E.G.S. PILLAY ENGINEERING COLLEGE

(Autonomous)

NAGAPATTINAM - 611 002.

(Affiliated to Anna University, Chennai | Accredited by NAAC with 'A++' Grade Accredited by NBA | Approved by AICTE, New Delhi)

M.E MANUFACTURING ENGINEERING

First Year – Second Semester

GT	COURCE			PERI	ODS PE	RWEEK	TOTAL CONTAC		Μ	lax. M	lark
SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	T PERIOD S	CREDITS	CA	ES	Total
THE	ORY COURS	ES									
1.	2402MF201	Industrial Automation and Mechatronics	PCC	3	0	0	3	3	40	60	100
2.		Robot Design and Programming	PCC	3	0	0	3	3	40	60	100
3.	2402MF203	Materials Technology	PCC	3	0	0	3	3	40	60	100
4.		Production And Operations Management (Program Elective – III)	PEC	3	0	0	3	3	40	60	100
5.		Processing Of Polymers And Composites (Program Elective – III)	PEC	3	0	0	3	3	40	60	100
6.		Audit Course – II	AC	2	0	0	2	0			
LAB	ORATORY C	COURSES									
7.	2402MF204	Industrial Automation and Mechatronics Laboratory	PCC	0	0	4	4	2	60	40	100
8.	2402MF205	Modeling and Simulation Laboratory	PCC	0	0	4	4	2	60	40	100
9.	2404MF206	Mini Project with Seminar	EEC	0	0	4	4	2	60	40	100
			TOTAL	17	0	12	29	21	380	420	800

402MF201	INDUSTRIAL AUTOMATION AND MECHATRONICS	L	T	P	C
		3	0	0	3
REREQUIS	SITE:				
	1. Mechatronics				
OURSE OF	BJECTIVES:				
	1. This syllabus is formed to create knowledge in Industrial Automati				
	systems and impart the source of concepts and techniques, which applied in practical situation. It gives the frame work of know				
	engineers and technicians to develop an interdisciplinary understa				
	approach to engineering.	inaine	, und	meg	iuu
OURSE OU	JTCOMES:				
Student	s will be able to				
CO1:	Understand and grasp the significance of modern machining process and its	s appl	icatio	ns.	
CO2:	Identify the selection of machining process and its parameters.				
CO3:	Express and appreciate the cutting edge technologies and apply the sar	ne for	r rese	earch	
CO4:	purposes. Measure the stages involved in fabrication of micro devices.				
<u> </u>	Create new devices involved in micro fabrication and recent technology.				
	create new devices involved in incro rubrication and recent technology.				
Os Vs POs	MAPPING:				
	COs PO1 PO2 PO3 PO4 PO5 PO6				
	COS FOI FO2 FO3 FO4 FO3 FO6 CO1 - - - 2 2 -				
	CO2 2 1				
	CO3 1 2 - 3				
	CO4 2 - - 1 2 CO5 - - - 3 1				
	MAPPING:				
08 181 50					
	COs PSO1 PSO2 PSO3				
	CO1				
	<u>CO2</u>				
	CO3 CO4				
	CO4				
COURSE CO	ONTENTS:				
				0 11 -	
AODULE I	INDUSTRIAL AUTOMATION nation in industries, Benefits of automation –Introduction to fluid power	• • • • •		8 Ho	
	cation of fluid power system -Types of fluid power systems -Introduction			-	
Swer, Applie	auton of fluid power system - Types of fluid power systems -multiduction	1 10 a	atOIII	anon	100

Low cost automation, PLC, DCS, SCADA -Automation strategy evolution.

MODULE II INTRODUCTION TO MECHATRONICS

Introduction to Mechatronics-systems – Mechatronics approach to modern engineering and design – Need of Mechatronics – Emerging areas of Mechatronics – Classification of Mechatronics – Mechatronics elements.

MODULE III SENSORS AND TRANSDUCERS

Introduction – Performance Terminology – Potentiometers – Strain gauges – LVDT – Eddy current sensor – Hall effect sensor – Capacitance sensors – Digital transducers – Temperature sensors – Optical sensors – Piezo electric sensor-ultrasonic sensors – Proximity sensors – Signal processing techniques.

MODULE IV ACTUATORS

Switching Devices, Classification of actuators – Electrical actuators – Solid state relays, solenoids, D.C. motors, Servo motors, Stepper motors – Interfacing with microcontroller through H-bridge Circuits – Piezo electric actuators.

MODULE V MECHATRONIC SYSTEMS

Design process-stages of design process – Traditional and Mechatronics design concepts – Case studies – Engine management system, Automatic camera, Automatic washing machine, Pick and place robots.

TOTAL: 45 HOURS

REFERENCES:

2. R.K.Rajput. A Text Book of Mechatronics, Chand &Co,2007

3. W.Bolton, Mechatronics, Pearson Education Limited, 2004

4. M.A. Mazidi & J.G. Mazidi, 8051 Microcontroller and embedded systems, 2002

5. Devadasshetty, Richard A. Kolk, -Mechatronics System Design, PWS Publishing Company, 2001.

12 Hours

8 Hours

9 Hours

	2	ROBOT	DESIG	N AND	PROG	GRAN	AMIN	G		L	Т	Р	С
										3	0	0	3
REREQU	ISITE:											•	
	1. Robo	tics											
COURSE O	DBJECTIVES	:											
					0 1								
	-	in knowled	-			s sinc	e origi	in base	ed on th	e appli	cation		
		idy the kin											
		idy the dy						~ 4 ~ ~ 1~				1	
		pose the st riosity ove					umm	gitech	inques	II TODO	and I	Iumm	late
		miliarize th					olved i	n the i	obot b	esed the	annli	cation	
	<i>J</i> . 101a				actuator	SIIIV		II the I	00000	iscu un	, appn	cation	•
COURSE O	DUTCOMES:												
	Students will I												
	Apply their k		on calcu	ulation	of end e	effect	or coo	rdinat	e positi	on and	angle	based	on
	the application		• .1	1	1 • 1	1				6			
	Calculate forc												
	the trajectory traditional pro								bace.Co	J4 : UI	dersta	na the	
	Identify appro			n and w		ALIE							
• • • • • • •		nriata con	ore and	actuat	ore hace	dont	tha ant	licatio	n				
										on and	angle	hased	on
CO4:	Apply their k	nowledge								on and	angle	based	on
CO4:	Apply their kit	nowledge n.	on calcu	ulation	of end o	effect	or coo	rdinat	e positi		Ū		
CO4: CO5:	Apply their kn the application Calculate force	nowledge n. e involved	on calcu in the 1	ulation	of end of	effecto ler op	or coo	rdinat	e positi grippin	g force). CO3	G:Cor	nput
CO4: CO5:	Apply their kit	nowledge n. e involved of robot ba	in the r	ulation obot with both join	of end of hile und int spac	effecto ler op e and	or coo eration Cartes	rdinat n (i.e. j sian sj	e positi grippin	g force). CO3	G:Cor	nput
CO4: CO5:	Apply their kn the application Calculate forc the trajectory traditional pro	nowledge n. e involved of robot ba	in the r	ulation obot with both join	of end of hile und int spac	effecto ler op e and	or coo eration Cartes	rdinat n (i.e. j sian sj	e positi grippin	g force). CO3	G:Cor	nput
CO4: CO5:	Apply their kn the application Calculate forc the trajectory	nowledge n. e involved of robot ba	in the r	ulation obot with both join	of end of hile und int spac	effecto ler op e and	or coo eration Cartes	rdinat n (i.e. j sian sj	e positi grippin	g force). CO3	G:Cor	nput
CO4: CO5:	Apply their kn the application Calculate forc the trajectory traditional pro	nowledge n. e involved of robot ba ogramming	in the n ised on in robo	ulation obot w both joint and N	of end of hile unc int spac Iodern	effecto ler op e and AI Te	or coo eration Cartes chniqu	rdinat n (i.e. j sian sj ies.	e positi grippin pace.Co	g force). CO3	G:Cor	nput
CO4: CO5:	Apply their kn the application Calculate forc the trajectory traditional pro	nowledge n. e involved of robot ba ogramming	in the raised on in robo	ulation obot wi both joint and N	of end of hile und int spac Iodern A PO3	effecto ler op e and AI Te PO4	eration Cartes chniqu PO5	rdinat n (i.e. j sian sj nes. PO6	e positi grippin pace.Co	g force). CO3	G:Cor	nput
CO4: CO5:	Apply their kn the application Calculate forc the trajectory traditional pro	nowledge n. e involved of robot ba ogramming CO CO	in the raised on in robo	ulation obot w both joint and N	of end of hile und int spac Iodern J PO3	effecte ler op e and AI Te PO4 -	eration Cartes chniqu PO5 -	rdinat n (i.e. j sian sj ies.	e positi grippin pace.Co	g force). CO3	G:Cor	nput
CO4: CO5:	Apply their kn the application Calculate forc the trajectory traditional pro	nowledge n. e involved of robot ba ogramming CO CO CO	in the rates on calculation in the rates on in robotic sectors PO1 1 1 2 -	ulation obot w both jo ot and N PO2	of end of hile unc int spac Iodern 2 PO3 1 2	effecte ler op e and AI Te PO4 - 3	eration Cartes chniqu PO5	rdinat n (i.e. j sian sj nes. PO6	e positi grippin pace.Co	g force). CO3	G:Cor	nput
CO4: CO5:	Apply their kn the application Calculate forc the trajectory traditional pro	nowledge n. e involved of robot ba ogramming CO CO CO CO	in the insed on in robo	ulation obot w both jo ot and N PO2	of end of hile und int spac Iodern A PO3	effecto ler op e and AI Te PO4 - 3 2	eration Cartes chniqu PO5 -	rdinat n (i.e. j sian sj nes. PO6	e positi grippin pace.Co	g force). CO3	G:Cor	nput
CO4: CO5:	Apply their kn the application Calculate forc the trajectory traditional pro	nowledge n. e involved of robot ba ogramming CO CO CO	in the raised on in robo s PO1 1 1 2 - 3 - 4 1	PO2 - - -	of end of hile unc int spac Iodern 2 PO3 1 2	effecte ler op e and AI Te PO4 - 3	eration Cartes chniqu PO5 -	rdinat n (i.e. j sian sj nes. PO6	e positi grippin pace.Co	g force). CO3	G:Cor	nput
CO4: CO5:	Apply their kn the application Calculate forc the trajectory traditional pro	nowledge n. e involved of robot ba ogramming CO CO CO CO	in the raised on in robo s PO1 1 1 2 - 3 - 4 1	PO2 - - -	of end of hile und int spac Iodern I PO3 2 3 -	effecto ler op e and AI Te PO4 - 3 2	eration Cartes chniqu PO5 -	rdinat n (i.e. j sian sj les. PO6 - - - - - - - -	e positi grippin pace.Co	g force). CO3	G:Cor	nput
CO4: CO5: COs Vs POs	Apply their kn the application Calculate forc the trajectory traditional pro	nowledge n. e involved of robot ba ogramming CO CO CO CO CO	in the raised on in robo s PO1 1 1 2 - 3 - 4 1	PO2 - - -	of end of hile und int spac Iodern I PO3 2 3 -	effecto ler op e and AI Te PO4 - 3 2	eration Cartes chniqu PO5 -	rdinat n (i.e. j sian sj les. PO6 - - - - - - - -	e positi grippin pace.Co	g force). CO3	G:Cor	nput
CO4: CO5: COs Vs POs	Apply their kn the application Calculate forc the trajectory traditional pro	nowledge n. e involved of robot ba ogramming CO CO CO CO CO	in the raised on in robo s PO1 1 1 2 - 3 - 4 1	PO2 - - -	of end of hile und int spac Iodern I PO3 2 3 -	effecto ler op e and AI Te PO4 - 3 2	eration Cartes chniqu PO5 -	rdinat n (i.e. j sian sj les. PO6 - - - - - - - -	e positi grippin pace.Co	g force). CO3	G:Cor	nput
CO4: CO5: COs Vs POs	Apply their kn the application Calculate forc the trajectory traditional pro	nowledge n. e involved of robot ba ogramming CO CO CO CO CO	on calcu in the r ased on in robo s PO1 1 1 2 - 3 - 4 1 5 1	PO2 - - - - - - - - - - - - -	of end of hile und int spac Iodern I PO3 2 3 -	effecto ler op e and AI Te PO4 - 3 2 2 -	PO5 - 3 - - -	rdinat n (i.e. j sian sj les. PO6 - - - - - - - -	e positi grippin pace.Co	g force). CO3	G:Cor	nput
CO4: CO5: COs Vs POs	Apply their kn the application Calculate forc the trajectory traditional pro	nowledge n. e involved of robot ba ogramming CO CO CO CO CO	in the rate on in robo	PO2 - - - - - - - - - - - - -	of end of hile und int space Iodern A PO3 1 2 3 - 2	effecto ler op e and AI Te PO4 - 3 2 2 -	PO5 - 3 - - -	rdinat n (i.e. j sian sj les. PO6 - - - - - - - -	e positi grippin pace.Co	g force). CO3	G:Cor	nput
CO4: CO5: COs Vs POs	Apply their kn the application Calculate forc the trajectory traditional pro	nowledge n. e involved of robot ba ogramming CO CO CO CO CO	in the in the in the in the in the in the in robot set on the in r	PO2 - - - - - - - - - - - - -	of end of hile und int space Iodern A PO3 1 2 3 - 2	effecto ler op e and AI Te PO4 - 3 2 2 -	PO5 - 3 - - - - - - - - - - - - -	rdinat n (i.e. j sian sj les. PO6 - - - - - - - -	e positi grippin pace.Co	g force). CO3	G:Cor	nput
CO4: CO5: COs Vs POs	Apply their kn the application Calculate forc the trajectory traditional pro	nowledge n. e involved of robot ba ogramming CO CO CO CO CO	on calcu in the r ased on in robo s PO1 1 1 2 - 3 - 4 1 5 1 CO CO CO CO	ulation robot w both joint both joint of and W PO2 - <	of end of hile und int space Iodern A PO3 1 2 3 - 2	effecto ler op e and AI Te PO4 - 3 2 2 - 2 - - 02 P -	PO5 - 3 - - SO3	rdinat n (i.e. j sian sj les. PO6 - - - - - - - -	e positi grippin pace.Co	g force). CO3	G:Cor	nput
CO4: CO5: COs Vs POs	Apply their kn the application Calculate forc the trajectory traditional pro	nowledge n. e involved of robot ba ogramming CO CO CO CO CO	on calcu in the r ased on in robo s PO1 1 1 2 - 3 - 4 1 5 1 - 4 1 5 1 - 4 1 5 1 - 4 0 5 1 - 4 0 5 1 - 5 1 - 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 7	ulation robot w both joint both joint of and N PO2 - <	of end of hile und int space Iodern A PO3 1 2 3 - 2	effecto ler op e and AI Te PO4 - 3 2 2 - - - - - - - - - - - - - - - -	PO5 - 3 - - SO3	rdinat n (i.e. j sian sj les. PO6 - - - - - - - -	e positi grippin pace.Co	g force). CO3	G:Cor	nput
CO4: CO5: COs Vs POs	Apply their kn the application Calculate forc the trajectory traditional pro	nowledge n. e involved of robot ba ogramming CO CO CO CO CO	on calcu in the r ased on in robo s PO1 1 1 2 - 3 - 4 1 5 1 CO CO CO CO	ulation robot w both joint both joint of and N PO2 - <	of end of hile und int space Iodern A PO3 1 2 3 - 2	effecto ler op e and AI Te PO4 - 3 2 2 - - - - - - - - - - - - - - - -	PO5 - 3 - - - - - - - - - - - - -	rdinat n (i.e. j sian sj les. PO6 - - - - - - - -	e positi grippin pace.Co	g force). CO3	G:Cor	nput
CO4: CO5: COs Vs POs	Apply their kn the application Calculate forc the trajectory traditional pro	nowledge n. e involved of robot ba ogramming CO CO CO CO CO	on calcu in the r ased on in robo s PO1 1 1 2 - 3 - 4 1 5 1 - 4 1 5 1 - 4 1 5 1 - 4 0 5 1 - 4 0 5 1 - 5 1 - 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 7	ulation robot w both joint both joint of and N PO2 - <	of end of hile und int spac Iodern 7 2 3 - 2 3 - 2 - 2 - - - - - - - - - - -	PO4 - 3 2 - - - - - - - - - - - - - - - - -	PO5 - 3 - - - - - - - - - - - - -	rdinat n (i.e. j sian sj les. PO6 - - - - - - - -	e positi grippin pace.Co	g force). CO3	G:Cor	nput

MODULE I INTRODUCTION 9 Hours Definition, Need Application, Types of robots – Classifications – Configuration, work volume, control loops, controls and intelligence, specifications of robot, degrees of freedoms, end effectors – types, selection applications. MODULE II ROBOT KINEMATICS 9 Hours Introduction – Matrix representation Homogeneous transformation, forward and inverse – Kinematic equations, Denvit – Hartenbers representations – Inverse Kinematic relations. Fundamental problems with D-H representation, differential motion and velocity of frames – Jacobian, Differential Charges between frames: MODULE III ROBOT DYNAMICS AND TRAJECTORY PLANNING 9 Hours Lagrangeon mechanics, dynamic equations for sing, double and multiple DOF robots – static force analysis of robots, Trajectory planning – joint space, Cartesian space description and trajectory planning – third order, fifth order - Polynomial trajectory planning 9 Hours MODULE IV ROBOT PROGRAMMING AND AI TECHNIQUES Types of Programming – Teach Pendant programming – Basic concepts in AI techniques – Conceptof knowledge representations – Expert system and its components. 9 Hours MODULE V ROBOT SENSORS AND ACTUATORS Design of Robots – characteristics of actuating systems, comparison, microprocessors control of electric motors, magnetostrictive actuators, shape memory type metals, sensors, position, velocity, force, temperature, pressure sensors – Contact and non contact sensors, infrared sensors, RCC, vision sensors. **TOTAL: 45 HOURS REFERENCES:** 1. Fu K S, Gonzalez, Lee C S G, Robotics: Control, Sensing, Vision and Intelligence, McGraw-Hill Book Company, 1987. Gordon Mair, 'Industrial Robotics', Prentice Hall U.K, 1998. 2. 3. Groover.M.P. Industrial Robotics, McGraw – Hill International edition, 2012. John J. Craig, Introduction to Robotics: Mechanics and Control, Pearson, 3rd edition, 2004. 4. Saeed.B.Niku, 'Introduction to Robotics, Analysis, system, Applications', Pearson educations, 2010. 5. Wesley E Snyder R, 'Industrial Robots, Computer Interfacing and Control', Prentice HallInternational 6. Edition, 2013.

	MATERIALS TECHNOLOGY	L	T	P	(
		3	0	0	3
REREQUI	SITE:				
	1. Materials Science				
OURSE O	BJECTIVES:				
	1. To understand the elastic and plastic behaviour of materials.				
	2. To impart knowledge on fracture analysis.				
	3. To familiarize on modern metallic materials.				
	4. To review on polymeric and ceramics materials and their applicatio	ns.			
	5. To enable student to select material for specific applications.				
OURSE O	UTCOMES:				
CO1.	Students will be able to				
	Get knowledge of mechanism of failure of materials and methods.		ta		
	Fully appreciate modification of material property to suit the specific requir Express and appreciate the existing materials and development of upcoming			riala	C
	: Have the knowledge to select the various non-metallic materials to suit red				
	CO5 : Identify and select suitable material for relevant application.	Junco	a app	ncano	115
	Get knowledge of mechanism of failure of materials and methods.				
	Fully appreciate modification of material property to suit the specific requir	emen	te		
COs Vs PC	os MAPPING:				
	COs PO1 PO2 PO3 PO4 PO5 PO6				
	CO1 1 3 - 1				
	CO2 1 2				
	CO3 3 - 2 -				
	CO4 2 -				
	CO5 1 3 - 1				
COs Vs PS	Os MAPPING:				
COs Vs PS	Os MAPPING: COs PSO1 PSO2 PSO3				
COs Vs PS	Os MAPPING: COs PSO1 PSO2 PSO3 CO1				
COs Vs PS	Os MAPPING: COs PSO1 PSO2 PSO3 CO1 CO2				
COs Vs PS	Os MAPPING: COs PSO1 PSO2 PSO3 CO1 CO2 CO3				
COs Vs PS	Os MAPPING: COs PSO1 PSO2 PSO3 CO1 CO2 CO3 CO4				
COs Vs PS	Os MAPPING: COs PSO1 PSO2 PSO3 CO1 CO2 CO3				
	Os MAPPING: COs PSO1 PSO2 PSO3 CO1 CO2 CO3 CO4				
OURSE C	Os MAPPING: COs PSO1PSO2PSO3 CO1 CO2 CO3 CO4 CO4 CO5			10 4/2	
COURSE C 10DULE I	Os MAPPING: COs PSO1 PSO2 PSO3 CO1 CO2 CO3 CO3 CO4 CO5 CO5 ELASTIC AND PLASTIC BEHAVIOR			10 Hc	bur
COURSE C IODULE I lasticity in	Os MAPPING: COs PSO1 PSO2 PSO3 CO1 CO2 CO3 CO3 CO4 CO5 CO5 CO5 ELASTIC AND PLASTIC BEHAVIOR metals and polymers Anelastic and visco-elastic behaviour – Mechan		of p	lastic)ur
COURSE C IODULE I lasticity in eformation	Os MAPPING: COs PSO1 PSO2 PSO3 CO1 CO2 CO3 CO3 CO4 CO5 CO5 ELASTIC AND PLASTIC BEHAVIOR	vork	of p harde	lastic ning,)ur

dispersion and texture strengthening. Effect of temperature, strain and strain rate on plastic behaviour – Super plasticity – Deformation of polymeric, ceramic and non-crystalline materials.

MODULE II FRACTURE BEHAVIOUR

10 Hours

7 Hours

Griffith's theory, stress intensity factor, J-Integral and fracture toughness – Toughening mechanisms - Ductile, brittle transition in steel - High temperature fracture, creep - Larson Miller parameter -Deformation and fracture mechanism maps – Fatigue, low and high cycle fatigue test, crack initiation and propagation mechanisms and Paris law. Effect of surface and metallurgical parameters on fatigue – Fracture in ceramics and polymers – Failure analysis, sources of failure, procedure of failure analysis.

MODULE III MODERN METALLIC MATERIALS

8 Hours

Dual phase steels, High strength low alloy (HSLA) steel, Transformation induced plasticity (TRIP) Steel, Maraging steel, Nitrogen steel, Super alloys –Intermetallics, Ni and Ti aluminides – smart materials, shape memory alloys – Metallic glass nano crystalline materials and composite materials.

MODULE IV NON METALLIC MATERIALS

Polymeric materials – Formation of polymer structure – Production techniques of fibres, foams, adhesives and coating – structure, properties and applications of Commodity and engineering polymers - Advanced structural ceramics, WC, TIC, TaC, Al2O3, SiC, Si3N4 CBN and diamond - properties, applications as abrasives and cutting tool- Properties and applications of CNT – Graphene based Material **10 Hours**

MODULE V **SELECTION OF MATERIALS**

Selection for mechanical properties, strength, toughness, fatigue and creep – Selection for Atmospheric, water, Soil and chemical, corrosion Selection for adhesive and abrasive wear resistance – Relationship between materials selection and processing – Case studies in materials selection with relevance to aero, auto, marine, machinery, chemical and nuclear applications.

TOTAL: 45 HOURS

REFERENCES:

- Ashby M.F., Material Selection in Mechanical Design, 5thEdition, Butter Worth 2017. 1.
- 2. ASM Hand book, Vol.11, Failure Analysis and Prevention, 10thEdition, ASM, 2002.
- Charles, J.A., Crane, F.A.A. and Fumess, J.A.G., Selection and use of engineering materials, 3rd edition, Butterworth-Heiremann, 2001.
- Thomas H. Courtney, Mechanical Behaviour of Materials, 2ndedition, McGraw Hill, 2000. 4.
- Marc Andre, Meyers and Krishan Kumar Chawla, Mechanical Behaviour of Materials, 2ndEdition, 5. Cambridge University Press, 2009.
- George E.Dieter, Mechanical Metallurgy, 3rd Edition, McGraw Hill, 2014. 6.

2403MF012	PRO	ODUCTION A	AND O	PER/	ATIO	NS MA	ANAG	EMEN	Τ	L	Т	P	C
										3	0	0	3
PREREQUIS	SITE:												
		nufacturing Te		gy									
	2. Pro	duction Planni	ng										
COURSE OF	BJECTIVI	ES:											
	1. To	familiarize wit	h vario	us for	ecastir	ng moo	lels.						
		impress upon t											
		design and dev	<u> </u>					0					
		familiarize wit											
		train on plant of			echniq	ues su	ch as p	lant lo	cation, p	olant lay	out, 1	nater	ials
	nan	dling and wor	k study	•									
COURSE OU	JTCOME	S:											
		will be able to											
<u>CO1:</u>	elect an ap	opropriate fore	casting	meth	od for	a give	n indus	try.					
		mal solutions f						ry.					
	Design a su ndustry.	itable inventor	y syste	m for	any pa	rticula	ır						
		ject manageme	nt tech	nique	s to mi	nimize	e the ni	niect t	me				
		it layout and m								the con	cepts	of	
		for work design			0,						1		
COs Vs POs	MAPPINO	G:											
		COs	PO1	PO2	PO3	PO4	PO5	PO6					
		C01	1	-	-	-	-	2					
		CO2		-	-	3	-	_					
		CO3	-	-	3	2	-	-					
		CO4	2	-	-	3	-	-					
		CO5	-	-	-	-	2	1					
COs Vs PSO	s MAPPIN	NG:											
				DC			000						
			COs		01 PS	5O2 P	803						
			CO1			-	-						
			CO2			-	-						
			CO3			-	-						
			COS			_	_						
				·	I	<u> </u>							
TOURSE CO	DNTENTS	:											

MODULE I FORECASTING

Forecasts-Types-Purpose- opinion and judgmental method-Time series methods – moving average - weighted moving average – method of least squares – Exponential smoothing method- Regression and correlation methods – simple and multiple regression – Linear and Nonlinear regression.

MODULE II SCHEDULING AND SEQUENCING

Scheduling – Single Criterion rules –Sequencing –n job 2 machine problem – Johnson's algorithm –3 machine problem – M machine problem – Graphical method for 2 jobs M machine problems – Heuristic methods.

MODULE III INVENTORY

Inventory – purpose of inventory – Basic EOQ Model –Quantity discount model – Reorder level – Fixed order quantity inventory system – Periodic review system – ABC analysis – Materials requirement planning – EOQ models under constraints – Purchasing management – Stores management – Just In Time inventory system – Vendor evaluation - Inventory pricing –Supply chain Management – Aggregate planning.

MODULE IV PROJECT MANAGEMENT

Project network analysis – Activities – Events- critical path method – Method based on time estimates Programme Evaluation Review Technique –Optimistic, pessimistic time, most likely time - Probability of completion of projects – Time crashing of Projects –Optimum duration and cost.

MODULE V PLANT ENGINEERING AND WORK STUDY

Plant location – Factors affecting plant location – Break even analysis- Factors weighted rating method – Plant layout- Types- Selection – Plant layout Techniques – Travel chart method – Line balancing method– Work study – method study – Principles of Motion economy – steps in methods study - Charts – Micromotion study-memo motion study – multiple activity charts- therbligs – work measurement – stop watch time study – Production studies – PMTS – Work sampling – Materials handling – Principles – Selection.

TOTAL: 45 HOURS

REFERENCES:

- 1. Chary S.N Production and Operations Management, Tata McGraw Hill, 3rd Edition 2012.
- 2. Kanishka Bedi, Production and Operations Management, Oxford University Press, 3rdEdition 2016.

3. NormaGaither and Gregory Frazier, Operations Management, Cengage

- 4. Pannerselvam R, Production and Operations Management, Prentice Hall of India, 2ndEdition, 2008.
- 5. Richard B. Chase, Ravi Shankar, F. Robert Jacobs, Nicholas J. Aquilano, Operations and Supply Management, McGraw Hill, 14th edition, 2017.
- 6. William J Stevenson, Operations Management, McGraw Hill, 11th edition, 2012.

9 Hours

9 Hours

9 Hours

2403MF013		PROCES	SING OF	POLYM	ERS A	ND C	OMPO	DSITE	S	L	Т	P	C
										3	0	0	3
PREREQU	ISITE:												
	1.	Materials	science										
	1.	Waterials	science										
COURSE O	BJEC	TIVES:											
	1.	To introdu	ce the vari	ous proce	ssing r	nethod	s of po	lymer	5.				
	2.	To enlight		<u> </u>	<u> </u>		<u> </u>			natrix n	nateria	als.	
	3.	To analyse											
		application		1 2			•	Ĩ	e				
	4.	To expose	the studen	ts to the v	various	metal	matrix	comp	osite pro	cessing	g meth	ods.	
	5.	To analyse	the variou	is process	ing tec	hnique	es of va	arious	ceramic	matrix	comp	osites	
COURSE O	OUTCO	MES:											
	. 1 .	'11 1 1 1											
		will be able		· · · · ·		1	1	_					
CO1: CO2:	Get kno	owledge on owledge abo	various pr	ocessing i	netnoc	is of po	blymer	S. stamial					
		stand the var											
		se the variou											
		se the variou											
005.	Anarys		is processi	ig teenine	lucs of	ceram			iposites.				
COs Vs POs	s MAPI	PING:											
					DO1	DO 4	DO5	DOC	l				
			COs PC CO1 1	D1 PO2	P03		P05						
			CO1 1 CO2 -		1	3	-	1					
			CO2 - CO3 -	-	3	-	2	-					
			CO4 1	_	-	-	2	-					
			CO5 -	-	1	3	-	1					
			·	•	•	•			•				
COs Vs PSC	Ds MAI	PPING:											

COs	PSO1	PSO2	PSO3
CO1	I	-	-
CO2	-	-	-
CO3	-	-	-
CO4	-	-	-
CO5	-	-	-

COURSE CONTENTS:

MODULE I PROCESSING OF POLYMERS

Chemistry and Classification of Polymers – Properties of Thermo plastics – Properties of Thermosetting Plastics - Extrusion – Injection Moulding – Blow Moulding – Compression and Transfer Moulding – Casting – Thermo Forming. General Machining properties of Plastics – Machining Parameters and their effect – Joining of Plastics – Thermal bonding – Applications.

MODULE II FIBRES AND MATRIX MATERIALS

9 Hours

Fibres – Fabrication, Structure, properties and applications – Glass fibre, Boron fibre, carbon fibre, organic fibre, ceramic and metallic fibres - whiskers–Fabrication of Matrix materials – polymers, metals and ceramics and their properties – interfaces – Wettability – Types of bonding at the interface – Tests for measuring interfacial strength - Physical and chemical properties.

MODULE III PROCESSING OF POLYMER MATRIX COMPOSITES 9 Hours

Thermoset matrix composites: hand layup, spray, filament winding, Pultrusion, resin transfer moulding, autoclave moulding - bag moulding, compression moulding with Bulk Moulding Compound and sheet Moulding Compound – thermoplastic matrix composites – film stacking, diaphragm forming, thermoplastic tape laying, injection moulding – interfaces in PMCs structure, properties and application of PMCs –recycling of PMCs.

MODULE IV PROCESSING OF METAL MATRIX COMPOSITES

9 Hours

Metallic matrices: aluminium, titanium, magnesium, copper alloys – processing of MMCs: liquid state, Solid state, in situ fabrication techniques – diffusion bonding – powder metallurgy techniques- interfaces in MMCs – mechanical properties – machining of MMCs – Applications.

MODULE V PROCESSING OF CERAMIC MATRIX COMPOSITES AND CARBON- 9 Hours CARBON COMPOSITES

Processing of CMCs: cold pressing, sintering, reaction bonding, liquid infiltration, lanxide process – insitu chemical reaction techniques: chemical vapour deposition, chemical vapour impregnation, sol-gel - interfaces in CMCs – mechanical properties and applications of CMCs – Carbon-carbon Composites - applications.

TOTAL: 45 HOURS

REFERENCES:

- 1. Harold Belofsky, Plastics, Product Design and Process Engineering, Hanser Publishers, 2002.
- 2. Jamal Y. Sheikh-Ahmad, Machining of Polymer Composites, Springer, USA, 2009.
- 3. Krishan K Chawla, Composite Materials: Science and Engineering, International Edition, Springer, 2012.
- 4. Mallick P.K. and Newman S, Composite Materials Technology, Hanser Publishers, 2003.
- 5. Mallick P.K., Fibre Reinforced Composites: Materials, Manufacturing and Design, CRC press, New Delhi, 2010.
- 6. Seamour E.B, Modern Plastics Technology, Prentice Hall, 2002

402MF204	INDUSTRI	AL AU	TOMA	ATION	AN	D MEC	CHATR	ONICS	LAB	L	Т	P	C
										0	0	4	2
REREQUISI	ТЕ•										1		L
KEKEQUISI	112.												
	1. Indus	trial Au	itomati	on and	Mech	natronic	s Basic						
		mation											
COURSE OBJ	ECTIVES:												
							<u> </u>						
							training	-	basic co	oncept	s of v	arious	
	indust	rial aut	omatio	n and N	/lecha	atronics	system	S.					
COURSE OUT	COMES:												
	Students will be		-										
CO1:					nce o	f mode	rn mach	ining p	rocess	and i	tsapp	licatio	ons
	through hands						1.						
	Identify the se						id its pro	ocess pa	rameter	s.			
CO3:	Express and po	ertorm	project	related	wor	KS.							
COs Vs POs M	APPING.												
		COs	PO1	PO2	PO3	B PO4	PO5	PO6					
		CO1	-	-	I	2	2	-					
		CO2		-	-	-	2	1					
		CO3		2	-	3	-	-					
		CO4	2	-	-	-	1	2					
		CO5	-	-	-	-	3	1					
COs Vs PSOs													
205 151505													
		Γ	COs	PSC	01 1	PSO2	PSO3	1					
		Ī	CO1	-		-	-						
			CO2	-		-	-						
			CO3	-		-	-						
		_	CO4	-		-	-	_					
			CO5	-		-	-						
	EDIMENTO.												
LIST OF EXP	CKINEN 15:												
1. Simula	tion of single a	nd doub	la activ		nder c	irouito							
	tion of Hydraul			ig cyill		neuns							
	tion of electro p			uits									
	tion of electro h												
	tion of PLC cire												

- 5. Simulation of PLC circuits
 - 6. Software simulation of fluid power circuits using a software package.
- 7. Simulation of various Mechatronics systems using hardware components

TOTAL: 60 HOURS

REFERENCES:

1. R.K.Rajput. A Text Book of Mechatronics, Chand &Co,2007

2. W.Bolton, Mechatronics, Pearson Education Limited, 2004

3. M.A. Mazidi & J.G. Mazidi, 8051 Microcontroller and embedded systems,2002

4. Devadasshetty, Richard A. Kolk, -Mechatronics System Design, PWS Publishing Company, 2001.

402MF205	MOD	ELLING	AND SIM	ULAT	ION LA	ABORA	TORY	7	L	T	P	C
									0	0	4	2
REREQUIS	TE:											
	1. Mod	leling Basi	0									
		ulation Bas										
												-
OURSE OB.	IECTIVES:											
	1. To s	tudy the f	undamenta	ls of f	nite ele	ment a	nalveie	from	, classic	al me	othod	to
		lapproxim										10
		ake the stu										
	3. To de	evelop the	knowledge	e related	l to mo	delling a	nd sim	ulatio	on in fiel	d of		
	manı	ifacturing.										
OURSE OU'	FCOMES											
OURSE OU												
	Students will											
CO1:	11 2			Elemer	nt Analy	ysis To	Solve	Prob	olems In	The	Field	10
CO2:	Production E Design And	<u> </u>		Jame Ir	Field (Of Man	ifactur	na				
	Identify The											
CO4:									ations.			
CO5:	Develop Skil											
	ADDINC.											
Os Vs POs M	IAPPING:											
		COs P	01 PO2	PO3	PO4	PO5	PO6]				
			1 -	-	-	2	1	-				
		CO2		-	3	2	1	-				
		CO3 CO4	- 2	-	2	2 2	1					
		CO4		-	-	3	2					
					I	-		1				
Os Vs PSOs	MAPPING:											
		CO		01 I	PSO2	PSO3						
		CO		•	-	-						
					-	-						
					-	-						
		CO			-	-						
IST OF EXP	ERIMENTS:											
1 0				-								
	mensional FE.					strain	vioum	motri	anduik	ratio	.	
	Dimensional FE					su alli, i	алт буш	ncul		1 at 101	1.	

4. FEA Application in metal forming like superplastic forming, deep drawing etc

5. FEA Application in Metal cutting

- 6. FEA Application in Casting process
- 7. 3D Modelling and Assemble of Engine
- 8. Modelling of Crack Shaft
- 9. Modelling of Connecting Rod
- 10. Modelling of Cotter Joint
- 11. Modelling of Plummer Block and Coupling

TOTAL: 60 HOURS

REFERENCES:

- 1. Ibrahim Zeid, CAD/ CAM Theory and Practice, McGraw Hill, 2007
- 2. Mikell P. Groover and Emory W. Zimmer, CAD/ CAM Computer aided design and manufacturing, Pearson Education, 1987

3. T. R. Chandrupatla and A. D. Belagundu, Introduction to Finite Elements in Engineering, Pearson Education, 2012

4. Finite Element Analysis Theory and Applications with Ansys, SaeedMoaveni, Pearson Education, 2014.