E.G.S. PILLAY ENGINEERING COLLEGE

(Autonomous)

NAGAPATTINAM - 611 002.

(Affiliated to Anna University, Chennai |Accredited by NAAC with 'A++'Grade Accredited by NBA | Approved by AICTE, New Delhi)

M.E. ENVIRONMENTAL ENGINEERING (R 2024)

Course	Course Name	T	т	Р	C	Μ	aximur	n Marks	Category
Code	Course Manie	L	L	L	C	CA	ES	Total	
Theory Cou	irse								
2402CP201	Machine Learning Techniques	3	0	0	3	40	60	100	PCC
2402CP202	Advanced Database Technologies	3	0	0	3	40	60	100	PCC
2402CP203	Software Project Management and Testing	3	0	0	3	40	60	100	PCC
	Program Elective–III	3	0	0	3	40	60	100	PEC
	Program Elective–IV	3	0	0	3	40	60	100	PEC
	Audit Course–II	2	0	0	0	100	0	100	AC
Laboratory	Course								
2402CP204	Machine Learning Techniques Laboratory	0	0	4	2	50	50	100	PCC
2402CP205	Database Technology Laboratory	0	0	4	2	50	50	100	PCC
2404CP206	Mini Project with Seminar	0	0	4	2	50	50	100	EEC
	Total	17	0	12	21	450	450	900	

First Year – Second Semester Curriculum

PROGRAM ELECTIVE COURSES (PEC) SEMESTER - II, ELECTIVE –III

SL.	COURSECO			PERI	ODSPI EK	ERWE	TOTAL CONTACTPE	~~~~~~~
NO.	DE	COURSETITLE	CATEGORY	L	Т	Р	RIODS	CREDITS
1.	2403CP011	Cyber Security	PEC	3	0	0	3	3
2.	2403CP012	Speech Recognition and Synthesis	PEC	3	0	0	3	3
3.	2403CP013	Applied Cryptography	PEC	3	0	0	3	3
4.	2403CP014	Biometric Technologies	PEC	3	0	0	3	3
5.	2403CP015	Block chain Technologies	PEC	3	0	0	3	3

SEMESTER - II, ELECTIVE-IV

SL.	COURSECO	COUDSETTELE	CATECODY	PERI	ODSPI EK	ERWE	TOTAL CONTACTP	CDEDITS
NU.	DE	COURSEITTLE	CATEGORY	L	Т	Р	ERIODS	CREDITS
1.	2403CP016	Soft Computing	PEC	3	0	0	3	3
2.	2403CP017	Internet of Things	PEC	3	0	0	3	3
3.	2403CP018	Cloud Computing	PEC	3	0	0	3	3
4.	2403CP019	Deep Learning	PEC	3	0	0	3	3
5.	2403CP020	Quantum Computing	PEC	3	0	0	3	3

2402CP201			MA	CHI	NE LI	EARN	ING	TECH	INIQ	UES			L	Τ	P	С
													3	0	0	3
PREREOUISIT	Έ·															
Basics of Probabi	ility, S	Statis	tics, D	ata M	ining	and A	rtificia	al Inte	lligen	ce						
	, , , , , , , , , , , , , , , , , , ,		,		0				0							
COURSE OBJE	ECTIV	/ES:														
	1. T	'o int	roduce	e the b	asic c	oncep	ts and	Tech	niques	of Ma	achine	Lear	ning			
	2. T	o be	come	familia	ar witl	h supe	rvised	and U	Jnsup	ervise	l learr	ning's	and th	eir		
	a	pplic	ations													
	<u>3.</u> T	<u>o lea</u>	rn dif	ferent	aspec	ts of r	einfor	cemen	t learr	ning ar	nd gra	phical	mode	ls		
	4. 'I	o un	dersta	nd the	basic	conce	epts of	deep	learni	ng						
COURSE OUT(COM	ES.														
On the successful	l com	oletio	on of tl	ne cou	rse, st	udent	s will	be abl	e to							
CO1:	Under	stand	and c	outline	prob	lems f	or eac	h type	of ma	chine	learni	ng.				
CO2:	Classi	fy th	e con	cepts	of su	pervis	ed lea	rning	algor	ithms	with	patter	ns to	predi	cts 1	abel
	values	lues on additional unlabeled data														
CO3:	Interp	iterpret associated rules and independent component analysis in unsupervised learning														
CO4·	Analy	ze R	einfor	cemer	t lear	ning	algorit	hms h	pased	on be	havio	ral an	proact	and	trai	ning
	model	S S	ennor	center	it icui		aigoin		Jubeu		iiu vioi	ur up	proder	i une	. trui	mg
CO5:	Desigi	n and	l impl	ement	vario	us gra	aphica	l mod	els fo	r diffe	erent t	ypes o	of ma	chine	lear	ning
	applic	ation	s.		.							11				
CO6:	Apply	deej	p lear	nng, I	Neura	l netw	ork n	nodel a	algorit	hms t	o han	dle ur	icertai	nty a	nd s	olve
COs Vs POs & 1	PSOs	MΔI	<u>2 prob</u> 2 PIN (<u>101115</u> 2•												
	005															
COs I	PO1 I	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSC		
										0	1	2	1	2		
CO1	3	3	1	3	1	-	-	-	-	-	1	1	1	2		
CO2	2	2	2	2	2	-	-	-	-	-	1	1	1	2		
CO3	2	3	2	2	2	-	-	-	-	-	1	1	1	2		
CO4	1	2	2	2	2	-	-	-	-	-	1	1	1	2		
CO5	2	2	2	3	2	-	-	-	-	-	1	1	1	2		
CO6	1	2	1	1	3	-	-	-	-	-	1	1	1	2		
COURSE CON	ГЕМТ	S:														
	TRUM		IOTI											<u> </u>	01-	
MODULEI	INTR	UDU	JCTI	JN											9110	urs

Machine Learning–Types of Machine Learning –Machine Learning process- preliminaries, testing Machine Learning algorithms, turning data into Probabilities, and Statistics for MachineLearning- Probability theory - Probability Distributions. 9 Hours MODULE II SUPERVISED LEARNING ProbabilisticGenerative Models, Probabilistic Discriminative Models, Linear Regression – Least squareunder fitting- over fitting, Tree based Methods-Decision Tree Learning- Random Forest- Ensemble Methods, Bagging, Boosting–Bayesian Learning, Naïve Bayes – Support Vector Machines 9Hours MODULE III UNSUPERVISED LEARNING Association rules- Clustering- K-means – Hierarchical clustering- EM Algorithm–Dimensionality Reduction, Linear Discriminant Analysis, Principal Components Analysis, Independent Components Analysis. 9 Hours MODULE IV **REINFORCEMENT LEARNING AND GAPHICAL MODELS** Reinforcement learning – Model based learning- Markov Decision processes, Temporal Difference Learning Exploration- SARSA- Q Learning. Graphical Models-Markov Random Fields – Conditional Independence properties – Hidden Markov Models 9Hours MODULE V **DEEP LEARNING** Neural Networks- Perceptron – Multilayer Perceptron, Feed- forward Network, Error Back propagation Convolution neural networks- Recurrent neural networks- create and deploy neural networks using TensorFlow and Keras. Case Studies: Diabetic Retinopathy Detection, Fraud detector, Rental Price Optimization. **TOTAL: 45 HOURS REFERENCES:** 1. Stephen Marsland, "Machine Learning – An Algorithmic Perspective", Chapman and Hall, CRC Press, Second Edition, 2014. AlpaydinEthem, "Introduction to Machine learning", MIT press, Fourth Edition, 2020 2. Kevin Murphy "Machine Learning: A probabilistic Perspective", MIT Press 2012 3. Christopher Bishop, "Pattern Recognition and Machine Learning" Springer, 2007. 4. Josh Patterson and adam Gibson, "Deep Learning: A Practitioners approach", O'Reily Media Inc, 5. 2017 https://nptel.ac.in/courses/106106139 6.

https://www.vktr.com/ai-disruption/5-machine-learning-case-studies/ 7.

2402C	P202		ADVANCED DATABASE TECHNOLOGIES L 3													P	C
														3	0	0	3
PRERE	QUISI	TE:															
	-	Basic	knowl	edge a	bout D	BMS											
COURS	E OBJ	IECTI	VES:														
		1.	Exen	nplify	the data	a mode	els and	to con	ceptua	lize a	databa	se syst	em usi	ng ER	ł		
		2	diagr	ams.		ta of	m a na 11.	-1 ou d	ما: مدينة ا م		4010000	~					
		2.	Inter	retand	the en	epts of	paralle r datab	el and	uistribi	ited da	itabase	S					
		5.	Unde	istanu	uie en	lerging	g uatao		linoioş	gies.							
COURS	E OU	ГСОМ	IES:														
On the su	uccessf	ful con	pletion	n of th	e cours	e, stud	lents w	ill be a	able to								
CO1	:	Design	n a Rela	ational	Datab	ase for	an En	terpris	e.								
CO2	:	Design	n a Dist	ribute	d Data	base, A	Active]	Databa	se and	Temp	oral D	atabase	e for a	n Ente	rprise	е.	
CO3	:	Gain th	ne knov	wledge	$\frac{11}{2}$ and $\frac{11}{2}$	anced	databa	ases.	Dataha		atial D	a 4 a 1 a a a	- M1	ار میں ا	. De	401000	
04	•	Compr Deduc	tive D	tabase		VIL Da	labase	, web	Databa	ise, sp	atiai D	atabas	e, Mui	umea	la Da	llabase	e and
CO5	:	Use M	ongoD	B. No	<u>.</u> SOL D	atabas	e to M	aintair	Data	of an F	Enterpr	ise.					
COs Vs	POs &	PSOs	MAP	PING	:	<u>arao as</u>			2								
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ²	1 PSC	02	
	CO1	2	1	3	1	-	2	-	-	-	-	-	-	2	3		
	CO2	1	1	3	1	-	2	-	-	-	-	-	-	2	2		
	CO3	3	1	3	3	-	3	-	-	-	-	-	-	2	3		
	C04 C05	$\frac{2}{2}$	1	3	3	-	$\frac{2}{2}$	-	-	-	-	-	-	2	3		
	0.05	2	1	5	5	_	2	-	_	_	-	-	_	2	5		
COURS	E COI	NTEN	TS:														
MODIII	БТ		TION	AT 3.4	ODEI											0 11.01	
Relation	al mod	<u>KELA</u> el - En	tity rel	AL M ationsl	vin mo	del· Co	netrai	nte - R	emovii	ng redi	Indant	attribu	ites in	entity	sets_	9 D O	<u>118</u> V-
relations	hin dia	grams	- Redu	ations	to rela	tional	schen	nas - K	Entity	relatic	onshin	design	issue-	Exter	nded	Entry E-R	y-
features	- Alter	native	notatio	ns for	model	ing Da	ta - No	ormaliz	ation a	and dat	abase	design	: First	norma	al for	m,	
second n	ormal	form, t	hird no	ormal f	form- E	Boyce of	codd n	ormal	form-F	ourth	Norma	l Form	n – Fift	h Nor	mal I	Form.	
MODUI	LE II	PARAL	LEL AN	ID DIS	TRIBU	ED DA	TABA	SES								9 Ho	ars
Parallel I	Databa	ses – L	O Para	allelisr	n - Inte	r-Que	ry and	Intra-O	Query l	Paralle	lism– 1	Inter-C)perati	on and	d Intr	a-opei	ration
Parallelis	sm - Po	erform	ance ev	valuati	on for	Paralle	el DB S	System	s –Dis	tribute	d Data	base A	rchite	cture -	– Dis	tribute	ed
Data Sto	rage –	Distrib	outed T	ransac	tions –	Distri	buted	Query	Proces	sing –	Distri	outed 7	Fransa	ction l	Mana	geme	nt –
Load bal	ancing	tools f	for DD	B - D	DB See	curity.											
MODUI	JE III model			DATAB	ASES	al and	outon	dad D	alation	<u></u>	tamar	Object	malatio	mol fo	oturo	9 Hou	irs
/ Oracle	XML	DDL-(Data M	JQL-C Iodel -	DIECU	-XM	iai anu [Sche	extended = 3	XML (Duervir	$\sigma = W$	eh Dat	abases	relation = One	nai ie en Dat	tahase	s III Sv 2	ĮΓ.
Connecti	vity –	Java D	atabas	e Coni	nectivit	y - Ac	cessin	g Rela	tional	Databa	ise usir	ng PHI	P - An	alytica	al Op	eratio	ns
involved	in Pro	cessing	g Spati	al Data	a –Spat	ial Da	ta Typ	es and	Model	s–Spa	tial Op	erators	s and S	patial	Que	ries–	
Spatial D	Data Inc	dexing	-Multi	media	Databa	ase Co	ncepts				P 0						
MODUI	LE IV	ACTT Doduc	VE TE	MPO	KAL A	$\frac{NDD}{\log D}$	DEDU(DAT	ABAS	ES	nd IIa	$m Cl_{\alpha}$	1000	Intor	9 Hou	rs
Rules F	vent C	Deduc Onditio	on Act	atadas ion M	es–Pro odel –	Desig	n and	Inotatio Implei	nentati	ausai i ion Ice	ues fo	nu HO r Activ	ni Cia ve Dat	uses—I ahase	s _ T	retatle	ons of
Confluer	ice, De	termin	ation a	ind Mo	odulariz	zation	– Tem	poral I	Databa	ses –In	iterpret	ing Ti	me in	Relati	onal	Datab	ases –
Deductiv	ve Data	bases -	– Data	log Qı	ieries			-			•	2					
MODUI	LE V	NOSQ	L DA	FABA	SES											9 Ho	ars

NoSQL Database vs.SQL Databases – CAP Theorem –Migrating from RDBMS to NoSQL- Apache Cassandra – MongoDB – CRUD Operations– MongoDB Sharing – MongoDB Replication – Web Application Development using MongoDB with PHP and Java.

TOTAL: 4	45 HOURS
IUIAL.	+3 1100KS

REFE	RENCES:
1.	Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database Systems, Seventh Edition, Pearson
	Education, 2016.
2.	Abraham Silberschatz, Henry F. Korth, S. Sudarshan, Database System Concepts, Seventh Edition,
	McGraw Hill Education 2020
3.	Brad Dayley, "Teach Yourself NoSQL with MongoDB in 24 Hours", Sams Publishing, 2014.
4.	Thomas Cannolly and Carolyn Begg, "Database Systems, A Practical Approach to Design, Implementation
	and Management", Third Edition, Pearson Education, 2007.
5.	V.S.Subramanian, "Principles of Multimedia Database Systems", Harcourt India Pvt. Ltd., 2001
6.	C.J.Date, A.KannanandS.Swamynathan, "An Introduction to Database Systems", Eighth Edition, Pearson
	Education, 2006
7.	https://archive.nptel.ac.in/content/storage2/courses/downloads_new/106106156

2402CI	P203		SOF	TWA	RE PF	ROJE	CT MA	NAG	EMEN	T AN	D TES	STING	ſ	L	Т	Р	С
														3	0	3	3
PREREO	UISIT	E:															
C	Basi	c know	vledge	about	softwa	re eng	ineerir	g proc	ess								
			0														
COURSE	OBJE	CTIV	/ES:														
		1	l. To	provid	e a str	ong fo	undatio	on on t	he con	cept of	f softwa	are pro	ject de	velopr	nent.		
		2	2. То	learn t	he con	cepts of	on proj	ect ma	nagem	ent an	d evalu	ation.	-	- î			
		3	3. To	study	the var	ious te	st desi	gn stra	tegies.								
		2	4. To	unders	stand th	ne leve	ls of te	esting a	and def	fect cla	isses						
COURSE	OUT	COM	ES:														
On the suc	cessfu	l comp	oletion	of the	course	, stude	ents wi	ll be at	ole to								
CO1:		Expl	ain the	conce	pt of s	oftwar	e proje	ct lifec	cycle.								
CO2:		Desc	ribe pl	anning	g and R	lisk ma	anagen	nent.									
CO3:		Expl	ore cos	st estin	nation	technic	ques.										
CO4:		Expl	ain vai	ious ty	pes of	testing	g.										
CO5:		Unde	erstand	the au	itomati	on too	ls for t	esting	proces	s.							
COs Vs P	Os & 1	PSOs 2	MAPF	PING:													
Г	~~	201			201				-	-						_	
-	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2	
-	CO1	2	2	2	2	1	-	-	-	-	-	-	1	2	3		
-	CO2	2	2	3	2	2	-	-	-	-	-	-	2	2	2		
-	CO3	2	2	2	2	3	-	-	-	-	-	-	2	2	3		
-	CO4	2	2	2	3	3	-	-	-	-	-	-	3	2	3		
L	CO5	2	3	2	2	3	-	-	-	-	-	-	3	2	3		
COUDEE	CON	FENT	<u>د.</u>														
COURSE	CON		0:														
	' T	PRO	DIECT	'EVA	LIAT	ION A		ROIF	СТТ	FF C	VCLE					9 Hor	irs

Understanding software projects – Project management vs. product management – stages of project management – Software project life cycle -Managerial issues- Introduction to Extreme programming. 9 Hours

ACTIVITY PLANNING AND RISK MANAGEMENT MODULE II

Project initiation – Identifying project – Developing project character – Identifying stack holders – Requirement analysis -Gathering requirements – Requirements types – Project scope planning – Resource breakdown structure (RBS) – Manpower planning –Quality planning – Time and Cost estimates –Risk management planning –Procurements for the project.

MODULE III COST ESTIMATION TECHNIQUES

Software effort estimation techniques: KLOC/SLOC estimation, expert opinion, top-down and bottom-up approach, use-case point estimates, object point estimates, Delphi technique – Project test plan –Software quality assurance (SQA) –Software quality control (SQC) –cost of quality –Software quality Metrics –SEI-CMMi model.

INTRODUCTION - SOFTWARE TESTING MODULE IV

Software testing fundamentals–Minimizing Risks –Writing a policy –Building a Structured approach –Developing a test strategy –Building the software testing process – Software testing guidelines-Introduction to Software Licensing.

MODULE V ORGANIZATION AND DEVELOPMENT OF TESTING APPROACH

Developing Test plan – Profile the software project –Understand project risk –Testing technique–Unit testing and analysis –Build and Inspect Test Plan. Software test automation – Design and Architecture for Automation Automation testing - Automation Tools – Selenium and Junit.

TOTAL: **45 HOURS**

REFERENCES:

William E Perry, "Effective Methods for Software Testing", John Wiley & Sons, USA, 2008. 1.

2. Watts. S. Humphrey, "Managing the software process", Addison Wesley, 2011.

9 Hours

9 Hours

9 Hours

M.E. Environmental Engineering | E.G.S. Pillay Engineering College (Autonomous) Regulations 2024 Approved in 11th Academic Council Meeting Held on 09.01.2024

3.	Ian Somerville, "Software Engineering", Addison-Wesley,8thedition, 2006.
4.	Steve McConnell, Code Complete, Second Edition, Microsoft Press. 5.Richard E. Fairley, Software
	Engineering Concepts, McGraw-Hill, 1985
5	1/1 m 1/2 m

5. https://archive.nptel.ac.in/courses/106/105/106105218/

2402CI	P204		MA	ACHI	NE LEA	ARNI	NG TE	CHNI	QUES	S LABO	ORATO	ORY		L	Т	Р	С
														0	0	4	2
PREREQ	UISIT	E:															
]	Basic k	nowle	edge a	bout We	eka To	ol										
COURSE	OBJE	CTIV	ES:														
		1.	To a	pply	the conc	epts of	f Mach	ine Lea	arning	to solv	e real-w	orld p	roblem	s.			
		2.	To i	mplei	nent bas	ic algo	orithms	in clus	stering	& clas	sificatio	on app	lied to t	ext &	nume	ric da	ta.
		3.	To i	mplei	nent alg	orithm	is empl	nasizing	g the ir	nportai	nce of b	agging	g & boo	sting i	n clas	sifica	tion
			& re	gress	ion.												
		4.	To i	mplei	nent alg	orithm	s relate	ed to di	mensi	onality	reducti	on.					
		5.	To a	pply	machine	learni	ng algo	orithms	s for N	atural I	Languag	ge Proc	cessing	applic	ations	•	
On the suc	ccessfi	ul com	pletior	n of tł	ne course	e, stud	ents wi	ll be at	ole to								
CO1:		Use W	eka to	ool fo	r implen	nenting	g machi	ine lea	rning a	lgorith	ms relat	ted to r	numerio	c data			
CO2:		Learn	the ap	plicat	ion of m	nachine	e learni	ng algo	orithms	s for te	xt data						
CO3:		Apply	pply dimensionality reduction algorithms for image processing applications and apply CRFs in text														
		proces	sing a	pplica	ations		-		-	-							
CO4:		- Use fu	Indamo	ental	and adva	anced 1	neural	networ	k algor	ithms f	for solv	ing rea	l- worl	d data			
CO5:		Implei	ment n	nachi	ne learni	ng alg	orithm	s relate	ed to nu	imeric	data	0					
COs Vs P	Os & 1	PSOs I	MAPP	'ING:													
ſ		DO 1	D 00	D 00	DO 1	D O 7	D O (D 07	D O0	D O0	DO10	DO11	0.10		bao	_	
-	COs	POI	PO2	PO3	PO4	PO5	PO6	PO/	P08	P09	POIO	POIT	PO12	PSOI	PSO.	2	
	<u>COI</u>	2	-	3	1	-	-	-	-	-	-	-	2	2	3		
	<u>CO2</u>	2	-	3	1	-	-	-	-	-	-	-	2	2	2		
	<u>CO3</u>	2	-	2	2	-	-	-	-	-	-	-	2	2	3		
-	<u>CO4</u>	2	-	2	2	-	-	-	-	-	-	-	2	2	3	_	
	C05	2	-	2	3	-	-	-	-	-	-	-	2	2	3		
COURSE	CON	TENT	<u>.</u>														
EXPERI	MENT	Г 1			Solving	Regre	ession &	& Class	sificati	on usin	g Decis	sion Tr	rees				
EXPERI	MEN	Г2			Root No	ode At	tribute	Select	ion for	Decisi	on Tree	s usin	g Infori	nation	Gain		
EXPERI	MEN	Г 3			Bavesia	n Infe	rence i	n Gene	Expre	ssion A	Analysis	<u></u>	5				
EXPERI	MEN	Г 4			Pattern	Recog	nition	Applic	ation u	sing Ba	avesian	Infere	nce				
EXPERI	MEN	Γ.5			Baggin	g in Cl	assifica	ation		~8							
EXPERI	MEN	Г б			Baggin	g, Boo	sting a	pplicat	ions us	ing Re	gression	n Tree	5				
EXPERI	MEN	Γ7			Data &	Text (Classifi	cation	using l	Neural	Networ	ks	-				
EXPERI	MENT	Г 8			Using V	Veka t	ool for	SVM	classifi	cation	for cho	sen do	main ar	plicat	ion		
EXPERI	MENT	Г9			Data &	Text (Clusteri	ing usi	ng K-n	neans a	lgorithr	n	T				
EXPERI	MENT	Г 10			Data &	Text C	Clusteri	ing usi	ng Gau	ssian N	<i>A</i> ixture	Mode	ls				
		-			-			U	0		-	_					

2402CP20	5		DAT	ABAS	E TEC	CHNO	LOGY	LAB	ORAT	ORY			L	Т	Р	С
													0	0	4	2
PREREQUIS	ITE:															
	Basic	knowl	edge al	oout th	e datał	base too	ol									
COURSE OE	JECTIV	/ES:														
	1.	To s	tudy an	ıd impl	ement	the bas	sic SQI	_ comr	nands							
	2.	To ii	mpleme	ent the	databa	se desi	gn in F	PL/SQI								
	3	To ii	mnleme	ent dist	ributed	l datab	ase act	tive da	tahases	and na	arallel (latabas	ses			
0 1		101			1100100				lubuse	, and pe		lataba	505			
On the succes $CO1$	stul cor	npletio	on of the	e cours	e, stud	lents wi	ill be a	ble to								
	Execu	te the	basic S	QL con	nmanc	ls in Ol	RACLI	<u>-</u>	~ ~ ~							
CO2:	Imple	ment ir	ntellige	nt data	bases i	n MYS	SQL an	d ORA	ACLE							
03:	Execu	Execute the basic SQL commands in ORACLE														
CO4:	Devel	Develop PL/SQL programs in ORACLE														
CO_{5}	Work	with p	arallel	databa	ses usi	ng sim	ulation	tool.								
COS VS POS	& PSUS	MAPI	PING:													
CO	s PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	02	
CO	1 2	-	3	1	-	-	-	-	-	-	-	2	2	3		
CO	2 2	-	3	1	-	-	-	-	-	-	-	2	2	2		
CO	3 2	-	2	2	-	-	-	-	-	-	-	2	2	3		
CO	4 2	-	2	2	-	-	-	-	-	-	-	2	2	3		
	5 2	-	2	3	-	-	-	-	-	-	-	2	2	3		
COURSE CO	NTENT	ГS:														
EXPERIME	NT 1		Wo	rking t	basic S	QL cor	nmand	s (DD	L, DM	L, DCL	, and T	TCL)				
EXPERIME	NT 2		Exe	ecuting	Single	e Row a	and Gro	oup fui	nctions							
EXPERIME	NT 3		Rui	nning S	QL qu	eries o	n Join	and In	tegrity	constra	ints					
EXPERIME	ENT 4 Implement Simple programs using PL/SQL blocks															
EXPERIME	NT 5		Ap	ply the	conce	pts of E	Excepti	on han	dling i	$\frac{n PL/S}{1}$	QL blo	ck				
EXPERIME	NT 6		Cre	ate Cu	rsors a	nd pac	kage in	PL/SC	<u>QL bloo</u>	ck						
EXPERIME	<u>NT 7</u>		Use	$\frac{1}{1}$ the co	ncept	of Proc	cedures	and F	unction	in PL	SQL b	lock				
EXPERIME	NT 8		Imp	blemen	t Distr	Ibuted	Databa	se for	Bookst	ore	Accorti	one for	Donl	- Dot	haga	
EXPERIME	NT 9		ACI	lomor	t Dorol	-mpie		f Univ	orgity	$\frac{15 \text{ and }}{100000000000000000000000000000000000$	ling fo		Dalle		ibase	
EXPERIME	INT 10		coll	leges	i Fafal	iei Dala	avase C		ersity	Counse	anig 10	i Engli	leenn	g		

2402CP206	MINI PROJECT WITH SEMINAR	L	Т	Р	C
		0	0	4	2
COURSE OBJE	ECTIVES:				
	1. To develop knowledge to formulate a real world problem and project's go	als			
	2. To identify the various tasks of the project to determine standard procedu	res			
	3. To identify and learn new tools				
	4. To understand the various procedures for validation of the product and an	alysis	the c	ost	
	effectiveness				
	5. To understand the guideline to Prepare report for oral demonstrations.				
On the successf	ul completion of the course, students will be able to				
C01:	Self-learning various topics.				
CO2:	Survey the literature such as books, national/international refereed journals and co	ontact	resou	rce pe	ersons
CO2:	Write technical reports				
CO3.	Write technical reports	. .	4 - 6 4 -	.1	- 11
CO4:	Develop oral and written communication skills to present and defend their work is	n-fron	t of te	chnic	ally
	qualified audience.				
GUIDE LINES:					
A Mini Project	shall be undertaken by the students individually in consultation with the respectiv	e facu	ılty ar	nd He	ad of

A Mini Project shall be undertaken by the students individually in consultation with the respective faculty and Head of the Department, as specified in the curriculum. Periodically four reviews are conducted and are evaluated by the faculty in charge. A student is expected to make a presentation about the mini-project during the final evaluation and submit the project report.

2403	BCP01	1				CYE	BER S	ECUR	ITY					L	Т	P	С
													í	3	0	0	3
PREF	FOI	ISITE	•														1
	шųо		Knov	wledge	of inf	ormatio	on syst	ems ar	nd netv	vorks							
			1110	meage	01 111	Jinuti	511 5 5 5 6	ciiis ui	14 11000	(OIII)							
COU	RSE O	BJE	CTIVE	S:													
			1. T	o unde	rstand	the nat	ure of	threats	and c	yber se	curity	manag	ement	goa	als a	nd	
			te	chnolo	gy.												
			2. T	o unde	rstand	the lan	dscape	e of had	cking a	and per	imeter	defens	se mec	han	isms		
			3. T	o devel	lop stra	tegies	for cy	<u>ber sec</u>	urity a	ind pro	tecting	g critica	al infra	astru	ictur	e.	
			4. T	o unde	rstand	policie	s to m	itigate	cyber	risks.	1	•	1	1			
COU	DEE O		$\frac{5. \text{ T}}{\text{OMES}}$	o unde	rstand	the IT	Act, sc	cheme,	ameno	dments	and e	mergin	g cybe	er la	w.		
$\frac{0001}{0000}$	in the successful completion of the course, students will be able to																
	CO1: Analyze and evaluate the cyber security needs of an organization.																
	$\frac{02}{02}$	Δn	alvze t	he secu	rity ie	sues in	netwo	rks and	d com	uiter s	unizati	to seci	lire an	inf	astri	Icture	
	03:	De	sign or	ne seet	nity 18	er secu	ritv st	rategie	s and r	olicie	3. S.	10 500	are all		usul	.cture	
	04:	An	plv crit	tical th	inking	and pr	oblem-	-solvin	g skill	s to de	tect cu	rrent a	nd futi	ire a	attac	ks on	an
	organization's computer systems and networks																
C	CO5: Understand the functionality of cyber security tools																
COs V	Ds Vs POs & PSOs MAPPING:																
-			01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10PO11 PO12 PS01 PS02														
	COs	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2															
	CO1	2	2	2	2	-	2	-	-	-	-	-	-	2	2	3	
	CO2	2	3	2	3	2	2	-	-	-	-	-	-	2	2	2	
	CO3	2	2	2	2	-	2	-	-	-	-	-	-	2		3	
	CO4	3	3	2	2	2	2	-	-	-	-	-	-	2	2	3	
	C05	3	2	2	2	2	2	-	-	-	-	-	-	2		3	
COUI	RSE C	ONT	ENTS:														
MOD	ULE I	0	/ERVI	EW O	F CYI	BER S	ECUR	RITY								9 Hoi	irs
Need	for Cyl	ber se	curity -	Histor	ry of C	yber se	ecurity	- Defi	ning C	ybersp	ace an	d Cybe	er secu	irity	Star	ndards	5 —
CIA T	riad –	Cybe	r securi	ity Frai	newor	ĸ											
MOD	ULE I	I AI	TAC	KS AN	D COI	JNTE	RMEA	ASURI	ES							9 Hoi	irs
Malici	ious A	ttacks	, Threa	ts, and	Vulne	rabiliti	es – So	cope of	f cyber	-attack	s – To	ols use	ed to at	ttacl	k coi	npute	r
systen	ns – se	curity	breach	ı – Risł	cs, vuli	nerabil	ities ar	nd threa	ats. Ma	alware	– mali	cious s	oftwa	re a	ttack	-soc	ial
engine	eering	attack	– wire	less ne	twork	attack	– web	applica	ation a	ttack A	ccess	control	l - Auc	lit –	- Aut	hentic	cation
- Bion	netrics	- Den	ial of S	Service	Filters	s - Ethi	cal Ha	cking -	– Firev	valls -	Scanni	ing, See	curity	poli	су, '	Threat	
Manag	gement	t - Ap	plying	softwa	re upda	ate and	patche	es - Int	rusion	Detect	tion Sy	stems	-Virtu	al P	rivat	e	
Netwo	orks –C	Crypto	graphi	c Tech	niques											-	
MOD	ULE I	IISE	CURI	NG TH	<u>IE IN</u>	FRAS	<u>rruc</u>	TURE	1.		<u> </u>	1 1		•		Hou	rs
Infrast Under	tructur standii	e Sec ng Vio	urity 1 leo Sui	n the veillan	Real ice Sys	World tems -	- Und Under	derstan standii	ng Intr	Access usion-l	-Contr Detecti	fol and	Mon Repo	rtin	ing g Sy	System stems	ms -
MOD	ULE I	V SE	CURI	NG LO	DCAL	HOST	S AN	D NET	WOR	KS					9) Hou	rs
Local	Host	Secur	ity in	the Re	al Wo	rld - S	Securin	g Dev	rices -	Protec	ting t	he Inn	er Per	ime	ter -	Prot	ectin
Remo	te Acc	ess Lo	ocal Ne	etwork	Securi	ty in th	ne Real	l Worle	d - Net	tworki	ng Bas	ics - U	nderst	tand	ling 1	Netwo	orkin
Protoc	cols - U	Jnder	standin	g Netw	vork Se	ervers	- Unde	erstand	ing Ne	etwork	Conne	ectivity	Devic	ces ·	- Un	dersta	ndin
metwo	III F	unsmis	SION M	leala S	ecurity	•										0 U.	ire
Zenm ^e	$\frac{\mathbf{ULL}}{\mathbf{n} - \mathbf{H}}$	vdra –	-Kisma	t – Iob	n the F	inner	_ Airo	eddon	– Dear	ither R	oard _	Aircra	ick-no	_ F	vilO	ס חטו כ SX	11.5
	μp 11	Juna –	12151110	. 5011	n uie r	apper .	¹ mg	cauon	Deat	ALINCI D	Julu –	1 11010	wr-ng	Ľ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	571	

	TOTAL: 45 HOURS
REFE	RENCES:
1.	William Stallings, Effective Cyber security: A Guide to Using Best Practices and Standards, 1st edition, 2019.
2.	Charles J. Brooks, Christopher Grow, Philip A. Craig, Donald Short, Cybersecurity Essentials, Wiley Publisher, 2018.
3.	Yuri Diogenes, ErdalOzkaya, Cyber security - Attack and Defense Strategies, Packt Publishers, 2018.
4.	Carol C. Woody, Nancy R. Mead, Cyber Security Engineering: A Practical Approach for Systems and Software Assurance, Addison-Wesley, 2016.
5.	Thomas A. Johnson Cyber Security- Protecting Critical Infrastructures from Cyber Attack and Cyber Warfare, CRC Press, 2015.
6.	https://nptel.ac.in/courses/106106248

2403CP012		SPE	ECH	PROC	CESSI	NG AN	D SY	NTHE	SIS		I	T	P	C		
												3 0	0	3		
PREREQUISI	ГE:															
	Basic Co	ncepts	of Nat	ural La	nguage	e proce	ssing									
COURSE OBJ	ECTIVES	5:														
	1. 7	'o unde	rstand	the ma	thema	tical fo	undati	ions ne	eded fo	or spee	ch pro	cessin	g.			
	2. 7	'o unde	rstand	the bas	sic con	cepts a	nd alg	gorithm	s of sp	eech p	rocessi	ing and	l syntl	nesis		
	3. 7	'o famil	iarize	the stu	dents v	with th	e vario	ous spe	ech sig	nal rep	oresent	ation,	coding	g and		
	r	ecognit	ion tec	hnique	es				C			-				
	4 7	o appre	ciate	he use	of spe	ech pro	nessi	ng in ci	irrent t	echnol	logies	and to	expos	e the		
	т. 1	tudonto	to roo	line use	d appl	iontion	s of sr	ng m cu	rocossi	ng	logics		слроз			
On the success	ful commi	ation of	the of		tu appi		$\frac{501 \text{ sp}}{200 \text{ sp}}$	to to	1000551	ing.						
CO1.	Identify t	he vario	une co	nnoral	spectr	s will t al and	censtr	: 10 al feati	ires rec	mired	for ide	ntifvir	o snee	ch		
001.	units $-$ pl	noneme	. svlla	ble and	word.	ai and	cepsu	ai ican	1105 100	Junea		iitii yii	ig spec	×11		
CO2:	Determin	e and a	pply N	lel-free	quency	cepstr	al coe	fficient	ts for p	rocess	ing all	types	of sign	als.		
CO3:	Justify th	e use of	f form	ant and	l conca	tenativ	e appi	oaches	to spe	ech sy	nthesis	5.				
CO4:	Identify t	he appr	opriate	e appro	oach of	speech	ı syntl	nesis de	ependir	ng on t	he lang	guage	to be			
CO5:	processee	l a tha w		anaadi	na taak		form		tingon	aaab						
COS VS POS &	PSOs M	Determine the various encoding techniques for representing speech. PSOs MAPPING:														
	1000111	Os MAPPING:														
COs PO	D1 PO2	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2														
CO1	3 3	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 3 3 - - 2 - 3 2 - - 2 3														
CO2	3 2	3	2	2	2	-	-	2	2	3	-	3	2	-		
CO3	$\frac{2}{2}$ 3	3	-	-	2	-	-	-	-	-	-	2	2	-		
C04	$\frac{3}{3}$ $\frac{2}{3}$	3			-	$\frac{2}{2}$	-	2	$\frac{2}{2}$	<u> </u>	-	$\frac{3}{2}$	2	-		
	5 5	5			_	2	_	4	2	1	_	2	5			
COURSE CON	TENTS:															
	FUNDA	MENT	<u></u>)E CDI	TECH	PROC	TECCI	NC					0 H	urc		
Introduction –	Spoken I	angijag	e Stru	cture –	Phone	tics an	d Pho	nology	– Svll	ables a	and Wo	ords –	Synta:	vui s		
and Semantics	– Proba	bility, S	Statisti	cs and	I Infor	mation	Theo	ory – F	Probabi	lity T	heory	– Esti	matio	1		
Theory – Signi	ficance T	esting –	Inform	nation	Theor	у.		•		•	•					
MODULE II	SPEECH	I SIGN	AL R	EPRE	SENT	ATIO	NS AN	D CO	DING				9 Ho	ours		
Overview of D	igital Sig	nal Pro	cessin	g – Sp	eech S	ignal F	Repres	entatio	ns - S	hort tii	me Fou	ırier A	nalysi	s –		
Acoustic Mod	el of Spe	ech Pro	oduction	n - I	Linear	Predic	tive C	Coding	– Cep	stral I	Process	sing –	Form	ant		
Frequencies –	The Role	of Pitch	-Spe	ech Co	oding –	- LPC (Coder.						0 110			
Hidden Marko	y Models	– Defin	ition -	-Conti	niioiis	and Di	sconti	niioiis	HMMs	– Prac	ctical I	ssues -	<u>9 П0</u>	urs		
Limitations. A	coustic M	odeling	– Var	iability	in the	Speec	h Sign	al – Ex	tractin	g Feat	ures –	Phone	tic Mo	deling		
– Adaptive Tec	hniques -	- Confic	lence]	Measur	res – O	ther Te	echniq	ues.		C				U		
MODULE IV	TEXT A	NALY	SIS										9 Ho	ırs		
Lexicon – Do	ocument	Structu	e Det	tection	– Te	xt No	rmaliz	ation .	– Ling	guistic	Analy	/sis	Hom	ograph		
Disambiguatio	n – Morp	10l0g1C	al Ana	lysis – Duroti	· Letter	-tosou	nd Co	nversic	on – Pr norotio	osody	– Gen	eratior	scher	natic –		
MODULE V	$\frac{-5 \text{ symbol}}{\text{TEXT T}}$	O SPE	ECH S	SYNTI	HESIS	ignine	ut – Fl		nei ati0	11			9 Ha	ours		
Attributes – Fo	ormant Sp	eech S	ynthes	is - Co	oncater	native	Speecl	h Syntl	nesis –	Proso	dic Mo	odifica	tion o	f		
Speech – Sou	rce-filter	Models	for I	Prosody	y Mod	ificatio	n – I	Feature	space	for s	peaker	recog	nition	-		
similarity mean	suresEval	lation of	of TTS	S Syste	ms, Co	oncater	native	and wa	avefor	n synt	hesis r	nethod	ls, sub	-		
word units for	115, inte	11g1D1111	y and	natural	mess-re	one of t	prosod	у.								

M.E. Environmental Engineering | E.G.S. Pillay Engineering College (Autonomous) Regulations 2024 Approved in 11th Academic Council Meeting Held on 09.01.2024

TOTAL: **45 HOURS REFERENCES**: 1. Lawrence Rabiner and Biing-Hwang Juang, "Fundamentals of Speech Recognition", Prentice Hall Signal Processing Series, 1993 Joseph Mariani, "Language and Speech Processing", Wiley, 2009. 2. SadaokiFurui, "Digital Speech Processing: Synthesis, and Recognition", Second Edition, 3. (Signal Processing and Communications), Marcel Dekker, 2000. Thomas F.Quatieri, "Discrete-Time Speech Signal Processing", Pearson Education, 2002. 4. 5. Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, "Spoken Language Processing – A guide to Theory, Algorithm and System Development", Prentice Hall PTR, 2001. https://archive.nptel.ac.in/courses/117/105/117105145/ 6.

2403CP(013				AI	PPLIE	D CR	YTOG	RAPE	IY			I	, T	Р	C
														3 0	0	3
PRERE	OUI	SITE	:													
	<u> </u>]	Basic 1	knowle	dge ab	out ca	lculus	and lin	ear alg	ebra						
COURS	E O	BJEC	TIVE	S:												
			1. T	o analy	ze the	conce	pts of c	cryptog	graphic	techn	iques					
			2. T	o apply	the m	athem	atical r	represe	ntation	of cry	ptogra	phic a	lgorith	ms		
			3. al	gorithr	ns To i	implen	nent th	e symr	netric a	and as	ymmet	ric enc	ryptior	ı algor	ithms	
COUDO																
COURS	EO	UTCO	DMES	: 	44.000			a		4.0						
$\frac{On \text{ the st}}{CO1}$	ucces	sstul c	omple	tion of	the co	of or u	atograf	S WIII (be able	to						
C01	•	Ana	uyze u	he used	nony	of cryp	numb	ny pri	ratora	s. in Eno	runtior	ond I	Doorsint	ion		
CO2	•		nyze u dv the	Svmm	etric k	ev and	l nubli	r gene	nervnt	ion tec	hnique		Jeerypi	.1011.		
<u> </u>	• •	Des	velon F	Jash al	onrithi	ns to e	ensure 1	the aut	hentics	ation	mique	· 3 .				
CO5	:	Enh	ance t	he seci	rity th	rough	digital	signat	ure.							
COs Vs	POs	& PS	SOs M	APPIN	NG:	10481	<u></u>	5-8								
С	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
С	CO1	3	1	3	2	-	2	-	-	-	-	-	-	2	3	
С	CO2	2	1	3	2	-	2	-	-	-	-	-	-	2	2	
C	CO3	1	1	3	2	-	2	-	-	-	-	-	-	2	3	
C	CO4	3	1	3	3	-	2	-	-	-	-	-	-	2	3	
C	CO5	1	1	3	1	-	1	-	-	-	-	-	-	2	3	
COUDS	FC	ONTI	NTC.													
COURS	EU		21110.													
MODUI	LEI	INT	ROD	UCTI	ON										9 Ho	irs
Cryptogr	raphy	goals	s -Tax	onomy	of cry	ptogra	phy pr	imitive	s -Bac	kgroui	nd on f	unctio	ns -Bas	sic tern	ninolog	<u>y</u>
- Block c	ciphe	ers, str	eam ci	pher, s	ubstitu	ition ci	iphers,	transp	osition	ciphe	rs -Cor	nposit	ion of c	ciphers	-Digit	al
signature	e -Pu	blic k	ey cry	ptograp	ohy -H	ash fur	nctions	-Proto	col an	d mecl	nanism	- Key	establis	shment	t and	
managen	nent	-Pseu	do ran	dom nı	umbers	-Class	ses of a	attack.								
MODUL	LEI	I RA	NDO	M GEN	NERA'	TORS									9 Ho	ırs
Pseudo ra	ando	m bits	s and s	equenc	ces -Ra	indom	bit ger	neration	1 -Pseu	idoran	dom bi	t gene	ration -	ANSI	x9.17	
Generato	or -Fl	IPS 18	36 Gen	erator-	statist	ical te	sts -Cr	yptogra	aphical	lly sec	ure pse	udorai	ndom b	it gene	eration	-
RSA pse	udor	andor	n bit g	enerato	$\frac{\mathbf{r} - \mathbf{Bl}}{\mathbf{r}}$	im-Blu	im-Shu	ib pset	idoran	dom bi	t gener	ator.			0.77	
MODUL Dia als ais			Drad	PTION	N ALG		HMS	ana T		~~		7			9 Hou	lrs
$FE \Delta I = \Pi$	pner DF A	-DES	-PTOU FER _E	uct cip	hers ar	la reis Two fi	sh enci	ners - I	JES al	gorithi r and c	II- DE: lifferer	s prop	erties a	na stre Iveie F	ngtn-	
kev encry	vntio	n - RS	A nuh	lic kev	encrv	ntion-	Ellipti	c curve	e crypto	osvstei	ms Ho	momo	rphic e	ncrvnt	ion	
Diffie-He	ellma	an key	v excha	ange al	gorithi	n, Elg	amal C	ryptos	vstem.	5595001	,		ipine e	nerjpe	1011,	
MODUI	LEI	V HĂ	SH A	LĞOR	ITHN	IS		71	<i>.</i>						9 Hou	rs
Hash fun	nction	n and	data in	tegrity	-Class	sificati	on and	frame	work -	Basic	constru	ctions	and ge	eneral 1	results	-
Un keyed	d has	sh fun	ctions	-Keyee	d hash	function	ons -da	ta inte	grity a	nd me	ssage a	uthent	ication	-Adva	nced a	ttacks
and hash	func	ction-	Crypto	ograph	ic hash	functi	ions M	D5, SF	IA						0.11	
NIUDUL Digital a	LE V		JIIA	J SIGN	ATU	KES ntial v	Inform	hility	under	chose	n maa	2900 0	ttaalza	Sohn	19 H0	
scheme '	Sigila Zero	Knov	- nou vledoe	Proof	s and F	rotocc	nnorga ols.	omy	unuer	chose	n mess	sage a	macks,	Schill	л sig	iature
	0			- 1001			-~*									
												r	ΓΟΤΑ	L: 45	5 HOU	RS

REFERENCES:

1. B. Schneier, Applied Cryptography, 2nd edition, J. Wiley and Sons

2. N. Ferguson, B. Schneier and T. Kohno, Cryptography Engineering: Design, Principles and
Practical Applications, Wiley Publishing.
3. Wade Trappe, Lawrence C Washington, "Introduction to Cryptography with coding theory", 2nd
ed, Pearson, 2007.
4. W. Mao, "Modern Cryptography – Theory and Practice", Pearson Education, Second Edition, 2007.
5. William Stallings, "Cryptography and Network security Principles and Practices", Pearson/PHI,
March 2013.
6. Jonathan Katz and Yehuda Lindell, "Introduction to Modern Cryptography", 2nd edition, CRC Press,
2015.
7. Stallings, Cryptography & Network Security, Pearson Education, 4thEdition 2006.
8. Jeffrey Heffstein, Jill Pipher, J.H.Silverman, "An Introduction to Mathematical Cryptography",
Springer science & Business Media, Dec 2008.
9. Paar C, Pelzl J. Understanding cryptography: a textbook for students and practitioners. Springer
Science & Business Media, 2009.
10. https://archive.nptel.ac.in/courses/106/105/106105162/

2403	SCP01	4				BIO	METF	RIC TH	ECHN	OLOG	SIES				L 3	T 0	P 0	C 3
PRFL	FOU	IST	тғ	•												L		
	EQU	1.51]	Basic l	knowle	dge ab	out bio	ologica	l or be	havior	al feat	ures.						
						U		U										
COU	RSE O	BJ	EC	TIVE	S:													
				1. T	o unde	rstand	the im	portanc	ce of b	iometr	ic syst	em in t	the org	aniza	tion			
				2. T	o Desi	gn a bi	ometri	c recog	gnition	system	n using	g facial	and fi	nger	prin	t reco	ognitio	on
				te	chniqu	le	tha 2D	DIOM		Carrata	m for			inatio				
				3. 10	o imple	ement	the 3D	BIOM	IEIRI	_ syste	m for	securit	y appli	icatio	ns			
COU	RSE O	U	CC	OMES	:													
On the	e succe	essf	ul c	omple	tion of	the co	urse, s	tudent	s will t	be able	to							
C	D1:		Ana	alyze tl	he fund	ctionali	ties an	d appl	ication	s of Bi	ometri	ic syste	em.					
C	D2:		Apr	oly the	finger	print a	and fac	ial reco	ognitio	n techi	nique f	for real	l time a	applic	atio	n.		
C	D3:		Des	ign an	IRIS 1	ecogni	ition sy	/stem u	using b	iometr	ic syst	em.						
C	D4:		Δns	alvze tl	he fund	rtions a	and and	licatio	ons of h	havio	oral bi	metri	<u>_</u>					
C	D5:		Imp	lemen	t the 3	D BIO	METR	IC Tec	chnolo	gv in th	heir ap	plicati	ons.					
COs V	JS: Jumplement the 3D BIOMETRIC Technology in their applications. Vs POs & PSOs MAPPING:																	
			D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02															 1
	COs	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 1 3 1 3 2 - 2 - - - 2 3															-	
	<u>CO1</u>	3	3	1	3	2	-	2	-	-	-	-	-	-	_	2	3	-
	$\frac{CO2}{CO2}$	2		1	3	$\frac{2}{2}$	-	2	-	-	-	-	-	-		$\frac{2}{2}$	2	-
	$\frac{CO3}{CO4}$	1		1	3	2	-	$\frac{2}{2}$	-	-	-	-	-	-		$\frac{2}{2}$	3	-
	C04	1		1	3	1	_	1	_	_	_	-	_	_		$\frac{2}{2}$	3	1
					_								1					1
~~~																		
COU	RSE C	ON	NTE	ENTS:														
MOD	IILE I	-	INT	ROD	UCTI	ON											9 Ho	urs
Person	1 Reco	gni	tion	n -Bior	netric	system	s-Bion	netric f	unctio	nalities	s: verif	ication	n, ident	ificat	ion	– Bio	ometri	C
systen	ns erro	rs -	Th	e desig	gn cycl	le of bi	ometri	c syste	ms - A	pplica	tions c	of Bion	netric s	systen	ns			
-Secui	ity and	d pi	riva	cy issu	ies										_			
Image	proce	ssir	ig b	asic: v	what is	image	, acqui	sition,	type, p	point of	peratic	ons, Ge	ometri	c trar	isfo	rmati	ons.	
MOD Einger	ULE I	.1		GEK	PRIN	I ANI	JFAC Thinn	IAL K	ECOC invition		UN	moto	hina				9 HO	urs
FINGE	PIIII I PECO		niit	IIOII, E TION)	Introdu	ement,	Image	ing, m	sition.	2D sor		niaic 2D son	ning sors F	laca d	atac	otion	Foot	110
evtrac	tion_m	ate	hin	TON.	muou	uction-	image	acqui	sition.		15015, .	SD Sell	5015-1	aceu		uon-	· reatt	110
MOD	ULE I	II	IRI	<u>s</u> . S ANI	D OTH	IER T	RAIT	S									9 Hoi	irs
Desig	n of IR	IS	reco	ognitic	on syste	em- IR	IS seg	mentat	ion- no	ormaliz	ation -	- enco	ling an	d ma	tchi	ng- I	RIS qu	uality
-perfo	rmanc	e ev	valu	ation -	-other	traits- e	ear det	ection	- ear re	ecognit	ion - g	ait fea	ture ex	tracti	on a	ind n	natchi	ng -
challe	nges- l	nan	d ge	eometr	y -soft	biome	etrics											
MOD	ULE I	V	BE	HAVI	ORAL	BION	METR	ICS	<b>.</b>	miaa :		20 af 1	ahar-!	mc11.	0	atai -	<u>9 Hou</u>	Irs
introd - sion	uction ature -	-re key	eatu vstr	res- cl oke dv	assific vnamic	ation o	e dena	vioral   erits -d	emerit	rics -pi	licatio	es of t ns- en	or sou	oral bi	iome tvne	301108	; nen is	sues -
future	trends	ne.	, 50	one uj	,	.5 101		/110 -u		upp.	ireatio		51 500		-, pc	5 0	ren 18	5405 -
MOD	ULE V	V.	3D	BIOM	IETRI	[C											<b>9 Ho</b>	urs
Classi	ficatio	n o	f 3I	) bion	netric i	maging	g metho	ds - 3I	) biom	etric T	echno	logies-	3D pa	lm pr	int o	captu	ıring	•.
systen	18-3D	info	orm	ation i	n paln	n print-	Featu	re Extr	action	from 3	SD pal	m prin	t -matc	ching	and	tusi	on - se	curity
appile	au0118																	
													]	ΓΟΤΑ	L:	45	HOU	JRS

REFE	RENCES:
1.	Khalid saeed with Marcin Adamski, Tapalina Bhattasali, Mohammed K. Nammous,
	Piotrpanasiuk, mariusz Rybnik and soharab H.Sgaikh, "New Directions in Behavioral
	Biometrics", CRC Press 2017.
2.	David Zhang, Guangming Lu, "3D Biometrics Systems and Applications", Springer 2013.
3.	James wayman, Anil K.Jain, Arun A. Ross, Karthik Nandakumar, "Introduction to Biometrics",
	Springer,2011.
4.	John Vacca, "Biometrics Technologies and Verification Systems", Elsevier, 2007.
5.	Rafael C. Gonzalez, Richard Eugene Woods, "Digital Image Processing using MATLAB", 2nd
	Edition, Tata McGraw-Hill Education 2010.
6.	https://nptel.ac.in/courses/106104119

2403	CP01	5			BLOG	СКСН	AIN T	ECHN	OLO	GIES				L	Т	P	С
														3	0	0	3
рргр	FUI	ISITE	•										1			I	
I NEN	LUU		• Strong	progra	mmin	g skills	s. basic	know	ledge o	on crvr	otogran	hy and	l data	stru	cture	s.	
unders	standin	ig the c	concep	t of TC	CP/IP	5											
COUI	RSE O	BJEC	TIVE	S:													
			1. To	o share	inform	nation	among	gst all p	arties	that ac	cess it	via an	appli	catio	on.		
			2. To	o creat	e a dec	entrali	zed, se	cure, a	nd trai	Ispare	nt syste	em for	recor	ding	g and	verify	ving
			tra	ansacti	ons or	data.	,			T.	<i></i>			2	,	J	0
			3. To	o incre	ase tru	st, secu	urity, ti	ranspar	ency a	mong	memb	er orga	nizati	ons	by in	nprov	ing
			th	e trace	ability	of dat	a acros	s a bus	siness 1	networ	k.						
COIII	OURSE OUTCOMES: n the successful completion of the course, students will be able to																
On the	n the successful completion of the course, students will be able to CO1: Explain cryptocurrencies and their relationship with the blockshein technology																
CO	CO1:     Explain cryptocurrencies and their relationship with the blockchain technology																
C	CO2:       Explain the different steps in the use of Bitcoins.																
C	)3:					eps III			<u>coms.</u>	-11	· 1.						
	$\overline{)4}$	Rei	ate we	eb 3 an	а нуре	er leag	er to co	oncept	<u>s in bic</u>	оскспа	in tech	nologi	es.				
	) <u>-</u> . ) <u>5</u> .	App	oly blo	ck cha	$\frac{1}{1}$ ins to $\frac{1}{2}$	lifterei	nt real-	life pro	oblems								
7.2 7.200	<u>)</u> 5. /s POs	րող Տ & PS	SOs M	t a sim	ipie apj	piicatio	on usin	g Ethe	reum.								
[	COs	<b>PO1</b>	01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2														
	CO1	3	1	3	2	-	2	-	-	-	-	-	-	4	2	3	
	<b>CO2</b>	2	1	3	2	-	2	-	-	-	-	-	-	2	2	2	
	CO3	1	1	3	2	-	2	-	-	-	-	-	-	2	2	3	
	CO4	<u> </u>	1	3	3	-	2	-	-	-	-	-	-	4	2	3	
ļ	003	1	1	5	1	-	1	-	-	-	-	-	-	4	2	3	
COUI	RSE C	ONTI	ENTS:														
	UEI	TNI		LIGTI												0 11	
MODI Block	ULE I		I KOD	UCII story	UN and Or	igin of	Block	chain	Tech	nical (	oncon	ts of B	lock	hai	n Sva	9 HOU	irs
Physic	al Led	lger Te	echnolo	ogy and	d Secu	ritv - Γ	Diock Digital	Ledger	· Techr	nology	Digit	al Secu	irity T	'ech	nolo	gv	-
Crypto	ograph	ic Has	h Func	tions -	Digita	ll Signa	atures	Leager	reem	101055	, 21910			0011	11010	57.	
MOD	ŬLĖ I	I FO	UNDA	TION	IS	U										9 Hot	irs
Centra	lizatio	on vs. I	Decent	ralizati	on of l	Blockc	hain - Ì	Distrib	uted L	edger '	Techno	ology (	DLT)	Tee	chnic	al	
Conce	pts: M	ining -	- Distri	buted	Consei	nsus- I	ncentiv	ves - Pi	oof of	Work	- Cryp	tosyste	ems ir	n pra	actice	Distri	buted
Netwo	orks – A	Attack	s - Cor	isensus	s Proto	cols											
MOD	ULE I		CB3 AI	ND HY	(PERI	LEDG.	ER Era		Davia	1	at fue					Hou	rs
web 3	control - R	eferen	pioyine ce arch	ent – P Sitectur	051 го `e – Ну	perled	s – Fro ger Fa	ntena - bric – (	- Deve Corda	lopme	nt fran	lework	- ну	peri	leage	r Proj	ects –
									corda.						- L		
MOD	ULE I	V SM	ART (	CONT	RAC'	I'S & E	CTHE	REUM		100100	nin D	41			( ](	Hou	rs
Smart of Fth	Contra	acts - 1	Derinit	-Prog	xecard rammi	ian coi ng lan	itracts	- Ethei	ereum	deve	lain –E Ionmer	thereu	m net	wor ent	к – С - No	ompc	nents
Token	(NFT	)	,	1108													-51010
MOD	ULE V	V AL	TERN	ATIV	E BL(	CKC	HAIN	S ANI	APP	LICA	TIONS	5				9 Hot	irs
Altern	ative l	block	chains	– App	plicatio	ons, In	ternet	of Thi	ngs, C	lovern	ment,	Health	, Fina	ince	- S	calabi	lity –
Privac	У																
												]	ГОТА	L:	45	HOU	RS

## **REFERENCES:**

- 1. Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and Smart Contracts Explained", Second Edition, Packt Publishing, 2018.
- 2. Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction" Princeton University Press, 2016
- 3. Alex Leverington, "Ethereum Programming" Packt Publishing Limited, 2017.
- 4. Andreas Antonopoulos, Satoshi Nakamoto, "Mastering Bitcoin", O'Reilly Publishing, 2014.
- 5. Roger Wattenhofer, "The Science of the Blockchain" Create Space Independent Publishing Platform, 2016
- 6. Arshdeep Bahga and Vijay Madisetti, "Blockchain Applications : A Hands-On Approach", 2017
- 7. https://archive.nptel.ac.in/courses/106/105/106105235/

2403	BCP01	6				SOF	T COI	MPUT	ING				]	L	Т	Р	С
														3	0	0	3
PREF	REOUI	ISITE	:														
	<u> </u>	A	string	mather	natica	l backs	ground	, progr	ammin	g skill	S						
			C							0							
COUI	RSE O	BJE	CTIVE	S:													
			1. T	o conce	eptuali	ze the	workir	ng of h	uman t	orain u	sing ne	eural n	etwork	s.			
			2. Su	ummar	ize and	ł apply	the m	ethodo	logies	involv	ved in s	olving	; proble	ems	relat	ted to	
			Fi	uzzy Lo	ogic, V	<i>Various</i>	s fuzzy	systen	ns and	Rough	n sets.						
			3. To	o Provi	de the	mathe	matica	l back	ground	l for ca	rrying	out the	e optin	niza	tion	and	
			ta	m111ar1	zıng g	enetic	algorit.	$\frac{hm}{1}$ tor	seek1r	ig glot	al opti	mum 1	$\frac{n \text{ self}}{1}$	lear	rning	situat	.10n.
			4. D	evelop	some	familia	arity w	ith cur	rent re	search	proble	ms and	a resea	rch	metr	10ds 11	n
			30		npunn	g by w	orking	on a l	esearci	1 of de	sign pi	ojeci.					
COU	RSE O	UTC	OMES	•													
On the	e succe	essful o	comple	tion of	the co	ourse, s	tudent	s will t	be able	to							
C	CO1:     Describe human intelligence and AI Explain how intelligent system works       CO2:     Describe human intelligence and AI Explain how intelligent system works																
C	CO2: Recognize the feasibility of applying a soft computing methodology for a particular problem.																
C	CO2:Recognize the feasibility of applying a soft computing methodology for a particular problem.CO3:Design neural networks for pattern classification and regression problems																
	CO2:Recognize the feasibility of applying a soft computing methodology for a particular problem.CO3:Design neural networks for pattern classification and regression problemsCO4:Apply genetic algorithms to optimization problems																
C	CO3:       Design neural networks for pattern classification and regression problems         CO4:       Apply genetic algorithms to optimization problems																
C	05:	De	velop s	ome fa	miliar	ity wit	h curre	nt rese	arch p	roblem	is and	researc	ch metl	hod	s in S	oft	
COal			mputin	g Tech	niques												
COS	VS PUS	s & Pa	SUS M	APPIN	IG:												
	COs	PO1	PO2	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
	CO1	2	2	2	2	-	2	-	-	-	-	-	-	10	$\frac{1}{2}$	3	
	CO2	2	3	2	3	2	2	-	-	-	-	-	-	2	2	2	
	CO3	2	2	2	2	-	2	-	-	-	-	-	-	2	2	3	
	CO4	3	3	2	2	2	2	-	-	-	-	-	-	2	2	3	
	CO5	3	2	2	2	2	2	-	-	-	-	-	-	2	2	3	
COLU																	
COU	KSE C	ONT	ENTS:														
MOD	ULE I	IN'	FROD	UCTI	ON TO	) FUZ	ZY C	OMPL	TING	1						9 Hor	irs
Fuzzv		and	Appro	ximate	Reaso	oning:	Conve	entiona	l and	fuzzv	sets: E	Basic c	concep	ts o	of fu	$\frac{1}{zzv}$ lo	ogic
Fuzzy	expre	essions	: Basi	c prin	ciples	of fu	zzy lo	gic an	d fuzz	zy infe	erence	rules,	fuzzy	re	latio	ns, fu	ZZY
operat	ors, re	alizati	on of	fuzzy s	system	s using	g fuzzy	y relati	ons A	pplicat	ion of	fuzzy	logic	in v	visio	1, patt	tern
recogi	nition,	roboti	cs and	linguis	tics. A	pprox	imate r	easoni	ng in I	Experts	s Syste	ms, Fu	izzy se	ts i	n app	proxin	nate
reasor	ning, F	uzzy	propos	itions	in app	roxim	ate rea	isoning	. Tran	sition	Modif	ier rul	les, Ba	asic	prin	ciples	of
approx	ximate	reaso	ning an	d rules	s of inf	erence			NOR	70						0 TT	
MOD	ULE II		NDAN	<u>IENT</u>	ALS C	<u>DF NE</u>	URAL	<u>NETV</u>	<u>NORE</u>		1 4		-		!	<u>9 Hor</u>	irs
Neuro	n, Ner	ve Str	ucture	and Sy	napse	– Artıf	1c1al N	euron	and its	Mode	-Ac	livatioi	n Func	tior	$1S - \Gamma$	veural	
Netwo	ork Arc	chitect	ure: Si	ngle La	ayer ar	nd Mul	tilayer	Feed F	orwar	d Netv	vorks,	Recurr	ent Ne	etwo	orks - 	- Varı	ous
Learn	ing Tee	chniqu	ies: Pei	ception	n and (	Convei	gence	Rule, A	Auto-A		tive ar	nd Hete	ero-As	SOC	iative	<u>Men</u>	nory
MOD	ULE II	I BA NE	TWO	ROPA RKS	GAII	UN NI	LIWU	JKK5	AND	JOMI	'EIII	IVEN	EUKA	<b>\L</b>	,	' Hou	rs
Back	Propag	ation	Netwo	rks Arc	chitectu	ure: Pe	rceptro	on Moc	lel- Sir	ngle La	ayer A	rtificia	l Neura	al N	letwo	ork,	
Multil	ayer P	ercept	ion Mo	odel – I	Back P	ropaga	tion L	earning	g Meth	ods –	Effect	of Lea	rning I	Rule	e Coł	Efficie	ent –
Factor	's Affe	cting l	Back P	ropaga	tion Ti	raining	; − Koh	nenen's	Self (	Jrgani	zing M	ap - S	UM A	rch	itectu	ire,	2
iearnii	ng proc	cedure	- App	licatio	n; Leai $\Lambda$ nplic	ning \	ector	Quanti	zation,	, iearni	ng by	LVQ-	- Адар	tive	e Kes	onanc	e
MOD	y - Lea		NETI	$\frac{1}{C} \Delta L C$	CORI	аноня. Г <b>НМ</b>									c	) Hou	rs
																1100	

Basic Concepts – Working Principle – Procedures of GA – Flow Chart of GA – Genetic Representation: (Encoding) Initialization and Selection – Genetic Operators: Mutation, Generational Cycle – Applications. Multi-objective Optimization Problem Solving: Concept of multi-objective optimization problems (MOOPs) and issues of solving them -Multi-Objective Evolutionary Algorithm (MOEA) -Non-Pareto approaches to solve MOOPs - Pareto-based approaches to solve MOOPs - Some applications with MOEAs.

MODULE V APPLICATIONS

9 Hours

Control systems; Speech systems; Image processing; Natural language processing and decision making, Handwritten Script Recognition; Automotive Systems and Manufacturing; Decision Support System; Bioinformatics; Investment and trading.

TOTAL: 45 HOURS

REFERENCES:

- Jang J.S.R., Sun C.T and Mizutani E, "Neuro Fuzzy and Soft computing"- A Computational Approach to Learning and Machine Intelligence, PHI Learning Private Limited, Indian Reprint, 2014.
- 2. H. J. Zimmermann: Fuzzy set theory and its application, 2nd revised edition, Allied Publishers Ltd.
- 3. S. Rajasekaran, G.A. Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications", Prentice Hall of India, 2010.
- 4. David E. Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning", Pearson Education, 2008.

5. J.S.R. Jang, C.T. Sun, E. Mizutani, "Neuro-Fuzzy and Soft Computing", Pearson Education, 2004

- 6. An Introduction to Genetic Algorithm Melanic Mitchell (MIT Press)
- 7. Evolutionary Algorithm for Solving Multi-objective, Optimization Problems (2nd Edition), Collelo, Lament, Veldhnizer (Springer)
- 8. Fuzzy Logic with Engineering Applications Timothy J. Ross (Wiley)

9. Neural Networks and Learning Machines Simon Haykin (PHI)

10. https://archive.nptel.ac.in/courses/106/105/106105173/

2403	BCP01	7			]	NTER	NET (	OF TH	HINGS	5				L ' 3	<u>Г</u> 0	P 0	C 3
	EOU													_			
PKEK	EQUI	<u>SITE:</u> B	asics o	f progr	ammir	ig knor	wledge	<b>,</b>									
		2		<u>- pro</u> 8-		8 1110											
COUF	RSE O	BJEC	<b>FIVES</b>	:													
			1. U	ndersta	and the	; comp	onents	and pr	otocol	s used	in IoT	•					
			2. T	o Unde	erstand	the IC	T Refe	erence	Archit	ecture	and Re	eal Wo	orld De	sign			
			С	onstrai	nts.												
			3. A	bility t	o unde	rstand	the Se	curity	require	ements	in IoT						
COUF	RSE O	UTCC	MES:		2.1		. 1 .	'11 1	1.1								
On the	e succe	esstul (	comple	tion of	the co	urse, s	tudents	s will t	be able	to							
	$\frac{01}{02}$	EX]	olura d	le unde	riying	archite	ectures	and m	odels 1	$\frac{101}{T}$							
	$\frac{02}{02}$	An	alyze d	inneren	it conn		y techn	lologie	$\frac{100}{10}$	)].	D:						
	$\frac{33}{24}$	De	velop s	imple	applica	itions t	ising A	Arduine	O / Ras	pberry	P1.						
	04. 07	Ap	ply dat	<u>a analy</u>	tics te	chniqu	es to lo	оТ. • /	1	<u>с т</u>	1	1 1	• ,•				
	<u> 15:</u> L. DO.	Stu ^o DC	$\frac{dy}{dy}$ the	needs	and su	ggest a	ppropr	riate so	olutions	s for In	Idustria	al appl	ication	s.			
COS V	/s POs	& P5	US MA	APPING	J:												
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 P	2502	
	C01	1	2	3	4	-	1	-	-	-	-	-	-	$\frac{150}{2}$	11	3	
	CO2	3	-	3	2	-	-	-	-	-	-	-	-	2		$\frac{3}{2}$	
	CO3	3	-	3	2	-	_	-	-	_	-	-	-	2	-	3	
	CO4	3	3	2	3	-	-	-	-	-	-	-	-	2		3	
	C05	3	2	2	2	-	2	-	-	-	-	-	-	2		3	
			1									1	1	1			
COUF	RSE C	ONTE	NTS:														
		<b>T N T</b>		LICEL												0.11	
MOD	ULEI		IROD	UCII	<u>UN</u>			11					<u> </u>		1 4	<u> 9 Hou</u>	irs
Evolu Lot D	tion of	101 -	lol Ne	tworki	ing Co Turnos	mpone	nts- A	ddress	ing Str	ategies	s in Io	- 101	Sensir	ng an	a A	.ctuati	on-
101 PI	ocessi	ng 10	pologie	es and	Types-	IOT AI	cintec	tures.									
MOD	ULET		) NNE(	CTIVI	ТҮ											9 Hor	irs
Comn	unica	tions (	riteria	_PHY	/MAC	laver-	Netwo	ork Lay	ver_Tr	anspor	t Lave	·_Apr	licatio	n Tra	insr	ort	
Metho	nds_ A	nnlica	tion Le	aver-In	teropei	ability	in IoT		, 01 11	unspor	t Euger	- PP	neuno		P	/010	
MOD			STEM		ELOP	MEN7	<u>г то т</u>	•							q	) Hou	rs
Desig	n Met	hodola	$\log -($	lase st	$\frac{1}{10}$	Basic	blocks	of Io	T dev	ice- Ir	ntroduc	tion t	o Ardı	ino	$\frac{P}{Pro}$	ogram	ming
Integr	ation of	of Sens	sors an	d Actu	ators v	vith Ar	duino,	Introd	uction	to Ras	spberry	Pi, In	npleme	entati	on	of IoT	with
Raspb	erry P	i					,				1 2	,	I				
MOD	ULE I	V SE	CURI	TY IN	IoT										9	Hou	rs
Introd	uction	to SD	N, SD	N for I	oT, Da	ita Har	dling a	and Ar	nalytics	s, –Big	g Data .	Analyt	ics To	ols ar	nd 7	Fechn	ology
-Clou	d of T	hings-	Edge S	Streami	ing An	alytics	-Netv	vork A	nalytic	es, Ap	plicatio	ons. Se	curity	histo	ry,	challe	enges,
variati	ons –	Risk A	nalysis	Struct	ures –	Applic	ation in	n Oper	ationa	l Envir	onmen	t.				0.11	
	ULE V					~ Car		- Crea			1 Cara	4 II				J Hou	irs
Smart	Grid,	Indust	, Senso rial Io7	or-Cloi	e Study	g Con y: Agri	culture	g, Sma e, Heal	thcare,	Activ	i Smai ity Mo	nitorin	nes, C 1g	onne	ciec	ı ven	ncies,
						-											
													TOTA	L:	45	HOU	RS
REFE	RENC	ES:															

1.	David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, "IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things", Cisco Press, 2017
2.	Olivier Hersent, David Boswarthick, Omar Elloum, "The Internet of Things Key applications and Protocols", Wiley, 2012
3.	Michael Miller, "The Internet of Things", Pearson Education, 2015.
4.	ArshdeepBahga, Vijay Madisetti, "Internet of Things –A hands-on approach", Universities Press, 2015
5.	Jan Ho ⁻ ller, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle,"From Machine -to-Machine to the Internet of Things – Introduction to a New Age of Intelligence", Elsevier, 2014
6.	Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), "Architecting the Internet of Things", Springer, 2011
7.	Matt Richardson & Shawn Wallace, Getting Started with Raspberry Pi, O'Reilly(SPD), 2014
8.	Sudip Misra, Chandana Royand Anandarup Mukherjee, "Introduction to Industrial Internet of Things and Industry 4.0", CRC Press.
9.	https://nptel.ac.in/courses/106105166

2403CP0	)18					CLO	UD CO	OMPU	TING				I		Т	P	С
													3	3	0	0	3
PREREOI	USI	ΓE·															·
	101	Ba	asics o	f progi	ammi	ng skil	ls, secu	irity ar	nd priv	acy, D	atabase	s					
						U	,	2	•								
COURSE	OBJ	ECT	TIVES	:													
			1. T	o unde	rstand	the co	ncepts	of clo	ud con	nputing	ς.						
			2. T	o fami	liarize	thems	elves w	vith the	e lead j	players	s in clou	ıd.			•		
COUDSE			3. T	o get a	ware o	of the e	emerge	nce of	cloud	as the	next ge	neratic	on com	put	ing p	aradı	gm.
On the suc		<u>. CO</u> ful c	omple	tion of	f the co	nurse	student	s will	he ahle	• to							
CO1:	CC35.	Idei	ntifv a	rchitec	ture, i	nfrastr	ucture a	and de	liverv	model	s of clo	ud cor	nputing	7.			
CO2:		Ap	oly sui	table v	irtuali	zation	concep	ot for in	mplem	enting	the clo	ud ser	vices.				
CO3:		Idei	ntify re	equired	l cloud	l mech	anisms	while	design	ning cl	oud env	vironm	ent.				
CO4:		Ma	ke use	of spe	cialize	d clou	d archi	tecture	e to del	iver cl	oud ser	vice					
CO5:		Cho	oose th	e appr	opriate	e techn	ologies	s, algo	rithms	and ap	proach	es for	the rela	ited	l issu	es.	
COs Vs PO	)s &	PS	Os MA	APPIN	G:												
		1	DOJ	DO2		DO5	DOC	007		DOO	DO10	DO11	DO12	DC		502	
	$\frac{SPC}{1}$	Л	PO2 1	2	PO4	1	2	PO/	PU8	P09	POIU	POIT	POIZ	2 2		302	
	$\frac{1}{2}$ $\frac{3}{3}$		1	3	3	1	2	-	-	-	-	-	-	$\frac{2}{2}$		$\frac{3}{2}$	
	$\frac{2}{3}$ 3		1	3	2	1	2	-	-	-	-	-	-	2		3	
CO	4 3		1	3	3	1	3	-	-	-	-	-	-	2		3	
CO	5 1		1	3	2	1	3	-	-	-	-	-	-	2		3	
MODULE Introductic Cloud Cha Delivery N	I on- H racte Aode	<b>IN</b> Histo erist els:	<b>FROD</b> prical ics –C IaaS,	UCTI Develo loud D PaaS,	ON opmen Oeploy: SaaS	t – Cl ment M – Ope	oud Co Aodels n Sour	omputi : Publi :ce Pri	ng Ar c, Priv vate C	chitect ate and Cloud S	ure – 7 d Comr Softwar	The Cl nunity e: Euo	oud R , Hybri calyptu	efer id C s, 0	rence Cloud Oper	<b>9 Ho</b> 9 Moo 1s- Cl 1 Neb	urs Jel– oud oula,
MODULE	II	VII	RTUA	LIZA	ΓΙΟΝ											9 Hoi	irs
Data Cente	r Te	chn	ology	– Virtu	alizati	$\log - 0$	Charact	eristic	s of Vi	rtualiz	ed Envi	ironme	ents - C	om	pute	and	
Storage Vi	rtual	izat	ion – I	mplen	nentati	on Lev	vels of	Virtua	lizatio	n – To	ols and	Mecha	anisms:	Xe	en, V	MWa	are.
MODULE	III	CL	OUD	COM	PUTIN	IG MI	ECHA	NISM							9	) Hov	irs
Cloud Infr Cloud Me Hypervisor	astru chan . Re	ictui ism soui	re Mea : Load rce Ch	chanisr 1 Balai uster, N	n: Clo ncer, S Multi I	ud Sto SLA N Device	orage, ( Ionitor Brokei	Cloud , Pay- , State	Usage per-us Mana	Monit e Mor gemen	or, Res itor, A t Datab	ource udit N ase.	Replica Ionitor	atic , F	on – ailov	Speci ver Sy	alized /stem,
MODULE	IV	SPI	ECIAI	LIZED	CLO	UD A	RCHI	TECT	URE	0					9	) Hou	rs
Workload hypervisor	dist clus	ribu terii	ition ang-ser	archite vice qu	cture-l ality r	Resour netrics	rce Po &	oling ; SLA	Archit	tecture	-Dynan	nic sc	alabilit	ty-C	Cloud	i bui	sting-
MODULE	V	SE	CURI	<b>ΓΥ ΙΝ</b>	THE	CLOU	JD		_					_		9 Hoi	ırs
Basic Ter Encryption	ms I-Ide	and ntity	Conc y and A	epts – Access	- Thre Mana	at Ag gemen	ents – t-Cloue	Clou d Base	d Secu	urity ' rity G	Threats roups-H	–Clo Iarden	ud Seo ed Virt	curi ual	ity N Serv	Aecha /er Im	inism: iages.
													TOTA	L:	45	HOU	RS
REFEREN	I <u>CE</u> S	5:															
1. Th Ar	oma chite	s E ectu	rl, Za re", Pr	igham entice	Maho Hall, 2	od, R 2022.	icardo	Puttin	ni, "Cl	oud C	omputi	ng, C	oncept,	T	echn	ology	&

- 2. Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, "Mastering Cloud Computing", Tata McGraw-Hill, 2020.
- 3. Toby Velte, Anthony Velte, Robert C. Elsenpeter, "Cloud Computing, A Practical Approach", Tata McGraw-Hill Edition, 2010
- 4. Arshdeep Bahga, Vijay Madisetti, "Cloud Computing: A Hands-On Approach", Universities Press(India) Private Limited, 2014
- 5. Tom White, "Hadoop : The Definitive Guide", O'Reilly Media, 4th Edition, 2015.
- 6. John Rittinghouse & James Ransome, "Cloud Computing, Implementation, Management and Strategy", CRC Press, 2010.
- 7. https://nptel.ac.in/courses/106105167

2403	CP01	19 DEEP LEARNING L T										Р	C					
														3	5	0	0	3
PREREQUISITE																		
Basic skills in programming skill, linear algebra calculus probability																		
COURSE OBJECTIVES:																		
	1. To understand the basic ideas and principles of Neural Networks.																	
			2. To understand the basic concepts of Big Data and Statistical Data Analysis.															
			3	8. To	o unde	rstand	and in	pleme	nt Dee	p Lear	ning A	rchited	tures.					
			4	. То	o appre	eciate t	he use	of Dee	ep Leai	rning A	Applica	ations.						
COURSE OUTCOMES: On the successful completion of the course students will be able to																		
CO1: Understand the role of Applied Mathematics and the need of Deep learning																		
CO2: To optimize and generalize deep neural networks for better performance																		
CO2. To optimize and generalize deep neural networks for better performance.									tica	llv ar	alvee							
		i	in Image and text Related Projects															
CO4: To design and implement Deep Learning Applications.																		
CO	CO5: To learn deep generative networks implications in unsupervised learning.																	
COs Vs POs & PSOs MAPPING:																		
 						1	1		1	1	1	1						
	COs	PO	1 P	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	<u>1 P</u>	SO2	
	C01	3		3	1	2	1	-	-	-	-	-	-	-	2		3	
	CO2	3		3	3	3	2	-	-	-	-	-	-	-	2		2	
	$\frac{CO3}{CO4}$	3		3	3	3	3	2	-	-	-	-	-	-	$\frac{2}{2}$		<u>3</u> 2	
	C04	2		3	3	3 1	2	2	-	-	-	-	-	-	$\frac{2}{2}$	-	3	
l	005	4		5	5	1	2	1	_	_	_	_	_	_	4	·	5	
COUF	SE CO	ON'	ΓΕΝ	TS:														
LOD				- ~ ~ -												<u> </u>		
MOD	JLEI		<u>3AS</u>	<u>ICS I</u>	<u>fOR I</u>	<u>)EEP</u>	LEAR	<u>NING</u>	•	A 1 1	D	1 1 11	· .	1 1 6		<u> </u>	9 Hou	irs
Mathe	matica	ll F	relii	minar	1es of Mo	Deep	learr	iing: I	Linear	Algeb	ra, Pi	obabili	ty and	a Info	rmat	ion	I he	ory,
Numerical Computations – Machine Learning Basics: Learning Algorithms, Overfitting Vs Under fitting,																		
Deep Learning.																		
MODULE II INTRODUCTION TO DEEP LEARNING 9 Hours													ırs					
Basic	concep	ot of	f Nei	urons	- Perc	ceptror	n Learr	ning – l	Multila	yer Pe	rceptr	ons -De	eep Fee	ed Forv	vard	Ne	twork	<u>s</u> -
Back I	Propag	atic	<b>n</b> – 1	Data	repres	entatio	n for N	Veural 1	Netwo	rks - D	ataset	s for de	ep lear	rning- o	cross	va	lidati	on -
Bias-Variance Tradeoff- Linear Classifiers, Linear Machines with Hinge Loss-Gradient based optimization –																		
Regula	arizatio	on f	or D	eep le	earnin	g : Para	ameter	norm	Penalti	es, dat	a set a	ugmen	tation,	Dropo	ut, N	Iult	ti task	
learnir	ng, Ear	ly s	topp	oing –	Нуре	r parar	neters	for dee	p learr	ning.								
MODULE III CONVOLUTIONAL NEURAL NETWORKS 9 Hours																		
CNN	Archi	tect	ures	- (	Convol	lution	– Po	oling	– Tra	ining	a Co	nvnet:	weigh	ts init	ializ	atic	n -	batch
normalization - hyper parameter optimization and batch normalization - Transfer Learning – Pretraining, fine-																		
tuning – Pretrained CNN networks – Visualizing CNN Learning – Case Study: Image Classification using																		
MODULE IV SEQUENCE MODELING USING RECURRENT NETS 9 Hours																		
Recurrent Neural Networks (RNN) - Bidirectional RNN - Long Short-Term Memory (LSTM) - GRU -																		
Attention and Applications -GPT, BERTs and Variants -Encoder-decoder sequence to sequence architectures																		
– Recursive Neural Networks - Performance metrics for text processing- Case Study – Text generation with																		
LSTM, Speech Processing and Image Captioning using RNNs.																		
MODULE V UNSUPERVISED AND DEEP GENERATIVE MODELS 9 Hours																		

Types of Auto encoder - Variational Auto encoders - Generative Adversarial Networks : GAN framework, Generator training, Discriminator training, Convergence of GAN, KL-Divergence for GAN– Boltzmann Machines– Restricted Boltzmann Machine-Deep Boltzmann Machines- Deep Belief Networks-Boltzmann Machine for Real valued data Case Study: Text-to-Image Synthesis using GAN, Image generation with Generative Adversarial Networks.

TOTAL: 45 HOURS

REFERENCES:

- 1. Ian Good Fellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2017.
- 2. Francois Chollet, "Deep Learning with Python", Manning Publications, 2018.
- 3. Josh Patterson, Adam Gibson, "Deep Learning: A Practitioner's Approach", O'Reilly Media, 2017.
- Ragav Venkatesan, Baoxin Li, "Convolutional Neural Networks in Visual Computing", CRC Press, 2018
- 5. Joshua F. Wiley, "R Deep Learning Essentials", Packt Publications, 2016.
- 6. https://nptel.ac.in/courses/106106184

2403CP020	QUANTUM COMPUTING										]	LT	P	С	
												3 0	0	3	
PREREOUISITE:															
Basic Concepts of Linear algebra and probability															
				0			-								
COURSE OBJ	ECTIVI	ES:													
	1. To serve as an introduction to the quantum computational model														
	2. To understand basic quantum algorithms and analyzing them														
	3	Toable	Toun	lerctan	^ d the c	romnor	ente c	of com	nutina i	- n a Oi	iantiim	world			
	4 To gain knowledge on mathematical representation of quantum physics and														
	4.	4. 10 gain knowledge on mainematical representation of quantum physics and													
		operatio	ons.												
On the success	ful com	oletion o	f the co	ourse, s	student	ts will b	be able	e to							
CO2: Understand the basics of quantum computing.															
CO2:	202: Understand the background of Quantum Mechanics.														
CO3. Analyze the computation models. CO4: Model the circuits using quantum computation. Environments and frameworks															
CO4. proder the circuits using quantum computation. Environments and frameworks. CO5: Understand the quantum operations such as noise and error-correction.															
COs Vs POs & PSOs MAPPING:															
														-	
COs PC	D1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	_	
<u>CO1</u>	1 2	-	2	1	1	-	-	-	-	-	-	1	1	_	
$CO_2$	$\frac{1}{2}$ 2	-	2	1	1	-	-	-	-	-	-	1	2		
$CO_3$	$\frac{3}{3}$	-	2	1	1	-	-	-	-	-	-	$\frac{1}{2}$	2		
C04	$\frac{3}{3}$ 3	-	2	1	1	_	_	_	-	_	-	2	3		
000	0 0			-	-					1					
COURSE CON	NTENTS	:													
MODULEI	OLIAN		FCHA	NICS		MANT	<b>FUM</b>	COMP	ΙΤΔΤ	ION			9 Ho	urs	
The postulates	s of qu	antum	mechai	nics, 7	The de	ensity	opera	tor, T	he Sch	midt	decom	positio	on and	1	
purifications, 1	EPR and	the B	ell ine	quality	, Qua	ntum o	circuit	s : Qı	antum	algor	ithms,	Single	e qubi	t	
operations, Co	ntrolled	operatio	ons. Me	easurei	ment, 1	Univers	sal qu	antum	gates,	Summ	nary of	the qu	lantun	1	
circuit model o	of compu	tation, S	Simulat	ion of	quantu	ım syst	ems.						0.11		
MODULE II QUANTUM COMPUTERS AND ALGORITHMS											9 Ho	urs			
Guiding principles, Conditions for quantum computation, Harmonic oscillator quantum computer, Optical															
photon quantum computer, Optical cavity quantum electrodynamics, Ion traps, Nuclear magnetic															
resonance, Other implementation schemes, The quantum Fourier transform and its applications, Quantum search algorithms															
MODULE III OUANTUM INFORMATION 9 Hours															
Quantum noise and quantum operations : Classical noise and Markov processes. Quantum operations.															
Examples of quantum noise and quantum operations, Applications of quantum operations, Limitations of the															
quantum operations formalism, Distance measures for quantum information : Distance measures for classical															
Information. quantum states and quantum channel preserve information.															
MODULE IV QUANTUM ERROR-CORRECTION 9 Hours															
codes Fault-tolerant quantum computation															
MODULE V ENTROPY AND INFORMATION THEORY 9 Hours															
Entropy : Shannon Entropy, Basic properties of entropy, Von Neumann entropy, Strong sub additivity,															
Quantum information theory : Distinguishing quantum states and the accessible information, Data															
compression, Classical information over noisy quantum channels, Quantum information over noisy															
quantum channels, Entanglement as a physical resource, Quantum cryptography															

TOTAL:

**45 HOURS** 

### REFERENCES:

1. Michael A. Nielsen, Issac L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Tenth Edition 2010.

2. Parag K Lala, Quantum Computing, A Beginners Introduction, Mc Graw Hill Education, First edition 2020.

3. Chris Bernhardt, Quantum Computing for Everyone, The MIT Press, Reprint edition 2020.

4. Jack D. Hidary's Quantum Computing: An applied approach, Springer, 2019.

5. Eric Johnston, Nic Harrigan, and Mercedes Gimeno Segovia, Programming Quantum Computers: Essential Algorithms and Code, O'reilly, 2019.

6. Pierpaolo Marturano, Quantum Computing, De Gruyter Oldenbourg Publishing, 2023.

7. https://nptel.ac.in/courses/106106232