Introduction to heating, Classification, Characteristics, Applications.

MODULE V PLC AND SCADA SYSTEMS

9 Hours

Introduction to programmable logic controllers, Architecture, Programming. Supervisory Control and Data Acquisition (SCADA) systems, Components of SCADA systems, SCADA basic functions, SCADA application

functions in electrical engineering, Energy saving in electrical drive systems.

TOTAL: 45 HOURS

FURTHER READING / CONTENT BEYOND SYLLABUS / SEMINAR

1. Role of IoT-enabled industrial automation and smart manufacturing.
2. Cybersecurity challenges in SCADA and industrial control systems

REFERENCES:

1. Frank D. Petruzella, Programmable Logic Controllers, McGraw Hill, 2017.

2. W. Bolton, Programmable Logic Controllers and SCADA Systems, Newnes, 2015.

3. K. Ogata, Modern Control Engineering, Prentice Hall, 2010.

4. M. H. Rashid, Power Electronics: Circuits, Devices, and Applications, Pearson, 2014.

5. J. G. Grainger & W. D. Stevenson, Power System Analysis, McGraw Hill, 2016

2404PE301	PROJECTWORK-PHASEI	L	T	P	C
		0	0	20	16

COURSEOBJECTIVES

- 1 Todevelopskillstoformulateatechnicalproject.
- 2 Togiveguidanceonthevarioustasksoftheprojectandstandard procedures.
- 3 Toteachuseofnewtools, algorithms and techniques required to carry out the projects.
- 4 Togiveguidanceonthevariousproceduresforvalidationoftheproductan danalysesthecost effectiveness.
- 5 Toprovideguidelinestopreparetechnicalreportoftheproject.

COURSEOUTCOMES(COS)

Aftercompletion of the course, students will be able to

CO1 Formula tear eal world problem, identify the requirement and develop the development and development

esignsolutions

CO2 Identify technical ideas, strategies and methodologies

CO3Utilizethenewtools, algorithms, techniques that contribute to obtain the solution of the project CO4 Perform test and validate through conformance of the developed prototype

CO5AnalysisthecostEffectivenessoftheproject

CO6 Explain the acquired knowledge through preparation of report and or alpresentations

GUIDELINEFORREVIEWANDEVALUATION

The student will be work under a project supervisor. The device/system/component(s) to be fabricated may be decided in consultation with the supervisorand ifpossible with an industry. A projectreport hasto be submitted by the student with the fabricated model, which will be reviewed and evaluated for internal assessment by a committee constituted by the head of the department. At the end of the semester examination, the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the head of the department