M.E. Environmental Engineering | E.G.S. Pillay Engineering College (Autonomous) Regulations 2024 Approved in 11th Academic Council Meeting Held on 09.01.2024

E.G.S. PILLAY ENGINEERING COLLEGE

(Autonomous)

NAGAPATTINAM - 611 002.

(Affiliated to Anna University, Chennai |Accredited by NAAC with 'A++'Grade Accredited by NBA | Approved by AICTE, New Delhi)

REGULATIONS-R2024 M.E. ENVIRONMENTAL ENGINEERING

First Year – Second Semester Curriculum

COURSE		CATEGORY					MAX.MARKS			
CODE	COURSE NAME		L	Т	Р	C	СА	ES	TOTAL	
Theory Cour	ses									
2402EV201	Biological Treatment System for Wastewater	PCC	3	2	0	4	40	60	100	
2402EV202	Solid Waste Management	PCC	3	0	0	3	40	60	100	
2402EV203	Environmental Impact and Risk Assessment	PCC	3	0	0	3	40	60	100	
2403EV003	Circular Economy (Professional Elective I)	PEC	3	0	0	3	40	60	100	
2403EV008	Environmental Legislation and Management Systems (Professional Elective II)	PEC	3	0	0	3	40	60	100	
2401AU002	Disaster Management (Audit Course II)	AUC	2	0	0	0	100	0	100	
Laboratory	Courses									
2402EV204	Module Operations & Process Laboratory	PCC	0	0	4	2	60	40	100	
2402EV205	Mini Project with Seminar	EEC	0	0	2	1	100	00	100	
	TOTAL		17	2	6	19	460	340	800	

2402EV201	BIO	LOGIC	CAL TR	REATN	1EN	T SYS	FEM FO	OR WAS	STEW	ATER	L	Т	Р	C
											4	0	0	4
REREQUI	SITE:													
	Microb	oiology												
COURSE O	BJECT	IVES:												
	To pro	vide st	udents	with a	com	prehens	ive unde	erstandin	g of bi	ological	treati	men	t proces	sses f
	wastev	vater, ei	nabling	them to	o de	sign, op	erate, ar	id mainta	ain effi	cient and	l susta	aina	ble was	tewa
	treatme	ent syst	ems.											
OURSE O	UTCON	AES:												
n the succes	sful cor	npletion	n of the	course	, stu	dents w	ill be ab	le to						
CO1:	Apply	reaction	n engin	eering p	orinc	iples to	biocher	nical pro	cesses					
CO2:	Design	and siz	ze the d	ifferent	t con	nponent	s of con	ventiona	l aerobi	c treatm	ent sy	/ster	ns.	
CO3:	Design	and siz	ze the d	ifferent	t con	nponent	s of adv	anced ae	robic tr	eatment	syste	ms.		
CO4:	Design	the an	aerobic	treatm	ent	units of	wastew	ater whi	ch incl	ude the	attach	ned	and sus	pend
~~-	growth	n proces	ses.											
CO5:	Design	the dif	terent e	element	s of	nutrient	remova	l system	S					
COs Vs POs	MAPP	ING:												
COs	PO1	PO2	PO3	PO4	PC	PO	6 PO7	PO8	PO9	PO10	PO	11	PO12	
CO1	3	3	2			3	3							
CO2	3	3	2			3	3							
CO3	3	3	2			3	3	_						-
CO4	3	3	2			3	3							
05	3	3	Z			3	3]
Os Vs PSO	s MAP	PING:		CO	Ds	PSO1	PSO2	PSO3]					
				CO)1	3	3	-						
				CO)2	3	3	-	-					
				CO)3	3	3	-	4					
				C)4	3	3	-						
				C)5	3	3	-						
COURSE CO	ONTEN	TS:												
IODULE I	REA	CTIO	N KINI	ETICS	AN	D BIO	REACT	ORS					12 H	Iour
biectives of	f biolog	vical tre	eatment	-sionif	ïcan	ce_nrin	ciples o	f aerobi	c and	anaerobi	c tre	atm	ent-kine	etics
iological g	cowth-f	actors	affecti	ng gro	wth	–attache	ed and	suspend	led gr	owth-de	termi	natio	on of	kine
afficients f	or organ	nic rem	oval- er	izvme l	kinet	tics bio	leoradah	ility ass	 essmen	t - selec	tion o	f nr	ocess re	acto

 biokinetics - batch reactor - continuous flow stirred tank reactor-plug flow reactor - flowcharts, layout, PID, hydraulic profile

 MODULE II
 CONVENTIONAL AEROBIC TREATMENT PROCESSES
 12 Hours

Design of sewage treatment plant units –activated sludge process and variations-trickling filters- bio tower-BC- fluidized bed reactors, aerated lagoons, waste stabilization ponds– natural treatment systems, constructed wetland - disposal options – reclamation and reuse – recent trends.

MODULE III ADVANCED AEROBIC TREATMENT PROCESSES OF WASTEWATER

12 Hours

Sequencing batch reactors- moving bed biofilm reactors- membrane bioreactor- reclamation and reuse of wastewater-design of tertiary treatment units-application of membrane separation technologies in reuse of sewage -case studies

MODULE IV ANAEROBIC TREATMENT OF WASTEWATER

12 Hours

12 Hours

Attached and suspended growth process -design of units–UASB – post treatment systems for UASB reactoranaerobic filters – expanded bed and fluidized bed anaerobic systems -septic tank and soil disposal system anaerobic baffled reactor–anaerobic sludge digestion process -types of anaerobic sludge digesters – design of low rate and high rate anaerobic digestors- recent trends.

MODULE V NUTRIENT REMOVAL SYSTEMS

Nutrients in wastewater –significance - nitrification and denitrification-nitrogen removal systems – anaerobic ammonium oxidation (ANAMMOX) - Reactors for ANAMMOX process development - Polyphosphate-accumulating organisms (PAOs)–anaerobic and aerobic metabolism of phosphorus in phosphate accumulating bacteria -enhanced biological phosphorus removal (EBPR) –recent trends – case studies.

TOTAL: 60 Hours

REFERENCES:

- 1. ArceivalaS.J., and Asolekar S.R" Wastewater Treatment for Pollution Control and reuse" McGraw Hill, third Edition, New Delhi, 2007.
- 2. Manual for "Sewerage and Sewage Treatment Systems", PART- A, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 2013.
- 3. Metcalf & Eddy, Inc., George Tchobanoglous, Franklin L. Burton and H. David Stensel, Wastewater engineering, treatment and reuse, Fourth Edition, McGraw-Hill, 2017
- 4. Qasim, S. R. and Guang Zhu "Wastewater Treatment and Reuse. Theory and Design Examples", CRC Press, New York, 2018.
- 5. F.R. Spellman, "Handbook of Water and Wastewater Treatment Plant operations", CRC Press, New York2020.

2402E	V202			SC	OLID V	VAST	E MA	NAGEN	MENT			L	Т	Р	C	
												3	0	0	3	
PRERI	EQUIS	SITE:										•				
		Chem	istry, B	Biology	, Enviro	onmer	tal Sci	ence								
COUR	SE OI	BJECT	TIVES:													
		The of imple enviro	objectiv mentati onmenta	ve of the ion of al and p	ne cour susta public h	rse is inable ealth	to pre soli challer	epare stu d wastunges pos	idents to e mana ed by wa	o contr gemen iste.	ribute to t strate	the d gies,	evelo addre	pmen essing	t and the	
COUR	SE OU	UTCO	MES:													
On the	succes	sful co	mpletio	on of th	e cours	e, stu	lents v	vill be at	ole to							
	CO1:	Identi	fy and	discuss	s solid	and h	azardo	us waste	e manag	ement,	includin	ig lega	l, hea	lth, s	afety,	
		cultur	al, and	stakeho	older re	spons	ibilitie	s.								
	CO2:	Analy	ze soli	d and	hazardo	ous w	aste k	inds, ev	aluate c	auses	driving	varianc	e, an	d eva	luate	
	<u> </u>	waste	treatm	ent and	dispos	al syst	ems.					11				
	CO3:	Desig	ign the system and process for waste minimization, storage, collection, transport,													
	<u>CO4·</u>	Choo	/cling, processing, and disposal.													
	04.	consi	ose sustainable techniques for processing and disposing of solid and hazardous waste, sidering their impact on sustainability													
	CO5:	Cond	uct sol	lid and	d haza	rdous	wast	e mana	gement	resear	ch, inte	ract e	effecti	ively	with	
		stakel	nolders,	, and le	arn inde	epend	ently tl	hrougho	ut life.					5		
COs V	s POs	MAPI	PING:													
	~ ~							. [
	COs	<u>PO1</u>	PO2	PO3	PO4	PO5		6 PO7	PO8	PO9	PO10	PO1		012		
	CO1	3	3	2			3	3								
(CO3	3	3	2			3	3								
(CO4	3	3	2			3	3								
	CO5	3	3	2			3	3								
COs V	s PSO	s MAI	PPING	:												
					CC	Ds I	SO1	PSO2	PSO3]						
					CC	01	3	2	-]						
					CO)2	3	2	-							
)3	3	$\frac{2}{2}$	-							
)5	3	2	-	-						
						1	÷	-	1	J						
COUR	SE CO	ONTE	NTS:													
MODU	JLE I	WA	STE C	LASSI	IFICA	FION	AND	REGUI	LATOR	Y REQ	UIREN	IENTS	5	9 H	ours	
<u> </u>	1.		<u>c</u> 1' 1	1.1	1			1 6		1 .					-1:	

Sources and types of solid and hazardous waste - need for solid and hazardous waste management – salient features of latest Indian legislations on management and handling of solid wastes, hazardous wastes, Plastic

wastes, biomedical wastes, electronic wastes, construction and demolition wastes, plastics and discarded lead acid batteries – elements of integrated waste management and roles of stakeholders - seven elements and seven step approach to integrated solid waste management planning.

MODULE II WASTE CHARACTERIZATION, SOURCE REDUCTION AND 9 Hours RECYCLING

Waste sampling and characterization plan - waste generation rates and variation – physical composition, chemical and biological properties – hazardous characteristics – ignitability, corrosivity and TCLP tests – source reduction, segregation and onsite storage of wastes – waste exchange - extended producer responsibility - recycling of plastics, Micro plastics, C&D wastes and E wastes.

MODULE III WASTE COLLECTION, TRANSPORT AND MATERIAL RECOVERY 9 Hours

Door to door collection of segregated solid wastes -analysis of hauled container and stationery container collection systems - compatibility, storage, labeling and handling of hazardous wastes – principles and design of transfer and transport facilities - hazardous waste transport and manifests - mechanical processing and material separation technologies – Size reduction – size separation - density separation - magnetic separation – compaction – principles and design of material recovery facilities – physico chemical treatment of hazardous wastes - solidification and stabilization – E-waste kiosks - case studies on waste collection and material recovery.

MODULE IV BIOLOGICAL AND THERMAL PROCESSING OF WASTES

9 Hours

9 Hours

Biological and thermo chemical conversion technologies – composting – bio methanation – incineration – pyrolysis- plasma arc gasification –principles and design of biological and thermal treatment facilities - MSW processes to energy with high-value products and specialty BY-Products - operation of facilities and environmental controls - treatment of biomedical wastes – case studies and emerging waste processing technologies.

MODULE V WASTE DISPOSAL

Sanitary and secure landfills - components and configuration—site selection - liner and cover systems - geo synthetic clay liners and geo membranes - design of sanitary landfills and secure landfill leachate collection, treatment and landfill gas management — landfill construction and operational controls - landfill closure and environmental monitoring — landfill bioreactors — rehabilitation of open dumps and biomining of dumpsites-remediation of contaminated sites- Case studies.

TOTAL: 45 HOURS

REFERENCES:

- 1. George Tchobanoglous, Hilary Theisen and Samuel A, Vigil, "Integrated Solid Waste Management, Mc-Graw Hill India, First edition, 2015
- 2. William A. Worrell, P. Aarne Vesilind, Christian Ludwig, Solid Waste Engineering A Global Perspective, 3rd Edition, Cengage Learning, 2017.
- Michael D. LaGrega, Philip L Buckingham, Jeffrey C. E vans and "Environmental Resources Management, Hazardous waste Management", Mc-Graw Hill International edition, New York,2010
 John Pitchtel, Waste Management Practices, CRC Press, Taylor and Francis Group,2014

 CPHEEO, "Manual on Municipal Solid waste management, Vol I, II and III, Central Public Health and Environmental Engineering Organization, Government of India, New Delhi, 2016.

	1												1	T	
2402EV203		ENVIF	RONM	ENTA	L IMP	ACT A	ND RI	SK AS	SESSM	1ENT	L	Т	Р	C	
											3	0	0	3	
PREREQUI	SITE:										1			4	
	Envir	onment	al Scie	nce & S	Statistic	cs									
COURSE O	BJECT	TIVES:	:												
	To e	quip s	tudents	with	the k	nowled	lge an	d skills	neces	ssary to	asses	s the	e pot	ential	
	enviro	onment	al impa	acts and	d risks	associa	ated wi	th prop	osed p	rojects a	nd act	ivitie	s, ena	bling	
	them	to make	e inforr	ned dec	cisions	and cor	ntribute	to susta	ainable	develop	ment.				
COURSE O	UTCO	MES:													
On the succes	ssful co	ompletio	on of th	e cours	e, stud	ents wi	ll be ab	le to							
CO1:	Under	rstand r	need for	r enviro	onment	al clear	ance, it	s legal p	orocedu	ire, need	of EIA	., its t	ypes,		
	stakel	holders	and the	eir roles	5										
CO2:	Unde:	rstand v	various	impact	identif	fication	metho	dologies	, predio	ction tecl	hnique	s and	mode	lof	
CO3.	Impac	pacts on various environments derstand relationship between social impacts and change in community due to													
003:	devel	derstand relationship between social impacts and change in community due to relopment activities and rehabilitation methods													
CO4:	Docu	velopment activities and rehabilitation methods ocument the EIA findings and prepare environmental management and monitoring plan													
CO5:	Identi	cument the EIA findings and prepare environmental management and monitoring plan entify, predict and assess impacts of similar projects based on case studies													
COs Vs POs		PING:	DO1	DO 4	DOS	DO (DOT	DOQ	BOO	DO10	DO11		012		
COs CO1	<u>201</u>	PO2 3	PO3	PO4	P05	PO6	PO 7	PO8	P09	POIO	POL		012		
CO2	3	3	2			3	3								
CO3	3	3	2			3	3								
CO4	3	3	$\frac{2}{2}$			3	3								
03	3	5	2			3	5								
COs Vs PSO	s MAI	PPING	:												
				C	Os P	SO1 I	PSO2	PSO3]						
				C	01	3	3	-	_						
					$\frac{12}{2}$	3	3	-	-						
)4	3	3	-	-						
				C	05	3	3	-]						
COURSE C	ONTE	NTS:													
MODULE I	INT	RODU	JCTIO	N									9 Ho	urs	
Historical de	velopn	nent of	Envir	onment	al Im	bact As	ssessme	ent (EIA	A). Env	vironmer	ntal Cl	earan	ice-El	A in	
project cycle.	legal a	and reg	ulatory	aspect	s in Inc	ia – ty	pes and	l limitat	ions of	EIA –E	IA pro	cess s	screen	ing –	
scoping - terr	ns of re	eferenc	e in EL	A- setti	ng – ar	nalysis -	– mitig	ation. C	ross se	ctoral iss	sues –p	ublic	heari	ing in	
EIA- EIA con	nsultant	t accred	litation												

MODULE II	IMPACT INDENTIFICATION AND PREDICTION	9 Hours

Matrices – networks – checklists – cost benefit analysis – analysis of alternatives – expert systems in EIA. prediction tools for EIA – mathematical modeling for impact prediction – assessment of impacts – air – water – soil – noise – biological — cumulative impact assessment

MODULE III SOCIO-ECONOMIC IMPACT ASSESSMENT

9 Hours

Socio-economic impact assessment - relationship between social impacts and change in community and institutional arrangements. factors and methodologies- individual and family level impacts. communities in transition-rehabilitation.

MODULE IV EIA DOCUMENTATION AND ENVIRONMENTAL MANAGEMENT 9 Hours PLAN

Environmental management plan - preparation, implementation and review – mitigation and rehabilitation plans – policy and guidelines for planning and monitoring programmes – post project audit – documentation of EIA findings – ethical and quality aspects of environmental impact assessment and Case Studies.

MODULE V ENVIRONMENTAL RISK ASSESSMENT AND MANAGEMENT

9 Hours

Environmental risk assessment framework-Hazard identification -Dose Response Evaluation - Exposure Assessment – Exposure Factors, Tools for Environmental Risk Assessment – HAZOP and FEMA methods – Event tree and fault tree analysis – Multimedia and multipath way exposure modeling of contaminant- Risk Characterization Risk communication - Emergency Preparedness Plans –Design of risk management programs

TOTAL: 45 HOURS

REFERENCES:

- 1. BEIA Notification 2006 including recent amendments, by Ministry of Environment, Forest and Climate Change, Government of India.
- 2. Sectoral Guidelines under EIA Notification by Ministry of Environment, Forest and Climate Change, Government of India.
- 3. Canter, L.W., Environmental Impact Assessment, McGraw Hill, New York. 1996.
- 4. Lawrence, D.P., Environmental Impact Assessment Practical solutions to recurrent problems, Wiley-Interscience, New Jersey. 2003.
- 5. Lee N. and George C. 2000. Environmental Assessment in Developing and Transitional Countries. Chichester: Willey.

2403EV003				CIF	RCULA	AR ECO	ONOM	Y			L	Т	Р	C
											3	0	0	3
PREREQUI	SITE:												•	
	Enviro	onment	al Scier	nce										
COURSE OI	BJECT	TIVES:												
	Identi enviro specif	fy and onmenta ically.	l critic al sust	ally di ainabili	iscuss ity ger	the concernerally	onnection and b	on betw between	ween l circul	inear/cir lar econ	cular 10mies	econo and	omies SDC	and G 12
COURSE O	UTCO	MES:												
On the succes	sful co	mpletio	on of th	e cours	e, stude	ents wil	l be abl	e to						
CO1:	Comp relatio	are line	ear and	circul	ar econ y and th	iomic n he SDG	nodels. s will a	Core c ilso be i	rircular underst	econom ood.	ic prin	ciple	s and	their
CO2:	Devel	op and	evalua	te diver	se circu	ular bus	siness n	nodels,	applyir	ng them t	to real-	worle	d scer	narios
CO3:	Make enviro	use o onmenta	of the at and of the at and of the at and of the at and of the attention o	right n econom	neasure nic imp	ments lication	and m s of cir	ethods cular e	to qua	antify ci y plans,	rculari and cr	ty, a itical	nalyz ly eva	e the aluate
CO4:	Analy and de	ze and evelop	evalua strategi	te dive es for b	erse bus ousiness	siness r ses to ef	nodels ffective	that in ly trans	plementition to	nt circulation of the circulatio	ar econ rcular	nomy practi	prine	ciples
CO5:	Exam econo	ine cir mic, so	cular o cial, an	econom d envir	ny con ronment	cepts' tal well	ability -being	to ado in varie	dress g d devel	global co lopment	oncern situatio	s and ons.	d imj	prove
COs Vs POs	MAPF	PING:												
	Det	DCC	DCT	DC ·	DC-	D.C. (DCT	DCC	DCC	D C 10	DOI			
COs	<u>PO1</u>	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	I PO	J12	
	<u>5</u> 2	2	1			3	3					_		
CO_2	3	$\frac{2}{2}$	1			3	3					_		
CO3	3	2	1			3	3					_		

COs Vs PSOs MAPPING:

3

2

1

CO5

COs	PSO1	PSO2	PSO3
CO1	3	2	-
CO2	3	2	-
CO3	3	2	-
CO4	3	2	-
CO5	3	2	-

3

3

COURSE CONTENTS:

MODULE I INTRODUCTION

9 Hours

Linear economy- General principles of sustainability and the SDGs- Principles of Circular Economies – Life Cycle Analysis- Biomimicry, the sharing economy, cradle-tocradle, and the roots/genealogies - conceptual frameworks of circular economies.

MODULE II	BUSINESS MODELS FOR CIRCULAR ECONOMY	9 Hours
Create value b	y reusing/recycling - Industrial designs provide smarter solutions- Offering	products as
"service" rather	than selling products - Transferring ownership to consumers - Business model	for Circular
Economy.		
MODULE III	MEASUREMENTS AND METRICS	9 Hours
Carbon footprin	nt of any given product or service- Review Life Cycle Assessments - Review	the case for
proximity and	appropriate scale in the design of production-trade consumption networks-	Case studies
include biofuels	from the production of palm oil and the manufacture of mobile phones.	
MODULE IV	BUSINESSES ADOPTING CIRCULAR ECONOMY MODELS	9 Hours
Businesses ado	pt circular economy models for specific sectors - food & agriculture, mining	& minerals,
transport & cy (furniture).	cling, fashion & textiles, consumer electricals & electronics and industrial m	anufacturing
MODULE V	CIRCULAR ECONOMIES AND DEVELOPMENT	9 Hours
Current Global	scenario of adoption of circular economies in development economies - T	ransitions to
Circular Econo	mies - Economic anthropology on exchange, circulation and flows of material	s in specific
societies- circul	ar economies in space and time.	
	TOTAL: 4	5 HOURS
REFERENCE	S:	
1. Angelis,	Roberta De (2018) Business Models in the Circular Economy: Concepts, E.	xamples and
Theory (Palgrave)	
2. Weetman	n, Catherine (2016) A Circular Economy Handbook for Business and Supply Ch	ains (Kogan
Page)		

3. United Nations Sustainable Development Goals (2015)

4. The Age of Sustainable Development, Sach, 2015

2403EV008	ENVIRONMENTAL LEGISLATION AND MANAGEMENT SYSTEMS	L	Т	Р	С
		3	0	0	3
PREREQUIS	SITE:				
	Environmental Science				
COURSE OF	BJECTIVES:				
	To impart knowledge on policies, legislation, institutional framework and mechanisms for environmental management in India.	d enfo	orcem	ent	
COURSE OU	UTCOMES:				
On the succes	sful completion of the course, students will be able to				
CO1:	Explain the constitutional and legal framework for environmental	prote	ction	in I	ndia,
	including key national policies and principles.				
CO2:	Discuss the Water (Prevention and Control of Pollution) Act, 1974, enc agency jurisdictions, obligations of occupiers, consent protocols, legal sa and enforcement mechanisms.	ompa ample	ssing meth	regul odolo	atory gies,
CO3:	Elucidate the Air (Prevention and Control of Pollution) Act, 1981, detai	ling tl	ne aut	horiti	es of
	regulatory agencies, obligations of occupiers, permission protoc methodologies, and enforcement mechanisms for air pollution control.	ols,	legal	sam	pling
CO4:	Describe the Environment (Protection) Act 1986, EIA, waste management	ent, p	ollutio	on co	ntrol,
	and stakeholder responsibilities.				
CO5:	Exhibit comprehension of pertinent Indian legal statutes and judi	icial	mech	anism	s of
	environmental preservation, encompassing forest legislation, liability	v insu	rance	, crir	ninal
	proceedings, and significant Supreme Court rulings.				

COs Vs POs MAPPING:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1			3	3					
CO2	3	2	1			3	3					
CO3	3	2	1			3	3					
CO4	3	2	1			3	3					
CO5	3	2	1			3	3					

COs Vs PSOs MAPPING:

COs	PSO1	PSO2	PSO3
CO1	3	2	-
CO2	3	2	-
CO3	3	2	-
CO4	3	2	-
CO5	3	2	-

COURSE CONTENTS:

MODULE I INTRODUCTION

Indian Constitution and Environmental Protection - National Environmental policies - Precautionary

9 Hours

Principle and Polluter Pays Principle – Concept of absolute liability – multilateral environmental agreements and Protocols – Montreal Protocol, Kyoto agreement, Rio declaration– Environmental Protection Act, Water (P&CP) Act, Air (P&CP) Act – Institutional framework (SPCB/CPCB/MoEF).

MODULE II WATER (P&CP) ACT, 1974

Power & functions of regulatory agencies - responsibilities of Occupier Provision relating to prevention and control Scheme of Consent to establish, Consent to operate – Conditions of the consents – Outlet – Legal sampling procedures, State Water Laboratory – Appellate Authority – Penalties for violation of consent conditions etc. Provisions for closure/directions in apprehended pollution situation.

MODULE III AIR (P&CP) ACT, 1981

Power & functions of regulatory agencies - responsibilities of Occupier Provision relating to prevention and control Scheme of Consent to establish, Consent to operate – Conditions of the consents – Outlet – Legal sampling procedures, State Air Laboratory – Appellate Authority – Penalties for violation of consent conditions etc. Provisions for closure/directions in apprehended pollution situation

MODULE IV ENVIRONMENT (PROTECTION) ACT 1986

Genesis of the Act – delegation of powers – Role of Central Government - EIA Notification – Sitting of Industries – Coastal Zone Regulation - Responsibilities of local bodies mitigation scheme etc., for Municipal Solid Waste Management - Responsibilities of Pollution Control Boards under Hazardous Waste rules and that of occupier, authorization – Biomedical waste rules – responsibilities of generators and role of Pollution Control Boards

MODULE V OTHER ACTS

Relevant Provisions of Indian Forest Act, Public Liability Insurance Act, CrPC, IPC -Public Interest Litigation – Writ petitions - Supreme Court Judgments in Landmark cases.

REFERENCES:

- 1. CPCB "Pollution Control acts, Rules and Notifications issued there under "Pollution Control Series PCL/2/1992, Central Pollution Control Board, Delhi, 1997.
- 2. Greger I.Megregor "Environmental law and enforcement", Lewis Publishers, London. 1994.
- 3. Shyam Divan and Armin Roseneranz "Environmental law and policy in India "Oxford University Press, New Delhi, 2001.

9 Hours

9 Hours

9 Hours

9 Hours

TOTAL: 45 HOURS

2402EV2	04	Μ	ODUL	E OPE	RATI	ONS &	k PRC	OCES	S LAB	ORAT	ORY		L	T	Р	C
													0	0	4	2
PREREQU	UISIT	:E:														
		Basic C	hemistr	y Labo	oratory											
COURSE	OBJI	ECTIV	ES:													
	'	To prov	vide stud	lents w	vith a c	ompreh	nensiv	e und	erstandi	ng of v	water a	and wa	astev	vater	treatr	nent
]	process	es, enal	oling tl	nem to	design	n, oper	rate, a	and mai	ntain	efficie	nt and	l sus	taina	ble w	ater
		and was Student	stewater	treatn	owledge	stems.	Indam	ental	princip	es nr	actical	ekille	and	l the	ahilit	v to
		apply a	dvanced	l techn	ologies	to add	ress w	ater q	juality c	hallen	ges and	d ensu	re pi	ablic	healt	h.
COURSE	OUT	COME	S:								<u> </u>		•			
On the succ	ressfi	l comp	letion o	f the co	urse s	students	will l	ne abl	e to							
CO CO)1:	Apply 1	the prin	ciples	of coa	gulation	n and	flocc	ulation	to im	prove	water	qual	ity p	arame	eters
		such as	turbidit	y, colo	r, and	organic	matte	er.		1			I	7 I		
CO)2:	Design	and ope	rate se	diment	tation ta	anks to	effe	ctively 1	emove	e suspe	nded	solid	s from	n wa	ter.
CO)3:	Select	appropr	iate fil	ter me	edia an	d des	ign f	iltration	units	to re	move	susj	pende	ed so	lids,
CO)4:	Design	and on	erate r	everse		is svs	tems	to prod	luce hi	gh-au	ality d	łrink	ing v	vater	and
		industri	al proce	ess wat	er.	0011100	10 0 0 0		to prot		8. 1.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
CO)5:	Apply	advance	ed oxi	dation	proces	ses si	uch a	s ozon	ation	and pl	hotoca	ataly	sis to	rem	love
	1	refracto	ry orga	nic pol	lutants	and dis	sinfect	ion b	y-produ	cts fro	m wate	er.				
COs Vs PC	Os M.	APPIN	G:													
	со	s PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	P	0		
	CO	1 2 3 4 5 6 7 8 9 10 CO1 3 3 3 2 1 3 3 <td>11</td> <td>1</td> <td>2</td> <td></td> <td></td>							11	1	2					
	CO	2 3	3	3	2	1	3	3								
	CO	3 3	3	3	2	1	3	3								
	CO	4 3	3	3	2	1	3	3								
COs Vs PS	SOs N	IAPPI	NG:													
				—	COa	DEO	1 D	202	DCO2							
					$\frac{COS}{CO1}$	PSU		3	-	-						
					$\frac{CO1}{CO2}$	3		3	-	_						
					CO3	3		3	-							
					CO4	3		3	-							
LIST OF I	EXPE	RIME	NTS:													
1. Coa	igulat	ion and	Floccu	lation												
2. Bate	ch stu	dies on	settling	5		of E:140										
$\frac{3. \text{ Stu}}{4 \text{ Wat}}$	ter so	n Filtra ftening	tion- Ci	iaracte	ristics	of Filte	r med	la								
5. Ads	sornti	on studi	es/Kine	tics												
6. Rev	verse	Osmosi	s- Silt E	Density	Index											
7. Kin	etics	of susp	ended g	rowth	process	s (activa	ated sl	udge	process)-Slud	ge volu	ume Ir	ndex			
8. Ana	aerobi	c React	or syste	ems / k	inetics	(Demo	nstrati	on)]
9. Adv	vance	d Oxida	tion Pro	ocesses	s - (Oz	onation	ı, Phot	ocata	lysis)							

M.E. Environmental Engineering | E.G.S. Pillay Engineering College (Autonomous) Regulations 2024 Approved in 11th Academic Council Meeting Held on 09.01.2024

10. Disinfection for Drinking water	
	TOTAL: 60 HOURS
REFERENCES:	

- 1. Metcalf and Eddy. Inc. "Wastewater Engineering, Treatment, Disposal and Reuse, Third Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.
- 2. Lee, C.C. and Shun dar Lin. Handbook of Environmental Engineering Calculations, McGraw Hill, New York, 1999.
- 3. Casey T.J., Module Treatment Processes in Water and Wastewater Engineering, John Wileys Sons, London, 1993.
- 4. David W.Hendricks, "Water Treatment Module Processes: Physical and Chemical", CRC Press, Boca Raton, 2006.