E.G.S. PILLAY ENGINEERING COLLEGE (Autonomous)

Approved by AICTE, New Delhi | Affiliated to Anna University, Chennai| Accredited by NAAC with 'AGrade| Accredited by NBA|

NAGAPATTINAM - 611002

M.E. POWER ELECTRONICS AND DRIVES

REGULATION -2024

First Year – First Semester

Course	Co	urso Codo	Course Nome	_		_	2	Max	kimum Marks		
Category	CU		Course Manie	L	Т	P	C	CA	ES	Total	
Theory Co	urse	1									
FC	240)1PE101	Applied Mathematics for Electrical Engineers	3	2	0	4	40	60	100	
PCC	240)1PE102	Modeling and Analysis of Electrical Machines	3	2	0	4	40	60	100	
PCC	240)1PE103	Analysis and Design of Power Converters	3	0	0	3	40	60	100	
PCC	240)1PE104	Analysis and Design of Inverters	3	0	0	3	40	60	100	
PEC	P	PEC I-04	Program Elective – I	3	0	0	3	40	60	100	
AC		-	Audit Course – I	2	0	0	0	100	00	100	
Laborator	y Co	ourse									
2401PE1	05	Power El	ectronic Circuits and Simulation Laboratory	0	0	4	2	50	50	100	
2401PE1	06	Electrical	Drives Laboratory	0	0	4	2	50	50	100	
Total				17	4	8	21	400	400	800	

2401PE101	API	PLIED	MAT	HEMA	ATICS	5 FOR	ELE(TRIC	CAL E	NGIN	EERS	L	Т	P	С
												3	2	0	4
PREREOU	ISITE														
I KEKEQU	1511E.														
	1.	Engii	neering	Mathe	ematic	s - I(C)	Calculu	is and I	Differe	ential E	Equation	ns)			
	2.	Engii	neering	Mathe	ematic	s - II (Linear	Algeb	ra, Tra	nsform	n Calcu	lus and	l Num	erical	
		Meth	ods)	,		,		0	,						
	3.	Engiı	neering	g Mathe	ematic	s III (C	Comple	x Vari	ables,	Vector	Calcu	lus and	Trans	forms)
COURSE ()BJEC	TIVES	5:												
	T														
	1.	To c	demons	strate	variou	s ana	lytical	skills	in a	applied	l math	ematic	s and	exte	nsive
		exper	rience	with th	ie tact	ics of	proble	m solv	ing an	nd logi	ical thi	nking a	applica	able fo	or the
	2	To fo	mus of (ar eng	ineerin	lg.	tion 1 m	a dal f	Con a li				nahlan	. in
	Ζ.	1010 real 1	ifo situ	e and c	constru	ict a m	atnema	ancai n	nodel I	or a m	near pro	ogramm	nng p	robien	1111
	3		dentify	form	ulate	abetra	rt and	1 solve	nroh	lems	in elec	trical e	ngine	ərina	usina
	5.	math	ematic	al tool	s fron	n a va	rietv	of ma	themat	ical a	reas. i	ncludin	g mat	rix th	eorv.
		calcu	lus of	variatio	ons, pr	obabili	ty, and	l Fouri	er serie	es.	,		0		
					•		•								
COURSE (DUTCO	OMES:													
On	the que	agesful	aamni	otion	of the	011700	atudar	to will	bo ob	la to					
	Apply	vario	i compi is meth	ods in	matrix	theor	v to so	its will lve svs	tem of	le lo Linear	equati	ons			
CO1:	Maxin	nizing	and mi	nimizi	ng the	functio	onal th	at occi	ir in el	ectrica	l engin	eering	discin	line	
CO3:	Comp	Maximizing and minimizing the functional that occur in electrical engineering discipline													
	randoi	Compute probability and moments, standard distributions of discrete and continuous random variables and functions of a random variable													
CO4:	Devel	Develop a fundamental understanding of linear programming models, able to develop a linear													
	progra	umming	g mode	l from	proble	em des	criptio	n, appl	y the s	implex	x metho	od for s	olving	linear	•
0.05	progra	umming	g probl	ems	•		•		1			1			
005:	Apply	Tourie	r series	s analy	sis and	i its use	es in re	epresen	iting th	le pow	er signa	ais			
COs Vs P	Os MA	PPINO	ł:												
_	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	<u>CO1</u>	3	3	3	2	-	-	-	-	-	-	-	-		
-	<u>CO2</u>	3	2	2	2	-	-	-	-	-	-	-	-		
-	$\frac{CO3}{CO4}$	2	3	2	3	-	-	-	-	-	-	-	-		
-	$\frac{CO4}{CO5}$	3	$\frac{2}{2}$	2	3	-	-	-	-	-	-	-	-		
	005	5	2	5	5	_	_	_	_		_	_	_		
COs Vs Ps	SOs MA	APPIN	[G:												
					CC)s PSC	D1 PSC)2PSC)3						
					CC	$\frac{1}{2}$	-	-							
						$\frac{12}{2}$ -	-	-							
						$\frac{15}{14}$ -	-	-							
)5 -									
COURSE (CONTE	NTS:													
														4	
MODULE	I MA	ATRIX	THE	URY										12 Ho	urs

Cholesky decomposition - Generalized Eigenvectors - Canonical basis - QR Factorization - Le	east squares
MODULE II CALCULUS OF VARIATIONS	12 Hours
Concept of variation and its properties – Euler's equation – Functional dependent on first and h	igher order
derivatives – Functional dependent on functions of several independent variables – Variationa	al problems
with moving boundaries – Isoperimetric problems - Direct methods : Ritz and Kantorovich meth	nods.
MODULE III PROBABILITY AND RANDOM VARIABLES	12 Hours
Probability – Axioms of probability – Conditional probability – Baye's theorem - Random	variables -
Probability function – Moments – Moment generating functions and their properties – Binomi	al, Poisson,
Geometric, Uniform, Exponential, Gamma and Normal distributions - Function of a random var	iable.
MODULE IV LINEAR PROGRAMMING	12 Hours
Formulation – Graphical solution – Simplex method – Big M method - Two phase method - Tra	insportation
and Assignment models.	
MODULE V FOURIER SERIES	12 Hours
Fourier trigonometric series: Periodic function as power signals - Convergence of series - Ev	en and odd
function: Cosine and sine series - Non periodic function: Extension to other intervals - Pow	ver signals:
Exponential Fourier series - Perceval's theorem and power spectrum - Eigenvalue pro	blems and
orthogonal functions – Regular Sturm - Liouville systems – Generalized Fourier series.	
TOTAL: 6	50 HOURS
REFERENCES:	
1. Andrews L.C. and Phillips R.L. "Mathematical Techniques for Engineers and Scientists	s". Prentice
Hall of India Pvt. Ltd., New Delhi, 2005.	,
2. Bronson, R. "Matrix Operation", Schaum's outline series, 2 nd Edition, McGraw Hill, 2011.	
3. Elsgolc, L. D. "Calculus of Variations", Dover Publications, New York, 2007	
4. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics	for
Engineers",	
5. Pearson Education, Asia, 8 th Edition, 2015.	
6 Take UA "Oppositions Descende An Introduction" Oth Edition Demonstration N	1 D. II. :

6. Taha, H.A., "Operations Research, An Introduction", 9th Edition, Pearson education, New Delhi, 2016.

2402PE102	MODELI	NG AND A	NALY	SIS O	F ELF	ECTR	ICAL	MAC	HINES	L	Т	P	С
										3	2	0	4
PREREOU	SITE												
I KEKEQU	51112.												
	1. DC N	Aachines an	d Tran	sforme	rs								
	2. Syncl	hronous and	Async	chrono	us Mac	hines							
	3. Elect	rical Machin	ne Desi	ign									
				0									
COURSE O	BJECTIVES	5:											
	1. To 1	remember th	ne conc	epts of	f mathe	ematica	al equa	tions r	egardin	g trigo	nomet	ry and	
	mat	rices.											
	2. To c	develop the	abilitie	es for d	esignir	ng of el	lectrica	l macl	nines wi	ith des	ired		
	chai	racteristics	1			C				1	•		
	3. 100	develop and	evalua	ite the	behavi	or of n	nachine	es as p	er the lo	bad req	luireme	ents.	
COURSE O	UTCOMES:												
COURSEO	CICOMES.												
On t	he successful	completion	of the	course	e, stude	nts wi	ll be at	le to					
CO1:	Understand	the basic co	ncepts	of mo	deling								
CO2:	Develop ma	thematical 1	nodeli	ng of I	DC ma	chines							
<u>CO3:</u>	Analyze the	modeling o	f trans	former									
<u>CO4:</u>	Develop ind	luction mac	nine mo	odeling	5								
005:	Understand	the operation	on of sp	ecial n	nachine	es							
COs Vs PC	s MAPPING	·											
	COs PO1	PO2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	CO1 2	1 -	-	1	-	-	-	-	-	-	-		
	CO2 3	3 2	1	1	-	-	-	-	-	-	-		
-	CO3 3	$\frac{3}{2}$	1	1	-	-	-	-	-	-	-		
	$\frac{\text{CO4}}{\text{CO5}} = 2$	3 2	1		-	-	-	-	-	-	-		
L	CO3 2	1 -	-	1	-	-	-	-	-	-	-		
COs Vs PS	Os MAPPIN	[G:											
			C	Os PS	O1 PS	O2 PS	03						
			C	01 3	3 -	1	L .						
			C	O2 3	3 -	1	l						
			C	03 3	3 -	1	l						
			C	04 3	3 -	1	l						
			C	05 3	3 -	1	L						
COLIDEE C	ONTENTC.												
COURSEC	ONTEN13:												
MODULEI	BASIC C	ONCEPTS	OF M	ODE I	LING							12 Ho	urs
Basic two po	le machine re	presentation	$\frac{0}{10}$ of co	nmuta	tor mag	chines	three	ohase	synchro	nous r	nachin	e with :	and
without dam	per bar and 3-	phase induc	tion m	achine	, Kron'	's prim	itive m	achin	e - volta	ige, cu	rrent a	nd tora	ue
Equations. In	troduction to	digital simu	ilation	model	of elec	trical	machin	es.		<i></i>		1	-
MODULE I	I DC MAC	HINE MO	DELIN	NG								12 Ho	urs

Mathematical model of separately excited DC motor - Steady state and transient state analysis, sudden application of inertia load, transfer function; Mathematical model of DC series motor and DC shunt motor; Linearization techniques for small perturbations. State space model of DC motor(simple approach)

MODULE III TRANSFORMER MODELING

12 Hours

12 Hours

12 Hours

Single phase transformer model, three phase transformer connections, per phase analysis, normal systems, per unit normalization, per unit three phase quantities, change of base, per unit analysis of normal system, regulating transformers for voltage and phase angle control, auto transformers, transmission line and transformers, Conversion of transfer function to state space model-case study.

MODULE IV INDUCTION MACHINE MODELING

Static and rotating reference frames; Transformation relationships; Stationary circuit variables transformed to the arbitrary reference frame treating R, L, C elements separately; Application of reference frame theory to three phase symmetrical induction machine - Direct and quadrature axis model in arbitrarily rotating reference frame, voltage and torque equations. Introduction to finite element analysis of electrical machines (simple approach)

MODULE V SPECIAL MACHINES

Permanent magnet synchronous machine, surface permanent magnet (square and sinusoidal back emf type) and interior permanent magnet machines - Construction and operating principle, dynamic modeling and self-controlled operation; Dynamic analysis of switched reluctance Introduction to empirical modeling(Black Box approach).

TOTAL: 60 HOURS

REFERENCES:

- 1. Charles Kingsley Jr., A.E. Fitzgerald and Stephen D.Umans, "Electric Machinery", McGraw-Hill HigherEducation, New York, 2010.
- 2. Paul C. Krause, Oleg Wasynczuk and Scott D. Sudhoff, "Analysis of Electric Machinery and Drive Systems", Wiley Student Edition, New Jersey, 2013.
- 3. R. Krishnan, "Electric Motor & Drives: Modeling, Analysis and Control", Prentice Hall of India, New Delhi, 2001.
- 4. T.J.E. Miller and J.R. Hendershot Jr., "Design of Brushless Permanent Magnet Motors", Oxford UniversityPress, USA, 1994.
- 5. T.J.E. Miller, "Reluctance Motor and their Controls", Oxford University Press, USA, 1993.

2402PE103		ANA	LYSIS	AND	DESI	GN O	F POV	VER (CONV	ERTE	RS	L	Т	P	С
												3	0	0	3
PREREOU	ISITE														
C -															
	1.	Anal	log Ele	ectroni	cs										
	2.	Pow	er Elec	etronic	s										
	3.	Solic	d State	Drive	S										
COURSEO	RIFC	TIVE	c .												
COURSEO	DJEC	1111													
	1.	To p	rovide	the el	lectrica	l circu	it con	cepts b	behind	the dif	fferent	workii	ng mod	es of p	ower
		conv	verters	so as t	o enab	le deep	o under	standi	ng of t	heir op	eratior	ı	0		
	2.	To e	quip w	ith rec	juired s	skills to	o deriv	e the c	criteria	for the	e desigi	n of po	wer co	nverter	s
	2	start	ing fro	m basi	c fund	amenta	als h a ruani			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	an of d	1: ff			ma of
	5.		inalyze	erters	compre	nena i	ne vari	lous oj	peratin	g moa	es or d	interen	it confi	guratio	ns oi
		pow		verter5											
COURSE O	UTC	OMES	:												
On	the and	agast	1	lation	of the	0.011#0.0	atuda	nto mi	11 ha al	10 10					
CO1 :	Under	rstand	the on	eration	$\frac{01 \text{ the}}{000 \text{ sin}}$	ole nh	ase and	three	n be at	convei	ters				
CO2:	Analy	vsis of	variou	s DC t	o DC c	convert	ters fro	m the	princip	ole of s	tep up	/down	conver	ters	
CO3:	Desig	n of po	ower c	onvert	er com	ponent	ts for b	uck/fl	y back	conve	rters				
<u>CO4:</u>	Under	rstand	the op	eration	$\frac{1}{1}$ of AC	<u>volta</u>	ge cont	rollers	8						
<u> </u>	Analy	ze cyc	clocon	verters	with F	K & RL	loads								
COs Vs PC)s MA	PPIN	G:												
	COs	<u>PO1</u>	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	$\frac{CO1}{CO2}$	2	1	-	-	-	-	-	-	-	-	-	-		
	CO2	3	$\frac{2}{2}$	1	-	-	-	-	-	-	-	-	-		
	CO4	2	1	-	-	-	-	_	-	-	-	-	-		
	CO5	3	2	1	-	-	-	-	-	-	-	-	-		
COs Vs PS	SOs M	APPIN	NG:												
					C	Os PS	<u>O1PS</u>	O2PS	<u>503</u>						
						$\begin{array}{c c} \mathbf{OI} & 2 \\ \mathbf{O2} & 3 \end{array}$			-						
						02 3 03 3	, - } -		-						
					C	O4 2	2 -	-	-						
					С	O5 3	3 -	-	-						
COURSE C	ONTE	ENTS													
	51111														
MODULE I	SI	NGLE	PHAS	SE AN	DTH	REE F	PHASE	E CON	VER T	TERS				9 Hou	rs
Principle of	phase	contro	l; Sing	gle pha	se and	three	phas	e half	and fu	ll cont	rolled	conver	ter (R,	RL, R	LE
loads); Effec	t of fr	eewhe	eling c	liodes	and so	urce in	nductai	ices; F	Reactiv	e pow	er; Pov	ver fac	tor imp	orovem	ent
techniques; I		$\frac{1}{2}$	rs; Sin	gie ph	ase and	1 three	-phase	dual c	convert	ers; Aj	oplicati	on.		0 Hor	rc
MODULEI	i pe	י שני נ		11111	2113									7 1100	13

Principles of step-down and step-up converters – Analysis of buck, boost, buck-boost and Cuk converters; Time ratio and current limit control; Resonant and quasi-resonant converters; Selection of convertors for UPS application.

MODULE III DESIGN OF POWER CONVERTER COMPONENTS

9 Hours

Introduction to magnetic materials - Hard and soft magnetic materials, types of cores, copper windings; Design of transformer; Inductor design equations; Inductor design for buck/fly back converters; Selection of input/output filters; Selection of device ratings; Design of heat sink.

MODULE IV AC VOLTAGE CONTROLLERS

Ac voltage control techniques ; Single phase and three phase AC voltage controllers - Principle of operation, various configurations, analysis with R and RL loads, applications.

MODULE V CYCLOCONVERTERS

9 Hours

9 Hours

Single phase and three phase cyclo converters - Principle of operation, analysis with R and RL loads, applications; Forced commutated cyclo converters, Power factor control; Introduction to matrix converters.

TOTAL: 45 HOURS

REFERENCES:

1. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, ThirdEdition, New Delhi, 2004.

2. Jai P. Agrawal, "Power Electronics Systems", Pearson Education, Second Edition, 2002.

- 3. Bimal K. Bose "Modern Power Electronics and AC Drives", Pearson Education, Second Edition, 2003.
- 4. Ned Mohan, T.M Undeland and W.P Robbin, "Power Electronics: converters, Application and design", John Wiley & Sons, Wiley India edition, 2006.

5. Philip T. Krein, "Elements of Power Electronics", Oxford University Press, 1998.

6. P.C. Sen, "Modern Power Electronics", Wheeler Publishing Co., First Edition, New Delhi, 1998.

7. P.S.Bimbra, "Power Electronics", Khanna Publishers, Eleventh Edition, 2003.

8. Marian. K.Kazimierczuk and Dariusz Czarkowski, "Resonant Power Converters", John Wiley & Sons, 2011.

9. W. G. Hurley and W. H.Wolfle, "Transformers and Inductors for Power Electronics Theory, Designand Applications", John Wiley & Sons, 2013.

2402PE104			ANA	LYSIS	AND	DESI	GN OI	FINV	ERTE	RS		L	Т	P	С
												3	0	0	3
PREREOU	SITE											•			
	1.	Elec	tric Ci	rcuit A	nalysi	s									
	2.	Pow	er Eleo	ctronic	S										
	3.	Elec	trical I	Energy	Gener	ation U	Utilizat	ion Ar	nd Con	servati	on				
COURSE O	BJEC	TIVE	S:												
	1	То	malura	and		hand t	the wor		nonatin	a mod	log of	lifform	nt conf	annati	on of
	1.	10 a	illalyze rters		compre	enena i	the var	ious o	peratin	ig mot	les of (intere		igurati	
	2.	Tod	lesign (differe	nt sing	le phas	se and	three p	hase ir	verter	s				
	3.	To i	mpart 1	knowle	edge or	n multi	level in	nverter	s and 1	nodula	ation te	chniqu	les		
					0										
COURSE O	UTCO	OMES	:												
Ond	ham	agafu	1	lation	oftho	0011000	atuda	nto mi	11 ha ak	10 40					
CO1 :	Sumn	narize	the on	eration	of inv	erters	and co	ncept of	of PWN	A tech	niques				
CO2:	Comp	oute th	e perf	orman	ce para	ameters	s of ha	lf and	full b	ridge i	inverter	rs usin	g 180 d	degree	and
	120de	gree co	onduct	ion mo	ode									-	
<u>CO3:</u>	Deriv	e the F	PWM t	echniq	ues for	r Curre	ent Sou	rce Inv	/erters		1				
CO4:	Descr	$\frac{100 \text{ the}}{700 \text{ zer}}$	e opera	tion of	tching	$\frac{11}{2}$ and $\frac{1}{2}$	nvertei	rent sv	modula vitchin	ation te	ent in r	ies resonat	nt inver	ers	
	7 mary		0 1010	150 5 11					<u>vitteinin</u>	5 00110	optini	csona		.015	
COs Vs PC)s MA	PPIN	G:												
ſ	00	DO1	DOA	DOA	DO 4	DOF	DOC	DOF	DOG	DOG	DO10	DO11			
	COI	2	PO2	POS	P04	P05	PUo	PO/	P08	P09	PO10	POII	P012		
	CO1	3	2	1	_	-	-	-	-	-	-	_	-		
	CO3	3	2	1	-	-	-	-	-	-	-	-	-		
	CO4	2	1	-	-	-	-	-	-	-	-	-	-		
l	CO5	3	2	1	-	-	-	-	-	-	-	-	-		
COs Vs PS	Os M	APPI	NG:												
					— ———————————————————————————————————										
					C	Os PS	01PS	O2PS	03						
						$\begin{array}{c c} \mathbf{OI} & 2 \\ \mathbf{O2} & 3 \end{array}$		-							
						$\begin{array}{c c} 02 & 3 \\ \hline 03 & 3 \end{array}$, - } _								
					C	04 2	2 -	-							
					С	O5 3	3 -	-							
COURSE C	ONTE	ENTS:													
MODIII F I	B A	SICI	NVFE	TFD	2									9 Hou	rs
Introduction	to self	f-comr	nutated	1 switc	hes ·	MOSE	FET an	d IGB	T Se	ries in	verter	- Basi	c series	inver	ter
modified ser	ies inv	verter,	high f	requer	ncy ser	ries inv	verter,	design	of L	and C	; Parall	el inve	erter - l	Design	of
parallel inver	ter; Li	ne cor	nmutat	ed inv	erter; (Concep	ot of P	<u>VM te</u>	chniqu	es.				0	
MODULE I	I VO)LTA	GE SC	OURC	E INV	ERTE	RS							9 Hou	rs
Principle of and 120 deg	operat ree co	ion of nducti	single on mo	phase de wi	half a th star	and ful	l bridg delta c	e inve onnect	rters; ⁷ ed loa	Three j ds; Pe	phase i erforma	nverte nce na	rs with aramete	180 d rs: Vo	egree oltage

control of single phase and three phase inverters using various PWM techniques; Harmonic	elimination
techniques.	
MODULE III CURRENT SOURCE INVERTERS	9 Hours
Load commutated current source inverter - Single phase and three phase auto sequential cur	rent source
inverter(ASCI); Principle of operation of impedance source inverter; Comparison of CSI, VSI and	ZSI.
MODULE IV MULTILEVEL & BOOST INVERTERS	9 Hours
Multilevel concept – diode clamped – flying capacitor – cascade type multilevel inverters - Cor	nparison of
multilevel inverters - application of multilevel inverters – PWM techniques for MLI – Single pha	use & Three
phase Impedance source inverters.	
MODULE V RESONANT INVERTERS	9 Hours
Concept of zero voltage switching and zero current switching; Series and parallel resonant inverte	ers; Voltage
control of resonant inverters; Class E resonant inverter; Resonant DC Link inverters.	_
TOTAL: 45	HOURS
RFFFRFNCFS	
1 PS Rimbra "Power Electronics" New Delhi Khanna Publishers 2006	
1. 1.5. Dimoru, 10wer Electronics, New Denn, Knunnu 1 ubushers, 2000.	11. :
2. M.H. Rasnia, Hana Book of Power Electronics: Circuits, Devices and Application, New Del	lni,
Prenuce Halloj Inala, 2007.	
3. Ned Mohan, Tore M. Undeland and William P.Robbins, "Power Electronics: Converters,	
Applications andDesign", 3 rd Edition, John Wiley and Sons, 2002.	

4. Jai P. Agrawal, "Power Electronics Systems", 2nd Edition, Pearson Education, 2002.

- 5. Bimal K. Bose, "Modern Power Electronics and Motor Drive Advances and Trends", 2nd Edition, PearsonEducation, 2006.
- 6. P.C. Sen, "Modern Power Electronics", Wheeler Publishing Co, First Edition, New Delhi, 1998

PEC I-01	SOLAR ENERGY STORAGE SYSTEM	L	Т	Р	С
		3	0	0	3
		0	Ŭ	v	5
PREREQU	ISITE:				
	1. Power Electronics				
	2. Electrical Energy generation utilization & conservation				
COUDER O					
COURSE O	BJECTIVES:				
	1. To understand the operation of solar cell				
	2. To gain knowledge in standalone PV and grid connected PV sy	ystem			
	3. To understand various concepts and application of solar energy	y system	1		
COUDSE O	UTCOMES.				
COURSE O	UTCOMES:				
On	the successful completion of the course students will be able to				
C01:	Understand the characteristics of solar cells				
CO2:	Describe the operation of standalone PV system				
CO3:	Design of grid connected PV systems				
CO4:	Discuss about various energy storage systems				
CO5:	Explain the application of solar energy system				
COs Vs PC)s MAPPING:				
			012		
	COS FOI FO2 FO3 FO4 FO3 FO0 FO7 FO8 FO9 FO10 CO1 2 1 <td>FOILE</td> <td>012</td> <td></td> <td></td>	FOILE	012		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	-		
	CO4 2 1	-	-		
	CO5 2 1	-	2		
COs Vs PS	SOs MAPPING:				
	COs PSO1 PSO2 PSO3				
	<u>CO1</u> 3				
	CO2 3				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	CO4 3				
	COS 3				
COURSE C	ONTENTS.				
COURSEC					
MODULEI	INTRODUCTION		1	9 Hou	rs
Characteristi	cs of sunlight: Semiconductors and P-N junctions: Behavior of solar cell	s —			
Cell properti	es PV cell interconnection	5			
MODULEI	I STAND ALONE PV SYSTEM			9 Hou	rs
Solar modul	es: Storage systems: Power conditioning and regulation. Protection	Stand-al	lone F	V svs	tems
design: Sizin	ig of solar panels.	stand a		, byb	
MODULEI	II GRID CONNECTED PV SYSTEMS			9 Hon	rs
PV systems	in buildings: Design issues for central power stations- Safety economic a	aspect e	efficie	ncv an	- d
Performance	: International PV programs.			iie j un	-
MODULE I	V ENERGY STORAGE SYSTEMS			9 Hou	rs

Impact of intermittent generation; Battery energy storage; Solar thermal energy storage; Pumped hydroelectric energy storage.

MODULE V SOLAR ENERGY APPLICATIONS	9 Hours
Solar energy applications - Water pumping, battery chargers, solar car, direct-drive applications,	space and
telecommunications.	

TOTAL: 45 HOURS

REFERENCES:

Eduardo Lorenzo G. Araujo, "Solar electricity engineering of photovoltaic systems", Progensa, 1994.
Stuart R.Wenham, Martin A.Green, Muriel E. Watt and Richard Corkish, "Applied Photovoltaics",

2007, Earth scan, UK.

3. Frank S. Barnes & Jonah G. Levine, "Large Energy storage Systems Handbook", CRC Press, 2011.

4.McNeils, Frenkel and Desai, "Solar & Wind energy Technologies", Wiley Eastern, 1990

5.S.P. Sukhatme, "Solar Energy", Tata McGraw Hill, 1987.

2402PE10	5	POV	VER E	LECT	ΓΙΟΝ	L		Т	Р	С						
												0		0	4	2
DDEDEUI	SITE	•														
FREREQU	SILE	•														
		1. A	Analog	Electr	onics I	Laborat	tory									
		2. P	Power E	Electro	nics ar	nd Driv	ves Lat	orator	у							
									<u> </u>							
COURSE O	BJEC	TIVE	S:													
		1. T	To knov	v how	to syn	thesize	e a pow	ver con	verter	using	power	electro	nics	equ	ipmer	it.
		$\frac{2.1}{2}$	o perto	$\frac{1}{1}$	e expe	riment	s on va	rious 1	nverte	rs						
		3. 1	o simu	late di	ifferen	t conve	erter ar	id inve	erter to	pologi	es					
COURSE O	UTCO	OMES	•													
coensi o	0100	511110	•													
On	the suc	ccessfu	ıl comp	letion	of the	course	, stude	nts wil	ll be at	ole to						
CO	1: A	nalyze	e and de	esign s	singe p	hase h	alf con	trolled	conve	rter w	ith vari	ous loa	<u>ad.</u>			
	2: A 3. C	analyze	e and de	esign s	singe p	nase tu	III con	rolled	conve	rter wi	th vari	ous loa	a			
CO.	4: A	nalvze	the pe	rform	ance of	f cvclo	conver	ter	igie pii							
CO	5: S	imulat	e the p	erform	ance o	of powe	er elect	ronic c	circuits	with v	various	load				
COs Vs PC)s MA	PPIN	G:													
	COs	DO1	DOJ	DO3	DO1	DO2	DO6	DO7	DUS	D O0	D ()10	DO11		2		
	CO1	3	3	3	2	-	-	-	-	2	-	2	-			
	CO2	3	3	3	2	-	-	-	_	2	_	2	-			
	CO3	3	3	3	2	-	-	-	-	2	-	2	-			
	CO4	3	3	3	2	-	-	-	-	2	-	2	-			
	CO5	3	3	3	2	3	-	-	-	2	-	2	-			
COS VS PS	OS M	APPI	NG:													
					C	Os PS	O1 PS	O2 PS	03							
					C	01 3	3 1	-								
					С	O2 3	3 1	-								
					С	O3 3	3 1	-								
					С	O4 3	3 1	-								
					C	O5 3	3 1	3	3							
LIST OF EX	XPER	IMEN	TS·													
	XI LIN		10.													
1. Study	the ch	aracter	ristics of	of sing	le phas	se half	contro	lled co	nverte	r with	RL & 1	RLE lo	ad.			
2. Study	the ch	aracter	ristics S	Study t	he cha	racteri	stics S	ingle p	hase f	ull con	trolled	conver	rter v	with	RL &	Z
RLE load.																
3. Perfor	mance	chara	cteristi	cs of s	ingle p	hase se	eries in	verter.	•							
4. Perfor	mance	chara	cteristi	$\frac{cs \text{ of } s}{cs}$	ingle p	hase p	arallel	inverte	er.							
5. Study	the pe	rtorma	ince of	single	phase	cycloc	convert	er.		4						
6. Simula	ation o	of three	phase	nalt c	ontroll	ed con	verter	with R	$\frac{1}{DI} \frac{1}{DI}$	ld.						
7. Simula 8 Simula	ation o	of three	e pliase	invert	er with		I contra	i witti oller	KLE I	Jau.						
9. Simula	ation o	of resor	ant nu	lse co	nmuta	tion ci	rcuit	51101								
2. Sinut		10501														

10. Simulation of step up and step down DC choppers.
--

TOTAL: 60 HOURS

REFERENCES:

- 1. Ned Mohan, T.M. Undeland and W.P Robbin, "Power Electronics: Converters, Application and Design" JohnWiley & Sons. Wiley India edition, 2006.
- 2. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, New Delhi, 1995.

2402PE10	6		EI	ECTI	RICAI	DRI	VES L	ABOF	RATO	RY		L	Τ	P	С
												0	0	4	2
DDEDEVIN	СТТЕ	۰.												1 1	
I NENEQU	IST I E	4•													
		1 T	C mar	hines	and Tr	ansfor	mer I a	horato	rv						
		2 9	Synchro	none	ини 11 & Делл	nchron		chines	ay Mahor	ratory					
		2. N	ynem(mous (~ 110y1		Jus III	iennies	, Lau	aioi y					
COURSEO	BIE	TIVE	S:												
	10120														
		1. T	To stud	v the c	onvent	tionals	and sol	id-state	e drive	s					
		2. 7	To stud	v the d	ifferen	t meth	ods of	startin	g D.C	motor	s and in	ductio	n moto	rs.	
		3 7	To unde	erstand	the ba	sic cor	ncents	of diff	erent t	vnes o	f electri	ical ma	chines	and th	eir
		5. r	erform	ance.		.510 001	licepts	or ann						und in	on
	I	r													
COURSE O	UTC	<u>OME</u> S	:												
On	the su	ccessfu	il comp	letion	of the	course	, stude	nts wil	ll be at	ole to					
	1: []	Jemons	strate tl	ne spec	ed cont	rol of	$\frac{DC}{AC}$ mc	otors.							
	2: 1 2. T	Demons	strate the	ne spee		rol of .	AC mo	otors.							
	3. 1 1 : 0	Comput	te the r	onlati	$\frac{0rS}{0noft}$	hree_n	hase S	vnchro	nous	Teneral	tor				
	5: 4	Analvze	e single	phase	Multi	Level	Inverte	r base	d indu	ction n	notor dr	ive			
	-• 1 1	-1141 y 2N	Singi	price	1,10111	20,01		- 0u50	amau						
COs Vs POs MAPPING:															
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	C01	3	3	3	2	-	-	-	-	2	-	2	-		
	CO2	3	3	3	2	-	-	-	-	2	-	2	-		
	<u>CO3</u>	3	3	3	2	-	-	-	-	2	-	2	-		
	<u>CO4</u>	3	5	3	2	-	-	-	-	2	-	2	-		
	005	5	3	3	2	-	-	-	-	2	-	Z	-		
COs Vs PS	Os M		NG:												
	0.0 141														
					C	Os PS	O1 PS	O2PS	03						
					C	01 3	- 1	-							
					C	O2 3	-								
					С	O3 3	-	-							
					C	O4 3	-								
					С	O5 3	-	-							
	VDDD	TR / T	TC												
LISI OF E	APER	INEN	15:												
1 0	daar	trol of	Comme	tor f- 1	DC	otor									
1. Spee	d con	trol of	Choppe	ar fod I	$\frac{DCm}{DCm}$	tor									
2. Spec	ontro	1 of thr	ee_nhaa	e indu	$\frac{100}{\text{ction r}}$	notor									
2. V/IC	'n con	troller 1	hased e	need c	ontrol	of Ster	ner m	otor							
5 Snee	ed con	trol of	BLDC	motor	Junior	or step	per m								
6 DSP	based	speed	contro	l of SR	M mo	tor									
7. Desi	gn of	UPS	201110	10101		.01.									
8. Volt	age Ro	egulatio	on of th	ree-nh	ase Sv	nchror	10us G	enerato	or.						
9. Desi	gn of	switch	ed mod	le pow	er subr	olies									
	0			1	· r r	-									

10. Single phase Multi Level Inverter based induction motor drive.

TOTAL: 30 HOURS

REFERENCES:

1. Ned Mohan, T.M. Undeland and W.P Robbin, "Power Electronics: Converters, Application and Design" John Wiley & Sons. Wiley India edition, 2006.

2. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, New Delhi, 1995.