M.E. Computer Science and Engineering | E.G.S. Pillay Engineering College | Regulations 2024 Approved in XI Academic Council Meeting held on 04-02-2024

E.G.S. PILLAY ENGINEERING COLLEGE (AUTONOMOUS)

Approved by AICTE, New Delhi (Affiliated to Anna University, Chennai | Re-accredited by NAAC with 'A++ 'Grade) Accredited by NBA (Tier-1) NAGAPATTINAM – 611002

M.E. COMPUTER SCIENCE AND ENGINEERING

REGULATION -2024

First Year – First Semester

Course	Course Name	L	Т	Р	С	Ma	ximum	Marks	Category
Code	Course Manie	Ľ	1	•	C	CA	ES	Total	
Theory Course	e								
2401CP101	Advanced Mathematics for Scientific Computing	3	2	0	4	40	60	100	FC
2402CP102	Advanced Data Structures and Algorithms	3	0	0	3	40	60	100	PCC
	Program Elective–I	3	0	0	3	40	60	100	PEC
	Program Elective–II	3	0	0	3	40	60	100	PEC
2401RMX01	Research Methodology and IPR	3	0	0	3	40	60	100	RMC
	Audit Course–I	2	0	0	0	100	0	100	AC
Laboratory Co	burse			•	•				
2402CP103	Advanced Data Structures and Algorithms Laboratory	0	0	4	2	50	50	100	PCC
2402CP104	Networking Technologies Laboratory	0	0	4	2	50	50	100	PCC
Total		17	2	8	20	400	400	800	

L-Lecture |T-Tutorial |P- Practical |CA- Continuous Assessment |ES - End Semester

SL. NO.	COURSECO DE	COURSETITLE	CATEGORY	т	ODSPH EK T	ERWE	TOTAL CONTACTPE RIODS	CREDITS
				L	1	1	RIODS	
1.	2403CP001	Ad-hoc Wireless Sensor Networks	PEC	3	0	0	3	3
2.	2403CP002	Networking Technologies	PEC	<mark>3</mark>	<mark>0</mark>	<mark>0</mark>	<mark>3</mark>	<mark>3</mark>
3.	2403CP003	Advanced Storage Area Network	PEC	3	0	0	3	3
4.		Mobile Applications and Pervasive Computing	PEC	3	0	0	3	3
5.		Full Stack Web Application Development	PEC	3	0	0	3	3

PROGRAM ELECTIVE COURSES (PEC) SEMESTER - I, ELECTIVE–I

SEMESTER - I, PROGRAM ELECTIVE-II

SL. NO.	COURSECO DE	COURSETITLE	CATEGORY	PERI	ODSPE EK		TOTAL CONTACTPE	CREDITS
NO.	DE	COURSEITTLE	CATEGORY	L	Т	Р	RIODS	CREDITS
1.	2403CP006	Advanced Operating Systems	PEC	3	0	0	3	3
2.	2403CP007	Semantic Web	PEC	3	0	0	3	3
3.	2403CP008	Multicore Architectures	PEC	<mark>3</mark>	<mark>0</mark>	<mark>0</mark>	<mark>3</mark>	<mark>3</mark>
4.	2403CP009	Software Architecture Patterns	PEC	3	0	0	3	3
5.	2403CP010	Parallel Algorithms	PEC	3	0	0	3	3

L-Lecture |T-Tutorial |P- Practical |CA- Continuous Assessment |ES -End Semester

2401CP101 ADVANCED MATHEMATICS FOR SCIENTIFIC COMPUTING L T P C

3

2

0

4

PREREQUISITE:

Basic knowledge about probability and statistics

COURSE OBJECTIVES:

1. To apply mathematical linear programming techniques to solve constrained Problems.
2. To appreciate the use of simulation techniques
3. To enable them to estimate the value of the parameters involved in the specific distribution from a possible continuum of alternatives.
4. To give an idea of testing the statistical hypothesis claimed based on a set of data points using standard sampling distributions
 To impart knowledge of handling random vectors which represent random variables in multi-dimensional space.

COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: Formulate and find optimal solution in the real life optimizing/allocation/assignment problems involving conditions and resource constraints. CO2: Simulate appropriate application/distribution problems. CO3: Obtain the value of the point estimators using the method of moments and method of maximum likelihood. CO4: Apply the concept of various test statistics used in hypothesis testing for mean and variances of large and small samples.

CO5:	Get exposure to the principa	al component analysis of random	vectors and matrices.
-------------	------------------------------	---------------------------------	-----------------------

COs Vs POs MAPPING:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	2	-	-	-	-	-	-
CO2	3	3	3	3	2	2	-	-	-	-	-	-
CO3	3	3	3	3	2	2	-	-	-	-	-	-
CO4	3	3	3	3	2	2	-	-	-	-	-	-
CO5	3	3	3	3	2	2	-	-	-	-	-	-

COs Vs PSOs MAPPING:

COs	PSO1	PSO2	PSO3
CO1		3	-
CO2	2	2	-
CO3	2	3	-
CO4	2	3	-
CO5	2	3	-

COURSE CONTENTS:

MODULE I LINEAR PROGRAMMING

The phases of OR study – formation of an L.P model – graphical solution – simplex algorithm – artificial variables technique -Big M method.

MODULE II SIMULATION

Discrete Event Simulation - Monte - Carlo Simulation - Stochastic Simulation - Applications to real time problems.

MODULE III ESTIMATION THEORY

Unbiased Estimators – Method of moments – Maximum Likelihood Estimation – Curve fitting by Principle of least squares - Regression Lines.

MODULE IV TESTING OF HYPOTHESIS

Sampling distributions – Type I and Type II errors – Small and large samples – Tests based on Normal, t and F distributions for testing of mean, variance and proportions - Chi-square tests for independence of attributes and goodness of fit – Design of experiments one way and two way classification. 9 Hours

MODULE V MULTIVARIATE ANALYSIS

Random vectors and matrices – Mean vectors and covariance matrices – Multivariate normal density and its properties – Principal components - Population principal components – Principal components from standardized variables.

TOTAL: 45 HOURS

REFERENCES:

- 1. Jay L. Devore, "Probability and Statistics for Engineering and the Sciences", Cengage Learning, 9th Edition, Boston, 2016.
- Johnson, R.A, Irwin Miller and John Freund., "Miller and Freund"s Probability and Statistics for 2. Engineers", Pearson Education, 9th Edition, New York, 2016.
- Johnson, R.A., and Wichern, D.W., "Applied Multivariate Statistical Analysis", Pearson Education, Sixth 3. Edition, New Delhi, 2013.
- 4. Ross. S.M., "Probability Models for Computer Science", Academic Press, San Diego, 2002.
- Taha H.A, "Operations Research: An Introduction", Prentice Hall of India Pvt. Ltd. 10 Edition, New 5. Delhi, 2017.
- Winston, W.L., "Operations Research", Thomson Brooks/Cole, Fourth Edition, Belmont, 2003. 6.

9 Hours

9 Hours

2402CP102		ADV	ANCE	D DA	TA ST	RUC	ГURE	AND	ALGO	ORITH	IMS	L	Т	Р	С
												3	0	0	3
PREREQUI	SITE:														
	Fu	ndame	entals o	of Data	Struct	ure an	d Algo	orithm							
COURSE O	DIEC	TIVE	<u>c.</u>												
COURSE	DJEU	IIVE	5:												
	1.	To ur	dersta	nd the	technio	ques fo	or analy	ysing t	he com	plexit	y of alg	gorithn	ns.		
	2.	To lea	arn the	conce	pts of a	advanc	ed dat	a struc	tures a	nd algo	orithm	design	techni		
	3.			nowled	lge on	choice	of dat	a struc	tures a	nd alg	orithm	design	n for va	rious	
		probl	ems												
COURSE O	UTCC) MES	:												
				ıl com	oletion	of the	course	e, stude	ents wi	ll be al	ble to				
CO1:									otation						
<u>CO2:</u>								ing hie	erarchio	cal dat	a struct	tures			
CO3: CO4:				s using				comp	utation	al prot	Jame				
<u> </u>		bly algorithm design techniques to solve computational problems.													
0000		<i>j~</i>	<u> </u>				- <u>F</u>								
COs Vs PO	s MA	PPIN	G:												
Г	COa	os PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
_	COs CO1	3	PO2 3	2	PO4	P05	PU6	PO/	PU8	P09	PO10	POII	POIZ		
_	CO2		2	3	2	-	-	-	-	-	-	-	-		
	CO3	2	2	3	3	-	-	-	-	-	-	-	-		
	CO4		3	3	3	-	-	-	-	-	-	-	-		
	CO5	2	1	2	2	-	-	-	-	-	-	-	-		
COs Vs PS	Oc M														
	US MA	APPII	NG:												
					С	Os PS	O1 PS	O2PS	03						
						01 ·	- 1	. –							
							- 1								
						00	- 1 - 1								
						04 · 05 ·	- 1 - 1		·						
					U	00									
COURSE CO	ONTE	ENTS:													
		T A ¥ ¥*			ODT				7					0.11	
MODULE I Role of Alg				F ALG						ntotic	notat	ione	Cond	9 Ho	urs
asymptotic n															
recurrences -															
Algorithms.										•					
MODULE I				CAL D						~ ·		. .		9 Hou	rs
Binary Heap-								mial Q	ueues	-Splay	Trees	-Red-l	Black T	rees -	
Multi-Way 7 MODULE I						es - 1 ri	es.							9 Hour	• C
MODULE I	որո	Affl	ALG	7117	11112									7 110UI	3

Graph Traversals- All-To-All Shortest Path Problem -Union-Find Problem -Maximum Flows -Eulerian Graphs- Hamiltonian Graphs -Hamiltonian Cycle Problem -Graph Coloring -Vertex-Cover Problem. MODULE IV ALGORITHM DESIGN TECHNIQUES 9 Hours Dynamic Programming: Matrix-Chain Multiplication -Greedy Algorithms: Activity Selection Problem -Huffman Codes -Divide and Conquer: Maximum Sub-Array Problem-Strassen's Algorithm MODULE V NP COMPLETE AND NP HARD 9 Hours NP-Completeness: Polynomial Time – Polynomial-Time Verification – NP- Completeness and Reducibility – NP-Completeness Proofs – NP-Complete Problems. TOTAL: 45 HOURS REFERENCES: 1. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Third Edition, Pearson, 2014. 2. Alfred V. Aho, John E.Hopcroft, Jeffrey D. Ullman, Data Structures and Algorithms, Third Edition, Pearson, 2015.

3. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, Third Edition, Prentice Hall of India, Reprint 2012.

4. Mark Allen Weiss, Data Structures and Algorithms in C++, Fourth Edition, Pearson, 2014.

5. E. Horowitz, S. Sahni and S. Rajasekaran, Computer Algorithms, University Press, 2008.

6. Adam Drozdek, Data Structures and Algorithms in C++, Fourth Edition, Cengage Learning, 2013.

401RMX01			RE	SEAR	CH M	ETHO	DOL	OGY .	AND I	PR			T		
													3 0	0	
REREQUI	SITE	:													
			elopme	ent											
COURSE O	DIEC	TIME	<u>c.</u>												
OURSE U	DJEU	IIVE	5:												
	1.Pro	oblem	formu	lation,	analys	is and	solutio	ns.							
			l pape						iolatin	g profe	essiona	l ethic	s		
			nd that								r, info	ormatic	on tec	hnolo	ogy,
	tome	orrow	world	will be	ruled	by idea	as, con	cept, a	nd crea	ativity					
			rafting stand a		0.1		naten	te in R	& D						
	5.10	anuel	stand a	100ut I	1 IN AIN	. 11111g	, paten	10 III I	αD.						
COURSE O															
	On	the su	ccessfi	ıl com	pletion	of the	course	e, stude	ents wi	ll be a	ble to				
CO1:	Desc	ribe d	ifferen	t tynes	of res	earch	identif	v revi	ew and	l defin	e the re	esearch	nrohl	em	
CO1:		cribe different types of research; identify, review and define the research problem. ct suitable design of experiment s; describe types of data and the tools for collection of													
	data.			C	•				•						
CO3:			e proce									ı suitab	le for	m	
CO4:			out Int				ghts, t	ypes a	nd proc	cedures	5				
CO5:	Exec	cute pa	tent fil	ing an	d licen	sing									
COs Vs PO	s MA	PPIN	G:												
000 1020	5 11212														
-			PO2					PO7	PO8	PO9	PO10	PO11		2	
-	CO1	-	3	3	2	2	2	-	-	-	-	-	2	-	
	CO2 CO3	-	3	3	3	2	2 2	-	-	-	-	-	22	-	
-	CO3		3	3	3	2	2	-	-	-	-	-	$\frac{2}{2}$	-	
	C04		3	3	3	2	$\frac{2}{2}$	-	-	-	-	-	2	-	
	2.50	-	-		-			1	1	1	I	I			
COs Vs PS	Os M	APPI	NG:												
					C				02						
					-	Os PS 01 1	<u>01PS</u> 3	0218							
						01 1 02 1	2								
						O3 1	3	1.							
						O4 1	3								
					С	05 1	3								
COURSE C	UNIE	71 I 2:													
IODULE I	RF	ESEAT	RCH F	ROBI	LEMF	ORM	ULAT	ION						9 F	Iour
Dbjectives o									appro	oaches	to re	esearch	· con		

Objectives of research, types of research, research process, approaches to research; conducting literature review- information sources, information retrieval, tools for identifying literature, Indexing

M.E. Computer Science and Engineering | E.G.S. Pillay Engineering College | Regulations 2024 Approved in XI Academic Council Meeting held on 04-02-2024

and abstracting services, Citation indexes, summarizing the review, critical review, identifying research gap, conceptualizing and hypothesizing the research gap.

MODULE II RESEARCH DESIGN AND DATA COLLECTION

Statistical design of experiments- types and principles; data types & classification; data collection - methods and tools

9 Hours

9 Hours

MODULE III DATA ANALYSIS, INTERPRETATION AND REPORTING

Sampling, sampling error, measures of central tendency and variation,; test of hypothesis- concepts; data presentation- types of tables and illustrations; guidelines for writing the abstract, introduction, methodology, results and discussion, conclusion sections of a manuscript; guidelines for writing thesis, research proposal; References – Styles and methods, Citation and listing system of documents; plagiarism, ethical considerations in research.

MODULE IV INTRODUCTION TO INTELLECTUAL PROPERTY RIGHTS (IPR)	9 Hours						
Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of P	atenting and						
Development: technological research, innovation, patenting, development. Internation	al Scenario:						
International cooperation on Intellectual Property. Procedure for grants of patents, Patenting unc	ler PCT.						
MODULE V INTELLECTUAL PROPERTY RIGHTS (IPR) 9 Hours							
Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information							
databases. Geographical Indications. New Developments in IPR: Administration of Patent Syst	em, IPR						
of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and II	Гs.						
TOTAL:	45 HOURS						
REFERENCES:							
1. Cooper Donald R, Schindler Pamela S and Sharma JK, "Business Research Methods", Tata	a McGraw Hill						
Education, 11e ,2012.							
2. Soumitro Banerjee, "Research methodology for natural sciences", IISc Press, Kolkata, 202.	2,						
	••						

3. Catherine J. Holland, "Intellectual property: Patents, Trademarks, Copyrights, Trade Secrets", Entrepreneur Press, 2007.

4. David Hunt, Long Nguyen, Matthew Rodgers, "Patent searching: tools & techniques", Wiley, 2007.

- 5. The Institute of Company Secretaries of India, Statutory body under an Act of parliament, "Professional Programme Intellectual Property Rights, Law and practice", September 2013.
- 6. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 7. Mayall, "Industrial Design", McGraw Hill, 1992.

2402CP103	3	ADVANCED DATA STRUCTURES AND ALGORITHMSLTPCLABORATORY0042														
												(0	0	4	2
PREREQUI	SITE	:														
			ning sk	ills in	c,c++											
COURSE O	BIEC	TIVE	S٠													
	DJLC		0.													
	-	1. To	imple	ment tl	he diffe	erent d	ata stru	ictures	in C+	+						
							spects				tions f	for spe	cific	c pro	blem	
		3. To	imple	ment tl	he diffe	erent a	lgorith	mic de	sign te	chniqu	ies					
COUDCE O		MEG														
COURSE O				ul com	nletior	of the	e cours	e stud	onte w	ill he a	hle to					
		i ine su				i oi ult	cours	c, stud	ents w		.010 10					
CO1:			l Imple	ement t	he con	cepts o	of linea	r and r	non-lin	ear da	ta stru	ctures	for s	solvi	ng	
		blems														
<u>CO2:</u>		lement the concept of heap data structure														
CO3:		ntify the difference between tree and heap data structure														
<u>CO4:</u>		nalyze the time complexity and space complexity of all data structures. amiliar with the concept of various analysis techniques														
CO5:	Fam	illar w	ith the	conce	pt of Va	arious	analysi	s techi	nques							
COs Vs PO	s MA	PPIN	G:													
000 102 0																
[PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012		
	CO1		-	3	1	-	-	-	-	-	-	-	-			
	CO2		-	3	1	-	-	-	-	-	-	-	-			
	CO3		-	2	2	-	-	-	-	-	-	-	-			
-	CO4		-	2	2	-	-	-	-	-	-	-	-			
	CO5	2	-	2	3	-	-	-	-	-	-	-	-			
COs Vs PS	Oc M	A DDIN														
05 1515	05 11		10.													
					С	Os PS	O1 PS	O2PS	03							
					С	O1 2	3	-								
						O2 2	2	-								
						O3 2	3	-								
						O4 2	3	-								
					C	O5 2	3	-								
COURSE C	ОЛТТ	NTC.														
EXPERIME		21119:		Des	ion and	1 Impl	ement	he con	cents	of line	ar and	non-li	near	· data	struc	tures
	LINI I				solving				eepis (1011-11	iical	uat	. ou uc	and
EXPERIME	ENT 2						and po	erform	the op	eration	ns on i	t				
EXPERIME						=	tions o		=		_					
EXPERIME				_		_	ing of t			_						
EXPERIME							s on A'			L.						
EXPERIME							ig techi		-							
EXPERIME				-			ill usin	-	e and	conau	er					
EXPERIME												od				
LAFEKIME	UNI Ö	NT 8Job sequencing with deadlines using greedy method														

EXPERIMENT 9	0/1 Knapsack using dynamic programming
EXPERIMENT 10	Graph coloring using backtracking

2402CP104		<u> </u>	<u>TWO</u>	<u>RKIN</u>	<u>G TE</u>	<u>CHNO</u>	LOG	ES LA	<u>ABOR</u>	<u>ATOR</u>	<u>Y</u>	L	L L		P	(
												0	0)	4	4
REREQUIS	SITE															
		ramm	ning sk	ills in	<u>C C++</u>	, basic	know	edge i	n NS3	Tool						
		,1 411111	ing on	1110 111	0,011	, 04510	iiio w	leage I		1001						
OURSE OI	BJECT	ΓIVE	S:													
	_															
				<u> </u>		wireles										
						ormanc				LTE a	nd SD	N.				
	To ga	in kn	owledg	ge and	work of	on vari	ous pro	otocol	layers.							
				ork sim												
	Identi	ify the	e diffei	rent fea	atures	of integ	grated	and dif	fferenti	ated se	ervices					
OURSE OU											-					
	On th	ne suc	cessfu	I comp	letion	of the	course	, stude	nts wil	I be ab	le to					
CO1:	Indee	41.0.0			1	1 1.			Canf				of no.			
COI:	switcl		mergn	ng wire	eless te	echnolo	ogy sta	ndards	. Conf	igure i	unctio	nalities	of to	ute	r and	
CO2:			imnor	tonoo	fuiro	laca ad	hoon	aturarl	Com	nora	ndoor	ntrast va	miour		iralaa	0
CO2:	Asses	s uie		tance c	n wite	less au	-noc ne	etwork	s. Con	ipare a		illast va	arrous	W	neles	S
		مامهنو	20													
CO3·	techn			m the a	ronside	eration	s for d	enlovii	ng wire	less ne	otwork	infrast	ructu	re		
CO3: CO4:	techn Expla	in an	d desig									infrast			r and	
CO3: CO4:	techno Expla Judge	in and the e	d desig									infrast nalities			r and	
	techn Expla	in and the e	d desig												r and	
CO4:	techno Expla Judge switcl	the e	d desig mergin												r and	
CO4: COs Vs PO	techno Expla Judge switcl	the e hes.	d desig mergin G:	ng wire	eless te	echnolo	ogy sta	ndards	. Confi	igure f		nalities	of ro		r and	
CO4: COs Vs PO	techno Expla Judge switcl s MAF	the e hes. PPIN	d desig mergin G: PO2	ng wire PO3	PO4	PO5	pgy sta	ndards	. Confi	igure f	PO10		of ro PO1 2		r and	
CO4:	techno Expla Judge switcl s MAF COs	the e hes. PPINO PO1	d desig mergin G:	ng wire PO3 1	PO4	PO5 -	ogy sta	ndards	. Confi	igure f		PO11	of rom PO12 2		r and	
CO4:	techno Expla Judge switcl s MAH COs I CO1 CO2	the e hes. PPIN PO1 2 2	d desig mergin G: PO2	ng wire PO3 1 1	PO4 1 1	PO5	PO6 - -	ndards	. Confi	igure f	PO10	PO11 1 1	of rot PO12 2 2		r and	
CO4:	techne Expla Judge switcl s MAF COs CO1 CO2 CO3	in and the e hes. PPIN PO1 2 2 2 2	d desig mergin G: PO2	ng wire PO3 1	PO4 1 2	PO5 -	pgy sta	ndards PO7 -	. Confi	igure f	PO10	PO11 1 1 1 1	of rot PO12 2 2 2		r and	
CO4: COs Vs PO	techne Expla Judge switcl s MAF COs CO1 CO2 CO3 CO4	in and the e hes. PPIN PO1 2 2 2 2 2 2	d desig mergin G: PO2	PO3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO4 1 1 2 2	PO5 -	PO6 - -	ndards PO7	. Confi	igure f	PO10	PO11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of rot 2 2 2 2 2 2		r and	
CO4: COs Vs PO:	techne Expla Judge switcl s MAF COs CO1 CO2 CO3	in and the e hes. PPIN PO1 2 2 2 2 2 2	d desig mergin G: PO2	ng wire PO3 1 1	PO4 1 2	PO5 -	PO6 - -	ndards PO7	. Confi	igure f	PO10	PO11 1 1 1 1	of rot PO12 2 2 2 2		r and	
CO4:	techne Expla Judge switcl s MAH CO3 CO1 CO2 CO3 CO4 CO5	in and the e hes. PPINO 2 2 2 2 2 2 2 2 2	d desig mergin G: PO2 - - - - - - - - - -	PO3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO4 1 1 2 2	PO5 -	PO6 - -	ndards PO7	. Confi	igure f	PO10	PO11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of rot 2 2 2 2 2 2		r and	
CO4:	techne Expla Judge switcl s MAH CO3 CO1 CO2 CO3 CO4 CO5	in and the e hes. PPINO 2 2 2 2 2 2 2 2 2	d desig mergin G: PO2 - - - - - - - - - -	PO3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO4 1 1 2 2	PO5 -	PO6 - -	ndards PO7	. Confi	igure f	PO10	PO11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of rot 2 2 2 2 2 2		r and	
CO4:	techne Expla Judge switcl s MAH CO3 CO1 CO2 CO3 CO4 CO5	in and the e hes. PPINO 2 2 2 2 2 2 2 2 2	d desig mergin G: PO2 - - - - - - - - - -	PO3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO4 1 1 2 3	PO5 - - - - - -	PO6 - - - - - -	PO7 - - - - - -	PO8	igure f	PO10	PO11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of rot 2 2 2 2 2 2		r and	
CO4:	techne Expla Judge switcl s MAH CO3 CO1 CO2 CO3 CO4 CO5	in and the e hes. PPINO 2 2 2 2 2 2 2 2 2	d desig mergin G: PO2 - - - - - - - - - -	PO3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO4 1 1 2 2 3 C	PO5	PO6 01 PS	PO7 - - - - - -	PO8	igure f	PO10	PO11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of rot 2 2 2 2 2 2		r and	
CO4:	techne Expla Judge switcl s MAH CO3 CO1 CO2 CO3 CO4 CO5	in and the e hes. PPINO 2 2 2 2 2 2 2 2 2	d desig mergin G: PO2 - - - - - - - - - -	PO3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO4 1 1 2 2 3 C C C	PO5 - - - - - - - - - - - - - - - - - 2 OS PS - 2 O1 2	PO6 - - - - - - - 01 PS 3	PO7 - - - - - -	PO8	igure f	PO10	PO11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of rot 2 2 2 2 2 2		r and	
CO4:	techne Expla Judge switcl s MAH CO3 CO1 CO2 CO3 CO4 CO5	in and the e hes. PPINO 2 2 2 2 2 2 2 2 2	d desig mergin G: PO2 - - - - - - - - - -	PO3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO4 1 1 2 2 3 C C C C C C C	PO5 - - - - - - - - - - - - -	PO6 - - - - - - - - - - - 3 2	PO7 - - - - - - - - - - - - - - - - - - -	PO8	igure f	PO10	PO11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of rot 2 2 2 2 2 2		r and	
CO4:	techne Expla Judge switcl s MAH CO3 CO1 CO2 CO3 CO4 CO5	in and the e hes. PPINO 2 2 2 2 2 2 2 2 2	d desig mergin G: PO2 - - - - - - - - - -	PO3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO4 1 1 2 2 3 C C C C C C C C C C C C C C C C C	PO5 - - - - - - - - - - - - -	PO6 - - - - - - - - 01 PS 3 2 3	PO7 - - - - - -	PO8	igure f	PO10	PO11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of rot 2 2 2 2 2 2		r and	
CO4: COs Vs PO	techno Expla Judge switcl s MAH CO3 CO1 CO2 CO3 CO4 CO5	in and the e hes. PPINO 2 2 2 2 2 2 2 2 2	d desig mergin G: PO2 - - - - - - - - - -	PO3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO4 1 1 2 2 3 C C C C C C C C C C C C C C C C C	PO5 - - - - - - - - - - - - -	PO6 - - - - - - - - - - - - - - - - - - -	PO7 - - - - - - - - - - - - - - - - - - -	PO8	igure f	PO10	PO11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of rot 2 2 2 2 2 2		r and	
CO4:	techno Expla Judge switcl s MAH CO3 CO1 CO2 CO3 CO4 CO5	in and the e hes. PPINO 2 2 2 2 2 2 2 2 2	d desig mergin G: PO2 - - - - - - - - - -	PO3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO4 1 1 2 2 3 C C C C C C C C C C C C C C C C C	PO5 - - - - - - - - - - - - -	PO6 - - - - - - - - 01 PS 3 2 3	PO7 - - - - - - - - - - - - - - - - - - -	PO8	igure f	PO10	PO11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of rot 2 2 2 2 2 2		r and	
CO4: COs Vs PO	techne Expla Judge switcl s MAF COS CO1 CO2 CO3 CO4 CO5 Ds MA	in and the e hes. PPINO 2 2 2 2 2 2 2 2 2	d desig mergin G: PO2 - - - - - NG:	PO3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO4 1 1 2 2 3 C C C C C C C C C C C C C C C C C	PO5 - - - - - - - - - - - - -	PO6 - - - - - - - - - - - - - - - - - - -	PO7 - - - - - - - - - - - - - - - - - - -	PO8	igure f	PO10	PO11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of rot 2 2 2 2 2 2		r and	
CO4:	techne Expla Judge switcl s MAF COS CO1 CO2 CO3 CO4 CO5 Ds MA	in and the e hes. PPINO 2 2 2 2 2 2 2 2 2	d desig mergin G: PO2 - - - - VG:	PO3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO4 1 1 2 2 3 C C C C C C C C C C C C C C C C C	PO5 - - - - - - - - - - - - -	PO6 - - - - - - - - - - - 3 3 3 3 3 - - - - - - - - - - - - -	PO7 - - - - - - - - - - - - - - - - - - -	PO8	igure f	PO10	PO11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of rot 2 2 2 2 2 2		r and	

EXPERIMENT2	Implement the congestion control using Leaky bucket algorithm.
EXPERIMENT3	Installation of NS3 and execution of TCL commands/scripts.
EXPERIMENT4	Implementation Point to Point network using duplex links between the nodes.
	Analyze the packet transfer by varying the queue size and bandwidth. (using
	simulator)
EXPERIMENT5	Implement the dynamic routing protocol by varying the CBR traffic for each
	node and use a flow monitor()to monitor losses at nodes.(using simulator)
EXPERIMENT6	Create a wireless mobile ad-hoc network environment and implement the OLSR
	routing protocol. (using simulator)
EXPERIMENT7	Implement CDMA by assigning orthogonal code sequence for 5 stations,
	generate the CDMA code sequence and communicate between the stations
	using the generated code.
EXPERIMENT8	Create a GSM environment and implement inter and intra hand over
	mechanisms.(using simulator)
EXPERIMENT9	In LTE environment implement Round Robin and Token Bank Fair Queue
	scheduler in MAC layer.
EXPERIMENT10	Write python script to create topology in Mini net and configure Open Flow
	switches with POX controller to communicate between nodes.

PROGRAM ELECTIVE COURSES (PEC) SEMESTER - I, ELECTIVE–I

2403CP001			AD-E	IOC V	VIREI	LESS S	SENSC	R NE	TWO	RKS		L		P	С
												3	0	0	3
PREREQUI	SITE:														
	Basic	- knov	vledge	on Co	mnuter	r Netw	orks ar	d Mol	vile cou	mnutin	σ				
	Dask		vicuge	on co.	mputer		orks ar			mputin	5				
COURSE O	BJEC	TIVE	S:												
	1						ic featu	ires of	Ad-ho	c wire	less ne	tworks	and the	eir	
	2		plicatio enable				erstand	the fu	nction	ing of a	liffere	nt acce	ss and		
	_	rou	iting p	rotocol	ls.								oo ana		
	3	В. То	enable	e the st	udent	to unde	erstand	the M	lobility	in MA	NETs				
COURSE O						_									
On the succe	ssful c	omple	tion of	the co	ourse, s	tudent	s will t	e able	to						
CO1:	Desi	gn pro	tocols	for cel	lular n	etwork	s. Con	npare t	he arcl	nitectu	ral des	igning	issues c	of wire	eless
			works					1				0 0			
CO2:	Appl	y the	routing	mech	anism	on ad-l	noc wi	reless	networ	ks.					
CO3:						ntainin									
CO4:	Desig	gn the	protoc	ols wh	ich en	ergy ef	ficient								
CO5:	Appl	y the	classifi	cation	in mo	bility n	nodel c	on MA	NET						
COs Vs PO	s MA	PPIN	G:												
Г	00	DO1	DOA	DOA	DO 4	DOF	DOC	D05	DOG	DOG	DO10	DO11	DO14		
-	COs CO1	1 1	PO2	PO3	PO4	PO5 3	PO6	PO7	PO8	PO9	POI0 1	PO11 1	2		
-	CO2	1	2	-	-	3	-	-	-	-	-	-	2		
	CO3	1	1	-	3	3	-	-	3	-	1	-	2		
	CO4	1	2	1	2	3	-	-	3	-	-	-	2		
	CO5	1	1	1	2	3	1	-	2	-	1	-	1		
COs Vs PS	Os MA	APPIN	NG:												
						0 50	0120	0.0 8 7 2	0.0						
						Os PS 01 3			03						
						$\begin{array}{c c} \mathbf{OI} & 3 \\ \mathbf{O2} & 3 \end{array}$			·						
						03 3									
						O4 3									
					C	O5 3	2	-							
COURSE C	олте	'NTC.													
COURSEC	UNIE	113													

MODULE I INTRODUCTION TO MANETS AND MAC LAYER PROTOCOLS 9 Hours

Fundamentals of Wireless Networks– IP Limitations-Mobile Internet Protocol (IP)- Issues in Mobile IP- Differences between Cellular and Ad Hoc Wireless Networks Issues in Ad Hoc Wireless Networks-Classification of Ad-hoc Networks-MANET applications- Important Issues and the Need for Medium Access Control (MAC) Protocols.- Classification of MAC Protocols- Multiple-Channel MAC Protocols.

MODULE II ROUTING PROTOCOLS FOR AD-HOC WIRELESS NETWORKS 9 Hours

Design Issues of Routing Protocols for Ad Hoc Networks- Classification of Routing Protocols- Proactive Routing- WRP, DSDV, OLSR Protocol- Reactive Routing- AODV, DSR, TORA, CBRP Protocol- Hybrid Routing.- ZRP, ZHLS

MODULE IIIQUALITY OF SERVICE (QOS) IN AD HOC NETWORKS9 Hours

Introduction to QoS-Issues and Challenges Involved in Providing QoS-Classification of QoS Solutions-Medium Access Control (MAC)-Layer QoS Solutions- Network-Layer QoS Solutions- QoS Model- QoS Frameworks- INSIGNIA Protocol Commands INSIGNIA Protocol Operations- Reservation Establishment-QoS Reporting- Flow Restoration-Flow Adaptation-Intelligent Optimization Self-Regulated adjustment (INORA)- Coarse-Feedback Scheme-Class-Based Fine Feedback Scheme. **MODULE IV ENERGY MANAGEMENT SYSTEMS IN AD HOC WIRELESS** 9 Hours

MODULE IV ENERGY MANAGEMENT SYSTEMS IN AD HOC WIRELESS NETWORKS

MODULE V MOBILITY MODELS FOR MANET

Mobility Model Classifications-Formulation of Mobility Models- Mobility Metrics -Impact of Mobility Models on MANET- **Random Walk Mobility**- Notation, Characteristics of Random Walk Mobility, Stationary Distribution of Random Walk Mobility, Limitations of Random Walk Mobility Model - **Random Waypoint Mobility**- Notation ,Random Waypoint Stochastic Process, Transition Length and Duration, Limitations- **Smooth Random Mobility**- Notation, Characteristics of Smooth Random Mobility Model, Speed Control, Direction Control, Correlation Between Direction and Speed Change.

TOTAL: 45 HOURS

REFERENCES:

- 1. Subir Kumar Sarkar, T.G. Basavaraju, C. Puttamadappa," Ad Hoc Mobile Wireless Networks: Principles, Protocols, and Applications", Second edition, AUERBACH PUBLICATIONS, 2013.
- 2. Radhika RanjanRoy, "Handbook of Mobile Ad HocNetworks for MobilityModels", Springer Science +Business Media, LLC 2011
- 3. Jonathan Loo, Jaime Lloret Mauri, Jesús Hamilton Ortiz, "Mobile Ad Hoc Networks: Current Status and Future Trends" CRC Press, 2012.

4. B. V. V. S. PRASAD, "ROUTING ISSUES IN MANETs", Educreation Publishing2016

5. Waltenegus Dargie, Christian Poella bauer, Fundamentals of Wireless Sensor Networks Theory and Practice, John Wiley and Sons, 2010.

9 Hours of Mobilit

2403CP002]	NETW	ORK	ING T	ECHN	NOLO	GIES				L	Т	P	C
													3	0	0	3
REREQUI	SITE:															
			mputer	Netw	orks ar	nd Moł	oile coi	nputin	g							
			•					•	0							
			a													
OURSE O	BJEC	IIVE	5:													
	1	. To	learn	about i	ntegra	ted and	l differ	entiate	d serv	ices ar	chitec	tures.				
	2						f wirel									
	3	3. То	study	the de	velopn	nents ir	n cellul	ar netv	works							
		4. To	get fa	miliari	zed wi	th next	gener	ation n	etworl	ks.						
	5	5. То	know	the co	ncepts	behind	l softw	are def	fined n	etworl	KS					
OURSE O	UTCO)MES	•													
				compl	etion of	of the c	course,	studen	ts will	be ab	le to					
COL																
CO1:							edando			service	es.					
CO2: CO3:							eless n etwork		KS .							
<u> </u>				using			CLWOIK	5								
CO5:						etwork	cs.									
		-														
COs Vs PO	s MA	PPIN	G:													
Г	COs	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1() PO1	11 P	PO12		
	CO1	1	1	-	-	3	1	-	-	-	1	1		2		
	CO2	1	1	-	-	3	-	-	-	-	-	-		2		
-	CO3	1	1	-	3	3	-	-	3	-	1	-		2		
-	CO4 CO5	1 1	1	1	22	3	- 1	-	3	-	- 1	-	_	2		
	05	1	1	1	Z	3	1	-	Z	-	1	-		1		
COs Vs PS	Os MA	APPIN	NG:													
							O1PS		03							
						01 3 02 3										
						02 3 03 3										
						O4 3										
					С	O5 3	3 2	-								
OURSE CO	UNIE	IN 1 5:														
IODULE I	NE	TWO	RK A	RCHI	ТЕСТ	URE	AND (QOS							9 Hou	ırs
verview of	TCP/I	P Netv	work A	rchited	cture –	Integra	ated Se	rvices			. .			-		
ervices-Mu																
Iultiple Acc																
tandards-Qu ervices.	ieuing	Disci	pline–l	PQ - P	S-BRF	'Q –GI	PS-WI	-Q –Ra	andom	Early	Detec	ction	-D1	ifferen	tiated	
IODULE I	W	RELI	ESS N	ETW(ORKS									Ī	9 Hot	ırs
EEE802.16						ed802.	16 Fun	ctional	lities-	Mobil	e WiM	IAX-	-802			
nfrastructure																

QoS – Comparison of WLAN and UMTS–Bluetooth–LiFi–Protocol Stack–Security–Profiles

MODULE III CELLULAR NETWORKS

GSM – Mobility Management and call control – GPRS – Network Elements – Radio Resource Management – Mobility Management and Session Management– UMTS – Channel Structure on the Air Interface – UTRAN –Core and Radio Network Mobility Management –UMTS Security- Introduction to 5G&XGnetworks.

MODULE IV 5G,6G and 7G NETWORKS

LTE – Network Architecture and Interfaces – FDD Air Interface and Radio Networks –Scheduling – Mobility Management and Power Optimization – LTE Security Architecture - 5G cellular network- 6G cellular networks- 7G cellular networks- comparison of 5G,6G and 7G cellular networks – XG Networks Protocols–Green Wireless Networks.

MODULE V SOFTWARE DEFINED NETWORKS

Introduction–Centralized and Distributed Controland Data Planes–Open Flow–SDN Controllers–General Concepts – VLANs – NVGRE – Open Flow – Network Overlays – Types – Virtualization – Data Plane – I/O –Design of SDN Framework

TOTAL: 45 HOURS

9 Hours

9 Hours

9 Hours

REFERENCES:

- 1. William Stallings, "High Speed Networks and Internets: Performance and Quality of Service", Prentice Hall, Second Edition, 2002.
- 2. Martin Sauter, "From GSM to LTE, An Introduction to Mobile Networks and Mobile Broad band", Wiley, 2014
- 3. Savo G Glisic, "Advanced Wireless Networks 4G Technologies", John Wiley & Sons, 2007.
- 4. Jonathan Rodriguez, "Fundamentals of 5G Mobile Networks", Wiley, 2015.
- 5. Martin Sauter, "Beyond 3G–Bringing Networks, Terminals and the Web Together: LTE, WiMAX, IMS, 4G Devices and the Mobile Web2.0", Wiley, 2009.
- 6. Naveen Chilamkurti, Sherali Zeadally, Hakima Chaouchi, "Next-Generation Wireless Technologies", Springer, 2013.
- 7. Erik Dahlman, Stefan Parkvall, Johan Skold, "4G: LTE/LTE-Advanced for Mobile Broadband", Academic Press, 2013.

2403CP003			ADV	ANCE	ED ST	ORAG	JE AR	EA NI	ETWO	RK				Т	Р	C
												3	3	0	0	3
REREQUI	SITE											•				<u> </u>
		•														
	Basi	c knov	vledge	about	Storag	e Area	Netwo	ork and	l File S	ystem						
										•						
OURSE O	BJEC	TIVE	S:													
	1		-						ckup,	Archiv	ve and	i Rep	licat	ion,	Bu	sine
							Infrast									
							ization		pt							
	-	З. To	study	about	the NA	AS file	system	1.								
OURSE O	UTCO	OMES	:													
the succes				the co	ourse, s	tudent	s will t	be able	to							
CO1:									the met	rics us	ed for	it.				
CO2:									IP-SA				etwo	rk.		
CO3:			ong vir													
004								G +) T								
CO4:	Stud	y the h	nardwa	re devi	ices as	sociate	d with	SAN a	archite	cture						
CO4: CO5:			ardwa e SAN					SAN a	archite	cture						
								SAN a	archite	cture						
	Anal	yze th	e SAN					SAN a	archite	cture						
CO5:	Anal s MA	yze th	e SAN G:	mana	gemen	t strate	gies.				D O10	D O11				
CO5:	Anal Ds MA COs	yze th PPIN PO1	e SAN G: PO2	manag PO3	gemen	t strate	gies.		PO8					12		
CO5:	Anal os MA COs CO1	yze th PPIN PO1 2	e SAN G: PO2 3	managements mana A construction and a construction an	gemen PO4 -	r strate	PO6 2	PO7 -		PO9 -	3	2	2	2		
CO5:	Anal Os MA COs CO1 CO2	yze th PPIN PO1 2 3	e SAN G: <u>PO2</u> 3 2	manag PO3 2 3	gemen PO4 - -	t strate	PO6 2 2	PO7 - -		PO9 - 2	3 1	2 2	2 2	2		
CO5:	Anal S MA COs CO1 CO2 CO3	yze th PPIN PO1 2 3 2	e SAN G: <u>PO2</u> 3 2 2	manag PO3 2 3 3	PO4 - 2	r strate	PO6 2 2 1	PO7 -		PO9 - 2 2	3 1 1	2 2 2	2 2 3	2		
CO5:	Anal Os MA COs CO1 CO2 CO3 CO4	PPIN PO1 2 3 2 2	e SAN G: 702 3 2 2 2 2	mana PO3 2 3 3 3 3	PO4 - 2 2	PO5 - 2	PO6 2 2	PO7 - -	PO8 - - - -	PO9 - 2 2 2 2	3 1 1 1	2 2 2 2	2 2 3 3	2		
CO5:	Anal S MA COs CO1 CO2 CO3	PPIN PO1 2 3 2 2	e SAN G: <u>PO2</u> 3 2 2	manag PO3 2 3 3	PO4 - 2	r strate	PO6 2 2 1	PO7 - -		PO9 - 2 2	3 1 1	2 2 2	2 2 3	2		
CO5: COs Vs PO	Anal COs CO1 CO2 CO3 CO4 CO5	PPIN PO1 2 3 2 2 2	e SAN G: <u>PO2</u> 3 2 2 2 3	mana PO3 2 3 3 3 3	PO4 - - 2 2	PO5 - 2	PO6 2 2 1	PO7 - -	PO8 - - - -	PO9 - 2 2 2 2	3 1 1 1	2 2 2 2	2 2 3 3	2		
CO5: COs Vs PO	Anal COs CO1 CO2 CO3 CO4 CO5	PPIN PO1 2 3 2 2 2	e SAN G: 902 3 2 2 2 2 3	mana PO3 2 3 3 3 3	PO4 - - 2 2	PO5 - 2	PO6 2 2 1	PO7 - -	PO8 - - - -	PO9 - 2 2 2 2	3 1 1 1	2 2 2 2	2 2 3 3	2		
CO5:	Anal COs CO1 CO2 CO3 CO4 CO5	PPIN PO1 2 3 2 2 2	e SAN G: 902 3 2 2 2 2 3	mana PO3 2 3 3 3 3	PO4 2 2 2 2	PO5 - 2 - 3	PO6 2 1 -	PO7 - - - - -	PO8 2	PO9 - 2 2 2 2	3 1 1 1	2 2 2 2	2 2 3 3	2		
CO5: COs Vs PO	Anal COs CO1 CO2 CO3 CO4 CO5	PPIN PO1 2 3 2 2 2	e SAN G: 902 3 2 2 2 2 3	mana PO3 2 3 3 3 3	PO4 2 2 2 C	PO5 - 2 - 3	gies. PO6 2 2 1 1 - 01 PS	PO7 - - - - - - - - 02 PS	PO8 2	PO9 - 2 2 2 2	3 1 1 1	2 2 2 2	2 2 3 3	<u> 2</u>		
CO5: COs Vs PO	Anal COs CO1 CO2 CO3 CO4 CO5	PPIN PO1 2 3 2 2 2	e SAN G: 902 3 2 2 2 2 3	mana PO3 2 3 3 3 3	gemen - - 2 2 2 C C	PO5 - 2 - 3 Os PS	gies. PO6 2 2 1 1 1 - 01 PS 2 3	PO7 - - - - - - - - - - - - - - - - - - -	PO8 2	PO9 - 2 2 2 2	3 1 1 1	2 2 2 2	2 2 3 3	2		
CO5: COs Vs PO	Anal COs CO1 CO2 CO3 CO4 CO5	PPIN PO1 2 3 2 2 2	e SAN G: 902 3 2 2 2 2 3	mana PO3 2 3 3 3 3	gemen - - 2 2 2 C C C	PO5 - 2 - 3 Os PS O1	gies. PO6 2 2 1 1 - 01PS 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PO7 - - - - - - - - - - - - - - - - - - -	PO8 - - 2 03	PO9 - 2 2 2 2	3 1 1 1	2 2 2 2	2 2 3 3	2		
CO5: COs Vs PO	Anal COs CO1 CO2 CO3 CO4 CO5	PPIN PO1 2 3 2 2 2	e SAN G: 902 3 2 2 2 2 3	mana PO3 2 3 3 3 3	gemen PO4 - - 2 2 2 2 C C C C C	PO5 - - 2 - - - 3 - Os PS O1 O2 2	gies. PO6 2 2 1 1 - O1PS 2 3 2 2 3	PO7 - - - - - - - - - - - - - - - - - - -	PO8 - - 2 03	PO9 - 2 2 2 2	3 1 1 1	2 2 2 2	2 2 3 3			
CO5: COs Vs PO	Anal COs CO1 CO2 CO3 CO4 CO5	PPIN PO1 2 3 2 2 2	e SAN G: 902 3 2 2 2 2 3	mana PO3 2 3 3 3 3	gemen - - 2 2 2 C C C C C C C C	PO5 - 2 - - 3 - 0s PS 01 2 02 2 03 2	gies. PO6 2 2 1 1 - O1 PS 2 3 2 2 3 3 2 3 3 3 2 3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	PO7 - - - - - - - - - - - - - - - - - - -	PO8 - - 2 03	PO9 - 2 2 2 2	3 1 1 1	2 2 2 2	2 2 3 3	2		
CO5: COs Vs PO	Anal COs CO1 CO2 CO3 CO4 CO5	PPIN PO1 2 3 2 2 2	e SAN G: <u>PO2</u> 3 2 2 2 3	mana PO3 2 3 3 3 3	gemen - - 2 2 2 C C C C C C C C	PO5 - 2 - 3 Os PS O1 2 O2 2 O3 2 O3 2 O4 2	gies. PO6 2 2 1 1 - O1 PS 2 3 2 2 3 3 2 3 3 3 2 3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	PO7 - - - - - - - - - - - - - - - - - - -	PO8 - - 2 03	PO9 - 2 2 2 2	3 1 1 1	2 2 2 2	2 2 3 3	2		
CO5: COs Vs PO	Anal COs CO1 CO2 CO3 CO4 CO5 Os M	yze th PPIN PO1 2 3 2 2 2 APPIN APPIN	e SAN G: 7 2 2 2 3 8 VG:	mana PO3 2 3 3 3 3	gemen - - 2 2 2 C C C C C C C C	PO5 - 2 - 3 Os PS O1 2 O2 2 O3 2 O3 2 O4 2	gies. PO6 2 2 1 1 - O1 PS 2 3 2 2 3 3 2 3 3 3 2 3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	PO7 - - - - - - - - - - - - - - - - - - -	PO8 - - 2 03	PO9 - 2 2 2 2	3 1 1 1	2 2 2 2	2 2 3 3			
CO5: COs Vs PO	Anal S MA COs CO1 CO2 CO3 CO4 CO5 Os M	yze th PPIN PO1 2 3 2 2 2 APPIN CNTS:	e SAN G: 7 2 2 2 3 8 VG:	PO3 2 3 3 2	gemen - - 2 2 2 C C C C C C C C	PO5 - 2 - 3 Os PS O1 2 O2 2 O3 2 O3 2 O4 2	gies. PO6 2 2 1 1 - O1 PS 2 3 2 2 3 3 2 3 3 3 2 3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	PO7 - - - - - - - - - - - - - - - - - - -	PO8 - - 2 03	PO9 - 2 2 2 2	3 1 1 1	2 2 2 2	2 2 3 3			

advantages. Case study: Replacing a server with Storage Networks The Data Storage and Data Access problem; The Battle for size and access. Intelligent Disk Subsystems: Architecture of Intelligent Disk Subsystems; Hard disks and Internal I/O Channels; JBOD, Storage virtualization using RAID and different RAID levels; Caching Acceleration of Hard Disk Access; Intelligent disk subsystems, Availability of disk subsystems.

MODULE II I/O TECHNIQUES

The Physical I/O path from the CPU to the Storage System; SCSI; Fibre Channel Protocol Stack; Fibre Channel SAN; IP Storage. Network Attached Storage: The NAS Architecture, The NAS hardware Architecture, The NAS Software Architecture, Network connectivity, NAS as a storage system. File System and NAS: Local File Systems; Network file Systems and file servers; Shared Disk file systems; Comparison of fibre Channel and NAS, Case study: General Parallel File System

MODULE III STORAGE VIRTUALIZATION

Definition of Storage virtualization; Implementation Considerations; Storage virtualization on Block or file level; Storage virtualization on various levels of the storage Network; Symmetric and Asymmetric storage virtualization in the Network.

MODULE IV SAN ARCHITECTURE AND HARDWARE DEVICES

Overview, Creating a Network for storage; SAN Hardware devices; The fibre channel switch; Host Bus Adaptors; Putting the storage in SAN; Fabric operation from a Hardware perspective. Software Components of SAN: The switch's Operating system; Device Drivers; Supporting the switch's components; Configuration options for SANs. 9 Hours

MANAGEMENT OF STORAGE NETWORK MODULE V

System Management, Requirement of management System, Support by Management System, Management Interface, Standardized Mechanisms, Property Mechanisms, Inband Management, Use of SNMP, CIM and WBEM, Storage Management Initiative Specification (SMIS), CMIP and DMI, Optional Aspects of the Management of Storage Networks,

TOTAL: 45 HOURS

REFERENCES:

- Storage Networks Explained Ulf Troppens, Rainer Erkens and Wolfgang Muller Wiley India 2013 Storage Networks The Complete Reference Robert Spalding Tata McGrawHill 2011
- 3. Storage Networking Fundamentals An Introduction to Storage Devices, Subsystems, Applications, Management, and File Systems Marc Farley Cisco Press, 2005
- Storage Area Network Essentials A Complete Guide to understanding and Implementing SANs Richard 4. Barker and Paul Massiglia Wiley India, 2006

9 Hours

9 Hours

2403CP004	Μ	OBIL	LE AP	PLICA	TION	NS AN	D PEF	RVASI	IVE C	OMPU	J TIN G			Т	Р	С
													3	0	0	3
PREREQUIS	SITE:	, ,														
	Kno	wledg	e on B	asic C	oncept	s of OS	S, Dist	ributed	1 Syste	ms and	l Comp	outer A	Archi	tectu	ıre	
COURSE OF	BJEC'	TIVE	S:													
	<u>,,,,,</u>															
	1					cterist	ics, bas	sic con	ncepts a	nd sys	stems i	ssues i	n mo	bile	and	
		рег 2. То	rvasive	comp	uting hitectu	ire and	protoc	ols in	pervas	ive co	mutin	a and	to ide	entit	fy the	
									nologie			5 unu	10 10	ciitii	y the	
	3	3. То	design	n succe	ssful r	nobile	and pe	rvasiv	e comp	outing	applica	ations	and s	ervi	ces	
COURSE OU						_										
On the succes CO1:																
CO1.							vireless ting in									
CO3:						Comp	0	0,0111								
CO4:	App	oly the	princi	ples of	perva	sive co	mputi									
CO5 :									ng appli	cation	s inclu	ding th	he m	ajor	syste	m
	com	iponer	its and	archite	ectures	s of the	e syster	ns.								
COs Vs POs	s MA	PPIN	G:													
		DO1	DOA	DO1	DO 4	DO5	DOC	DOT	DOO	DOA		DO11				
	COs CO1	PO1 3	PO2 3	PO3 3	PO4 3	PO5 3	PO6	PO7	PO8	P09 -	PO10	- -	- PO	12		
	CO2		3	2	2	2	2	-	-	-	-	-	-			
	CO3		3	3	1	3	1	-	-	-	-	-	-			
	CO4	3	2	2	3	1	1	-	-	-	-	-	-			
	CO5	3	2	2	3	3	3	-	-	-	-	-	-			
COs Vs PSC	Os M/	APPIN	NG:													
							01 PS		<u>803</u>							
						01 2 02 2			-							
						$\frac{02}{03}$ 2			-							
						O4 2	2 3		-							
					C	O5 2	2 3	-	-							
COUDSE CO	NUTT	NTC-														
COURSE CO	JNIE	7 N T 9 :														
MODULE I	IN	TROI	DUCT	ION										9	9 Hou	irs
Wireless netw	works	- eme	rging	techno												
protocols-a si												nent a	nd p	roto	cols:	
Mobile device	es as v	veb cli	ents-V	VAP –.	2ME-	Andro	oid Apj	olicatio	on deve	lopme	ent					

MODULE II MOBILE COMPUTING	9 Hours
Mobile Computing Architecture: Architecture for Mobile Computing - Three-Tier Architecture	ure – Design
Considerations for Mobile Computing- Global System for Mobile Communications - GSM A	rchitecture -
GSM Entities - Call Routing in GSM - GSM Addresses and Identifiers - Network Aspects in	$\mathbf{GSM} - \mathbf{GSM}$
Frequency Allocation – Authentication and Security.	
MODULE III SERVICES IN MOBILE COMPUTING	9 Hours
Short Message Service (SMS)- Value Added Services through SMS – GPRS- GPRS and Packet	Data
Network - GPRS Network Architecture - GPRS Network Operations - Data Services in GPRS-	
Applications for GPRS – Limitations of GPRS.	
MODULE IV PERVASIVE COMPUTING	9 Hours
Pervasive Computing: Past, Present and Future Pervasive Computing - Pervasive Computing	Market – m-
Business – Application Examples: Retail, Airline check-in and booking – Sales force automat	tion – Health
care – Tracking – Car information system – E-mail access via WAP.	
MODULE V SERVICE DISCOVERY	9 Hours
Open protocols- Service discovery technologies- SDP, Jini, SLP, UpnP protocols-data syr	nchronization-
SyncML framework - Context aware mobile services -Context aware sensor networks, ac	ldressing and
communications- Context aware security.	-
TOTAL:	45 HOURS

REFERENCES:

- 1. Ashok K.Talukder and Roopa R.Yuvagal, "Mobile Computing", 2nd Edition, Tata McGraw Hill, 2010.
- 2. Pattnaik, Prasant kumar, Mall, Rajib, "Fundamentals of Mobile Computing", Second Edition, India: PHI Learning Private Limited, 2015.

3. Jochen Burkhardt, Horst Henn, Stefan Heper, Klaus Rindtorff and Thomas Schack, "Pervasive Computing Technology and Architecture of Mobile Internet Applications" Addison Wesley, 2002.

4. UweHansmann, L. Merk, M. Nicllous, T. Stober and U.Hansmann, "Pervasive Computing", Springer Verlag, 2003. Johcehn H.Schiller, "Mobile Communications", Addison-Wesley, 2003.

5. SengLoke, Context-Aware Computing Pervasive Systems, Auerbach Pub., NewYork, 2007.

6. Frank Adelstein Sandeep K. S. Gupta Golden G. Richard III Loren Schwiebert, "Fundamentals of Mobile and Pervasive Computing", McGraw-Hill, 2005.

2403CP005		FUI	LL ST.	ACK	WEB A	APPL	ICATI	ON D	EVEL	OPMI	ENT	Ι			C
												3	3 0	0	3
REREQUIS	SITE:														
L			wledge	on fro	ont end	techn	ologies	, back	end te	chnolo	gies ai	nd Data	base	Progra	mmi
	Tech	nolog	ies				•							Ū.	
			a												
COURSE OI	1														
							about th							ologies	•
							d three he web a			iral we	b appl	ication	.S		
	-		<u> </u>					11		action	9				
	_						and ser h front					mina			
). 10	Icalli		лсері	01 001	II HOIII		iu back	enu p	logran	mmg.			
COURSE OU	UTCO	MES	:												
On the succes				the co	ourse, s	tuden	ts will t	be able	to						
CO1:							uilding			plicati	ons				
CO2:							lication								
CO3:	Deve	elop Sj	pring E	loot ba	used we	eb app	licatior	ıs							
CO4:	Integ	grate w	veb app	licatio	ns wit	h Mon	igoDB								
CO5:	Deve	elop W	∕eb app	olicatio	ons, RE	ESTful	l web se	ervices	and M	licro S	ervices	s using	full s	tack	
	COs		PO2		PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2	
	CO1	1	-	3	2	-	-	-	-	-	-	-	-		
1	CO2	1	-	3	2	-	-	-	-	-	-	-	-	_	
	CO3	1	-	3	2	-	-	-	-	-	-	-	-	_	
	CO4	1	-	3	2	-	-	-	-	-	-	-	-	_	
	CO5	1	-	3	2	-	-	-	-	-	-	-	-		
	D- M		IC.												
COs Vs PS	JS INIA	APPI	NG:												
					C	Os PS	501 P S	O2PS	03						
							1 2								
							1 2								
							1 3								
							1 3								
							2 3								
									I						
COURSE CO	<u>ONTE</u>	ENTS:													
MODULE I			IEW (9 Ho	
Understandin															
bjects, string										e – Ful	1 stack	x with J	IAVA	Sprin	g
Boot, React, I	Mongo	DB-	Simple	progr	ams us	ing Ja	va scrij	ot func	tions						

MODULE II FRONT-END DEVELOPMENT

REACT - Virtual DOM, components, props, JSX, Events, conditionals, lists, forms, Routing, Hooks, Redux, Client-server communication, material-UI- Implementation of simple UI using REACT class.

MODULE III JAVA SPRING BOOT

9 Hours

Spring Boot core features, architecture - auto configuration, dependency management, application, component scan, starters-starter web, data JPA, actuators, annotation, POM file- Creating Spring Boot and Implementation of a simple web applications.

MODULE IV MONGO DB

9 Hours

Understanding NoSQL and MongoDB – Building MongoDB Environment – User accounts – Access control – Administering databases – Managing collections – Connecting to MongoDB from Spring Boot Spring Data MongoDB, CRUD operations- Create a CRUD applications using MongoDB

MODULE V BUILDING WEBAPPS, WEB SERVICES AND MICROSERVICES 9 Hours WITH SPRING BOOT

Building simple web applications, creating RESTful web service, Micro services architecture, Principles of Micro services and its advantages, Service register & API Gateway, Admin Server & Client, Inter service communication, External API communication, Distributed logging.

TOTAL: 45 HOURS

REFERENCES:

1. John Carnell, Illary Huaylupo Sánchez, "Spring Microservices in Action", 2nd Edition, Manning Publications, 2021.

2. Greg L. Turn quist, Learning Spring Boot 3.0, 3rd Edition, Packt Publishing, 2022.

3. David Herron, Node.js Web Development, Packt Publishing Limited, 5th edition, 2020.

4. David Flanagan, Java script The Definitive Guide, Oreilly, 7th Edition, 2020.

5. K. Siva Prasad Reddy, Sai Upadhyayula, Beginning Spring Boot 3: Build Dynamic Cloud Native Java Applications and Microservices, A Press, 2022

6. Craig Walls, Spring Boot in Action, Manning Publications, 2016.

SEMESTER - I, PROGRAM ELECTIVE-II

2403CP006			A	DVAN	CED	OPER	ATIN	G SYS	TEM	5		Ι	Δ T	P	С
												3	6 0	0	3
PREREQUI	SITE														
I KEKEQUI			e on Ba	sic Co	ncents	of OS									
	IXIIO	wicuge			neepts	01 05									
COURSE O	BJEC	TIVE	S:												
		1.		in kno	wledg	e on D	istribu	ted one	erating	systen	n conce	epts.			
		2.								-	ement	-	nents		
		3.											Mobil	e oner	atino
		5.	syster		com	onena	, and n	iunuge	inent u	species	01 100	u unic,	moon	e open	ating
	_	4.			wledg	e on th	e desig	m con	ents o	f Real	Time (nerati	ng syst	ems	
		5.									uster m			CIIIS	
		5.	10 al	u1 y 20		y 1	nunagt				10101 II		U.		
COURSE O	UTCO	MES	:												
On the succes	ssful c	omple	tion of	the co	urse, s	tudent	s will b	e able	to						
CO1:	Ident	ify the	e featui	res of c	listribu	ited op	erating	g syster	ns.						
CO2:	Dem	onstra	te the v	various	proto	cols of	distrib	uted o	peratin	ig syste	ems.				
CO3:	Ident	ify the	e differ	ent fea	tures of	of real	time op	peratin	g syste	ems.					
CO4:			e featur												
CO5:											on poli	cies in	cluster	machi	nes
COs Vs PO				DO4	DO 4	DO 7	DO (DOF	DOA	DOA	DO10	DO11	DO10		
-			PO2	PO3		PO5		PO7	PO8		PO10	POII	POI2		
	CO1	3	-	3	2	-	-	-	-	-	-	-	-		
-	aa				2	2									
-	CO2	3	-	2		2	-	-	-	-	-	-	-		
-	CO3	3	-	2	2	-	-	-	-	-	-	-	-		
	CO3 CO4	3 3	- 2	2 2	2 3	-	- - -	-	- - -			-	- - -		
	CO3	3	- - 2 2	2	2	-	- - -	- - -	- - -	-	-		- - -		
	CO3 CO4 CO5	3 3 3	2	2 2	2 3	-	-	-	- - -	-	-	-	- - -		
COs Vs PS	CO3 CO4 CO5	3 3 3	2	2 2	2 3	-	-	-	-	-	-	-	- - -		
COs Vs PS	CO3 CO4 CO5	3 3 3	2	2 2	2 3 3	- - - Os PS	- - - 01 PS	-	- - - - 03	-	-	-	-		
COs Vs PS	CO3 CO4 CO5	3 3 3	2	2 2	2 3 3	-		- 02 PS	- - - - 03	-	-	-	-		
COs Vs PS	CO3 CO4 CO5	3 3 3	2	2 2	2 3 3 C C C	- - - Os PS 01 1 02 2	2	- 02 PS	- - - 03	-	-	-	-		
COs Vs PS	CO3 CO4 CO5	3 3 3	2	2 2	2 3 3 C C C	- - - Os PS 01 1	2 2 2 3	O2 PS	- - - 03	-	-	-	-		
COs Vs PS	CO3 CO4 CO5	3 3 3	2	2 2	2 3 3 C C C C C	- - - Os PS 01 1 02 2	2 2 2 2 3	O2 PS	- - - 03	-	-	-	-		
COs Vs PS	CO3 CO4 CO5	3 3 3	2	2 2	2 3 3 C C C C C C C	- - - 0s PS 01 1 02 2 03 2	2 2 2 3 2 3	O2 PS	- - - 03	-	-	-	-		
	CO3 CO4 CO5 Os M	3 3 3	2 NG:	2 2	2 3 3 C C C C C C C	- - - 05 PS 01 1 02 2 03 2 03 2 04 2	2 2 2 3 2 3	O2 PS	- - - 03	-	-	-	-		
COs Vs PS	CO3 CO4 CO5 Os M	3 3 3	2 NG:	2 2	2 3 3 C C C C C C C	- - - 05 PS 01 1 02 2 03 2 03 2 04 2	2 2 2 3 2 3	O2 PS	- - - 03	-	-	-	-		

MODULE I DISTRIBUTED OPERATING SYSTEMS

M.E. Computer Science and Engineering E.G.S. Pillay Engineering College | Regulations 2024 Approved in XI Academic Council Meeting held on 04-02-2024

Distributed Operating Systems – Communication Primitives –-Issues in Distributed Operating System -Architecture - Communication Primitives -Lamport's Logical clocks -Causal Ordering of Messages -Distributed Mutual Exclusion Algorithms - Centralized and Distributed Deadlock Detection Algorithms Agreement Protocols.

MODULE II **DISTRIBUTED RESOURCE MANAGEMENT**

Distributed File Systems -Design Issues - Distributed Shared Memory -Algorithms for implementing Distributed Shared memory-Issues in Load Distributing - Scheduling Algorithms - Synchronous and Asynchronous Check Pointing and Recovery - Fault Tolerance -Two-Phase Commit Protocol - Non blocking Commit Protocol -Security and Protection.

MODULE III REAL TIME OPERATING SYSTEMS

Basic Model of Real Time Systems - Characteristics- Applications of Real Time Systems - Real Time Task Scheduling - Handling Resource Sharing and Dependencies in real time tasks- Scheduling real time task in Multiprocessor and Distributed systems. 9 Hours

MODULE IV MOBILE AND CLOUD OPERATING SYSTEMS

Android – Overall Architecture – Linux Kernel – Hardware Support – Native User-Space – Dalvik and Android's Java - System Services - Introduction to Cloud Operating Systems-Virtualization - Machine virtualization, binary virtualization, VMware Design. 9 Hours

MODULE V **MEMORY MANAGEMENT**

Memory Management: virtual memory, NUMA machines, memory allocators – Hoard Scalable Memory Allocator, Memory Resource Management in VMware, Global Memory Management in Cluster machines.

TOTAL: 45 HOURS

9 Hours

9 Hours

REFERENCES:

- 1. Mukesh Singhal, Niranjan Shivaratri, "Advanced Concepts in Operating Systems: Distributed, Database and Multiprocessor Operating Systems", McGraw Hill, 2017. Andrew S Tanenbaum, "Modern Operating Systems", Pearson, 2021. Mukesh Singhal, "Advanced concepts in operating systems", McGraw Hill, 2017. Rajib Mall, "Real-Time Systems: Theory and Practice", Prentice Hall, 2006 Karim Yaghmour, "Embedded Android", O'Reilly, First Edition, 2013. Nikolay Elenkov, "Android Security Internals: An In-Depth Guide to Android's Security Architecture", No
- <u>3.</u>
- 4.
- 5.
- 6. Starch Press, 2014.

2403CP007				SEN	MANT	TIC W	EB					T	P	C
											3	0	0	3
PREREQUIS	SITE:													
	Basic Kno	owledge	e about	Agent	s, Onto	ology								
		80												
COURSE OF	1													
		o under		•					•	Frame	work ir	semai	ntic w	eb
		o study)					
	3. T	o know	the ap	plicatio	ons of	semant	ic web)						
COURSE OU	TTCOME	<u>c.</u>												
On the succes			the co	urse s	tudent	s will b	e able	to						
CO1:	Understar													
CO2:	Develop a								ols.					
CO3:	Analyze v													
CO4:	Use ontol	ogy rela	ated too	ols and	techno	ologies	for ap	plicati	on cre	ation				
CO5:	Design an	nd devel	op app	licatio	ns usin	ng sema	antic w	veb.						
<u></u>		10												
COs Vs POs	s MAPPIN	NG:												
Г	COs PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	POQ	PO10	PO11	PO12		
	$\frac{\text{CO3} \text{ I O3}}{\text{CO1} \text{ 3}}$	-	3	1	2	3	-	-	-	-	-	-		
	CO2 3	-	3	2	3	3	-	-	-	-	-	-		
-	CO3 2	2	3	2	-	1	-	-	-	-	-	-		
	CO4 3	-	2	3	2	3	-	-	-	-	-	-		
	CO5 3	-	3	2	3	3	-	-	-	-	-	-		
COs Vs PSC)s MAPP	ING:												
				C		O1PS	01 PS	03						
					01 2			05						
					$\mathbf{O1}$ 2									
					O3 2									
					O4 2									
					O5 2	2 3								
COURSE CO	DNTENTS	5:												
MODULE I	THE Q	UESTI	FORS	EMA	VTICS	1							9 Hoi	irs
Building Mo							Excha	nging	Infor	nation	– Ser			
Fechnologies														
Ontological C														

Top Level Ontologies – Linguistic Ontologies – Domain Ontologies – Semantic Web – Need – Foundation.

MODULE II LANGUAGES FOR SEMANTIC WEB AND ONTOLOGIES	9 Hours
Web Documents in XML - RDF - Schema - Web Resource Description using RDF - RDF H	Properties -
Topic Maps and RDF - Overview - Syntax Structure - Semantics - Pragmatics - Traditiona	al Ontology
Languages - LOOM - OKBC - OCML - Flogic Ontology Markup Languages - SHOF	E - OIL -
DAML+OIL – OWL.	

MODULE III ONTOLOGY LEARNING FOR SEMANTIC WEB

Taxonomy for Ontology Learning – Layered Approach – Phases of Ontology Learning – Importing and Processing Ontologies and Documents - Ontology Learning Algorithms - Methods for evaluating Ontologies 9 Hours

MODULE IV ONTOLOGY MANAGEMENT AND TOOL

Overview - Need for management - Development process - Target Ontology - Ontology mapping - Skills management system – Ontological class – Constraints – Issues – Evolution – Development of Tools and Tool Suites – Ontology Merge Tools – Ontology based Annotation Tools

MODULE V APPLICATIONS

Web Services – Semantic Web Services – Case Study for specific domain – Security issues – Web Data Exchange and Syndication – Semantic Wikis – Semantic Portals – Semantic Metadata in Data Formats – Semantic Web in Life Sciences – Ontologies for Standardizations – Rule Interchange Format.

TOTAL: 45 HOURS

9 Hours

9 Hours

REFERENCES:

- 1. Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, "Foundations of Semantic Web Technologies", Chapman & Hall/CRC, 2009.
- Asuncion Gomez-Perez, Oscar Corcho, Mariano Fernandez-Lopez, "Ontological Engineering: with 2. . Examples from the Areas of Knowledge Management, e-Commerce and the Semantic Web", Springer, 2004.
- Grigoris Antoniou, Frank van Harmelen, "A Semantic Web Primer (Cooperative Information Systems)", 3. MIT Press, 2004.

Alexander Maedche, "Ontology Learning for the Semantic Web", First Edition, Springer. 2002. 4.

- John Davies, Dieter Fensel, Frank Van Harmelen, "Towards the Semantic Web: Ontology Driven 5. Knowledge Management", John Wiley, 2003.
- 6. John Davies, Rudi Studer, Paul Warren, (Editor), "Semantic Web Technologies: Trends and Research in Ontology-Based Systems", Wiley, 2006.

2403CP008	8			MUL	ΓΙΟΟΙ	RE AR	CHIT	ECTU	JRES			Ι	T	P	C
												3	3 0	0	3
REREQUI	SITE														
KEKEQUI			dae al	out ha	sic con	ncents	of com	nuter	organiz	vation	and are	hitecti	ire		
			luge at			leepts		iputer	Jigamz			meen			
OURSE O	BJEC	TIVE	S:												
	-														
				•					need fo						
							_	_			-		ign iss	ues.	
							_		sing an						
	2					nt featu	res of	differe	nt mul	ticore	archite	ctures	and ho	w they	
		exp	ploit pa	aralleli	sm.										
OUDCE O		MEG													
OURSE O				ful co	nnletic	n of th		ee etu	dents v	vill be	able to				
	0	n uie s	success		mpient	<u> </u>		<u>sc, stu</u>	ucints v)			
CO1:	Disc	uss an	d evalı	ate the	e perfo	rmance	e of co	mpute	r						
CO2:	Disc	uss an	d point	t out th	e vario	ous wa	ys of e	xploiti	ng ILP						
CO3:			ne vari	ous op	timizat	tions th	nat can	be per	formed	l to im	prove	the me	mory h	ierarcl	ıy
~~ (desig														
CO4:					ures o	f differ	ent mu	ilticore	e archit	ecture	s and h	now the	ey expl	oit diff	erei
CO5:			rallelis		uros o	fdiffor	cont ov	ampla	domaii	non	fic are	hitaatu	ros		
003.	1 OIII	t out u	ie sand		uies 0			ampie	uoman	i speci		mieetu	105		
COs Vs PO	os MA	PPIN	G:												
-															
-		<u>PO1</u>	PO2	PO3	PO4	PO5		PO7	PO8			PO11	PO12		
-	CO1 CO2	3	3	3	2	1	$\frac{2}{2}$	-	-	-	-	-	-		
-	CO2 CO3	3	3	3	22	1	2	-	-	-	-	-	-		
-	CO3	3	3	3	2	1	2	_	_	_	_	_	-		
-	CO5		3	3	2	1	2	-	-	-	-	-	-		
		-	-	-		-		1	1	l	1	1	1		
COs Vs PS	Os M	APPIN	NG:												
						_									
							O1 PS		03						
								3 -	·						
								2 -	·						
					U	03 2	2 3	3 -							

	CO4 CO5	2	3	_				
	000	-	2	1	1			
COURSE CONTENTS:								
MODULE I FUNDAMENTALS	OF COMPU	TEF	R DES	SIGN .	AND I	LP		9 Hours
Fundamentals of Computer Design	– Measuring	g an	d Rej	oorting	Perfo	rmance	– Instr	uction Level
Parallelism and its Exploitation – Con								
Architecture– Multithreading – SMT								
MODULE II MEMORY HIERA	RCHY DESI	GN						9 Hours
Introduction – Optimizations of Cach	he Performanc	e – l	Memo	ry Teo	hnolog	y and	Optimiza	tions – Protectio
Virtual Memory and Virtual Machine								
Studies.	e		2				2	
MODULE III MULTIPROCESSO	OR ISSUES							9 Hours
Symmetric and Distributed Shared		nitect	tures -	- Cach	e Coh	erence	Issues –	optimizing share
memory performance- Performance	Issues – Syn	chro	nizati	on Iss	ies – N	A odels	of Mem	ory Consistency
	Trocchor and N	1 1.				ЪТ /		•
Interconnection Networks – Buses, C	LIOSSDAL AND N	/lult1	-stage	Interc	onnect	ion Net	works.	
							works.	9 Hours
MODULE IV EXPLOITING DIF	FERENT TY	PES	5 OF I	PARA	LLELI	SM		
MODULE IVEXPLOITING DIFHomogeneous and Heterogeneous N	FERENT TY Multi-core Arc	PES chited	S OF I ctures	PARA – Int	LLELI el Mult	SM	Architect	ures – SUN CM
MODULE IVEXPLOITING DIFHomogeneous and Heterogeneous Narchitecture – IBM Cell Architectu	FERENT TY Multi-core Arc re. Introduction	PES chited on to	SOFI ctures oWa	PARA – Internet	LLELI el Mult e-Scale	SM icore A comp	Architect uters, Cl	ures – SUN CM oud Computing
MODULE IVEXPLOITING DIFHomogeneous and Heterogeneous MHomogeneous and Heterogeneous MHomogeneous and Heterogeneous Architecture – IBM Cell ArchitectureArchitectures and Issues. Vector, SII	FERENT TY Multi-core Ard re. Introduction MD and GPU	PES chited on to Arc	SOFI ctures oWate chitect	PARA – Interendent – Interend	LLEL el Mult e-Scale Vector	SM icore A comp Archi	Architect uters, Cl tecture –	ures – SUN CM oud Computing
MODULE IV EXPLOITING DIF Homogeneous and Heterogeneous M architecture – IBM Cell Architectu Architectures and Issues. Vector, SII for Multimedia – Graphics Processing	FERENT TY Multi-core Arc re. Introduction MD and GPU g Units – Case	PES chited on to Arc e Stud	SOFI ctures oWa hitect dies –	PARA – Inter- rehous ures – GPGH	LLEL el Mult e-Scale Vector	SM icore A comp Archi	Architect uters, Cl tecture –	ures – SUN CM oud Computing
MODULE IVEXPLOITING DIFHomogeneous and Heterogeneous Marchitecture – IBM Cell ArchitectuArchitectures and Issues. Vector, SIIFor Multimedia – Graphics ProcessingMODULE VDOMAIN SPECIFI	FERENT TY Multi-core Arc re. Introduction MD and GPU g Units – Case IC ARCHITE	PES chited on to Arc e Stud ECTU	S OF I ctures o War hitect dies – URES	PARA – Interestor – Interestor – Interestor – GPGF	LLELI el Mult e-Scale Vector PU Con	SM icore 2 comp Archi nputing	Architect uters, Cl tecture –	ures – SUN CM oud Computing SIMD Extensio 9 Hours
MODULE IVEXPLOITING DIFHomogeneous and Heterogeneous MArchitecture – IBM Cell ArchitectuArchitectures and Issues. Vector, SIIFor Multimedia – Graphics ProcessingMODULE VDOMAIN SPECIFIIntroduction to Domain Specific Ar	FERENT TY Multi-core Arc re. Introduction MD and GPU g Units – Case IC ARCHITE rchitectures -	PES chited on to Arc e Stud CCTU Guid	S OF I ctures o Wat chitect dies – URES felines	PARA – Inter- rehous ures – GPGH s for I	LLEL el Muli e-Scale Vector PU Con	SM icore A comp Archi nputing Case S	Architect uters, Cl tecture – tudies -	ures – SUN CM oud Computing SIMD Extensio 9 Hours Example Domai
MODULE IVEXPLOITING DIFHomogeneous and Heterogeneous MHomogeneous and Heterogeneous MArchitecture – IBM Cell ArchitecturArchitectures and Issues. Vector, SIIFor Multimedia – Graphics ProcessingMODULE VDOMAIN SPECIFIIntroduction to Domain Specific ArDeep Neural Networks - Google's T	FERENT TY Multi-core Arc re. Introduction MD and GPU g Units – Case IC ARCHITE rchitectures - censor Process	PES chited on to Arc e Stud CCTU Guid	S OF I ctures o Wat chitect dies – URES felines	PARA – Inter- rehous ures – GPGH s for I	LLEL el Muli e-Scale Vector PU Con	SM icore A comp Archi nputing Case S	Architect uters, Cl tecture – tudies - - Intel C	ures – SUN CM loud Computing SIMD Extensio 9 Hours Example Domai frest - Pixel Visu
MODULE IVEXPLOITING DIFIomogeneous and Heterogeneous MIorchitecture – IBM Cell ArchitectuArchitectures and Issues. Vector, SIIIor Multimedia – Graphics ProcessingMODULE VDOMAIN SPECIFIIntroduction to Domain Specific ArDeep Neural Networks - Google's T	FERENT TY Multi-core Arc re. Introduction MD and GPU g Units – Case IC ARCHITE rchitectures - censor Process	PES chited on to Arc e Stud CCTU Guid	S OF I ctures o Wat chitect dies – URES felines	PARA – Inter- rehous ures – GPGH s for I	LLEL el Muli e-Scale Vector PU Con	SM icore A comp Archi nputing Case S	Architect uters, Cl tecture – tudies - - Intel C	ures – SUN CM oud Computing SIMD Extensio 9 Hours Example Domai
MODULE IVEXPLOITING DIFHomogeneous and Heterogeneous MHomogeneous and Heterogeneous MArchitecture – IBM Cell ArchitecturArchitectures and Issues. Vector, SIIFor Multimedia – Graphics ProcessingMODULE VDOMAIN SPECIFIIntroduction to Domain Specific ArDeep Neural Networks - Google's T	FERENT TY Multi-core Arc re. Introduction MD and GPU g Units – Case IC ARCHITE rchitectures - censor Process	PES chited on to Arc e Stud CCTU Guid	S OF I ctures o Wat chitect dies – URES felines	PARA – Inter- rehous ures – GPGH s for I	LLEL el Muli e-Scale Vector PU Con	SM icore A comp Archi nputing Case S	Architect uters, Cl tecture – tudies - - Intel C	ures – SUN CM loud Computing SIMD Extensio 9 Hours Example Domai frest - Pixel Visu
Interconnection Networks – Buses, C MODULE IV EXPLOITING DIF Homogeneous and Heterogeneous N architecture – IBM Cell Architectu Architectures and Issues. Vector, SII for Multimedia – Graphics Processing MODULE V DOMAIN SPECIFI Introduction to Domain Specific Ar Deep Neural Networks - Google's T Core. CPUs Versus GPUs Versus DS	FERENT TY Multi-core Arc re. Introduction MD and GPU g Units – Case IC ARCHITE rehitectures - SAs.	PES chited on to Arc Stud CCTU Guid Sing 1	S OF I ctures o Wat hitect dies – URES delines Unit –	PARA – Inter- rehous ures – GPGH s for I Micro	LLELI el Mult e-Scale Vector PU Con DSAs.	SM icore A comp Archi nputing Case S atapult	Architect uters, Cl tecture – tudies - - Intel C TO	ures – SUN CM oud Computing SIMD Extensio 9 Hours Example Domai crest - Pixel Visu TAL: 45 HOUR
MODULE IVEXPLOITING DIFHomogeneous and Heterogeneous MArchitecture – IBM Cell ArchitectuArchitectures and Issues. Vector, SIIFor Multimedia – Graphics ProcessingMODULE VDOMAIN SPECIFIIntroduction to Domain Specific ArDeep Neural Networks - Google's TCore. CPUs Versus GPUs Versus DS	FERENT TY Multi-core Arc re. Introduction MD and GPU g Units – Case IC ARCHITE rchitectures - Tensor Process SAs.	PES chited on to Arc e Stud CCTU Guid sing 1	S OF I ctures o Wat hitect dies – URES delines Unit –	PARA – Inter- rehous ures – GPGH s for I Micro	LLELI el Mult e-Scale Vector PU Con DSAs.	SM icore A comp Archi nputing Case S atapult	Architect uters, Cl tecture – tudies - - Intel C TO	ures – SUN CM oud Computing SIMD Extensio 9 Hours Example Domai crest - Pixel Visu TAL: 45 HOUR
MODULE IV EXPLOITING DIF Homogeneous and Heterogeneous M Homogeneous M Architecture – IBM Cell Architectu Architectures and Issues. Vector, SII Architectures and Issues. Vector, SII For Multimedia – Graphics Processing MODULE V DOMAIN SPECIFI Introduction to Domain Specific Ar Deep Neural Networks - Google's T Core. CPUs Versus GPUs Versus DS Starset 1. John L. Hennessey and Dav Dav	FERENT TY Multi-core Arc re. Introduction MD and GPU g Units – Case IC ARCHITE rchitectures - Censor Process SAs.	PES chited on to Arc Stud Guid ing U Guid ing U	S OF I ctures o Wat hitect dies – URES delines Unit –	PARA – Inter- rehous ures – GPGH s for I Micro <i>uter A</i>	LLELI el Mult e-Scale Vector PU Con DSAs. osoft Ca	SM icore A comp Archi nputing Case S atapult	Architect uters, Cl tecture – tudies - - Intel C TOT	ures – SUN CM oud Computing SIMD Extensio 9 Hours Example Domai crest - Pixel Visu TAL: 45 HOUR
MODULE IV EXPLOITING DIF Homogeneous and Heterogeneous M Homogeneous and Heterogeneous M Architecture – IBM Cell Architectu Architectures and Issues. Vector, SII For Multimedia – Graphics Processing MODULE V MODULE V DOMAIN SPECIFI ntroduction to Domain Specific Ar Deep Neural Networks - Google's T Core. CPUs Versus GPUs Versus DS Seferemences: 1. John L. Hennessey and Dav Morgan Kaufmann / Elsevier, M	FERENT TY Multi-core Arc re. Introduction MD and GPU g Units – Case IC ARCHITE rehitectures - Tensor Process SAS.	PES chited on to Arc Stud CCTU Guic ing U Don, " 19. Morg	S OF I ctures o Wat hitect dies – URES delines Unit -	PARA – Inter- rehous ures – GPGH s for I Micro uter A aufmar	LLELI el Mult e-Scale Vector PU Con DSAs. DSAs. osoft Ca rchitec	SM icore A comp Arching Case S atapult ture –	Architect uters, Cl tecture – tudies - - Intel C TO A Quant	ures – SUN CM loud Computing SIMD Extensio 9 Hours Example Domai frest - Pixel Visu FAL: 45 HOUR <i>itative Approach</i>
MODULE IV EXPLOITING DIF Homogeneous and Heterogeneous M Homogeneous and Heterogeneous M Architecture – IBM Cell Architectu Architectures and Issues. Vector, SIR For Multimedia – Graphics Processing MODULE V MODULE V DOMAIN SPECIFI Introduction to Domain Specific Ar Deep Neural Networks - Google's T Core. CPUs Versus GPUs Versus DS Sector Sec	FERENT TY Multi-core Arc re. Introduction MD and GPU g Units – Case IC ARCHITE rchitectures - Tensor Process SAs.	PES chited on to Arcc Stud Guid Guid ing I <i>On, "</i> <i>19.</i> <i>Morg</i>	S OF I ctures o Wat chitect dies – URES delines Unit – 'Comp gan Ka e Arch	PARA – Inter- rehous ures – GPGH s for I Micro uter A aufmar itectur	LLELI el Multe e-Scale Vector PU Con DSAs. DSAs. DSAs. <i>p</i> osoft Ca <i>p</i> osoft Ca	SM icore A comp Archi nputing Case S atapult ture – evier, 20 pman c	Architecti uters, Cl tecture – tudies - - Intel C TO TO A Quant 011. & Hall/Ch	ures – SUN CM loud Computing SIMD Extensio 9 Hours Example Domai Frest - Pixel Visu FAL: 45 HOUR <i>itative Approach</i> <i>RC Press, 2016.</i>

2403CP009			SOF	ſWAF	RE AR	CHIT	ECTU	RE PA	ATTE	RNS		Ι	[]]	Γ	Р	C
												(T)	3 ()	0	3
REREQUI	SITE															
			e about	the ba	sic co	ncepts	of arch	itectu	e style	s.						
						p				~ •						
OURSE O	BJEC	TIVE	S:													
]					ory cor					erns to	define	the b	oasio	С	
		cha	aracter	istics a	nd bel	navior	of a So	ftware	applic	ation.						
	2					gies inv			osing t	ne best	archit	ecture	patter	n to	o me	et
			^			leeds a	Ū.									
		3. Su	mmari	ze the	archite	ecture r	econst	ruction	to rec	over u	ndocui	nented	larchi	itec	tures	
OURSE O				these		tudar (o	a a b 1 -	to							
n the succes CO1:						softwa				orna fo	r docio	n conc	idora	tion		
CO1: CO2:						tecture								non	•	
<u>CO2.</u> CO3:						croker								1 or		
0001			proces			CIORCI		nero s		arenne		Junein	ouser	1 01		
CO4:						archite	cture t	o prod	uce hig	hlv sc	alable	applica	ation.			
CO5:						sed arc										
									<u> </u>	•		0				
COs Vs PO	s MA	PPIN	G:													
Г	~~								-					_		
_	COs		PO2			PO5		PO7	PO8	PO9	PO10	PO11	PO1	2		
-	CO1		-	3	1	2	3	-	-	-	-	-	-			
_	CO2 CO3		- 2	3	2	3	3	-	-	-	-	-	-			
-	CO3		2	2	3	- 2	3	-	-	-	-	-	-			
-	C04		-	3	2	3	3	-	-	-	-	-	-	_		
	005	5	-	5	2	5	5	-	-	-	-	-	-			
COs Vs PS	Os M	APPI	NG													
	00111		101													
					C	Os PS	O1 PS	O2PS	03							
						201 2										
						O2 2	2 2									
					C	203 2	2 3	-								
					С	2 04 2	2 3	-								
					C	2 05 2	2 3	-								
									-							
OURSE CO																

MODULE I FUNDAMENTAL OF ARCHITECTURE

Software Architecture- Architecture Vs Design-Measuring Modularity- Architectural Characteristics Defined-Identifying Architectural Characteristics-Measuring and Governing Architectural Characteristics-Architecture Partitioning- Case Study: Silicon sand witches: Partitioning.

MODULE II LAYERED AND PIPELINE ARCHITECTURE

Layered Architecture: Topology- Layers of Isolation- Adding Layers- Other Considerations- Architecture Characteristics Ratings.

Pipeline Architecture: Topology- Pipes-Filters-Example-Architecture Characteristics Ratings.

MODULE III MICROKERNEL ARCHITECTURE

Microkernel Architecture: Topology - Core System- Plug-In Components - Registry- Contracts- Examples and Use Cases- Architecture Characteristics Ratings

Service based Architecture: Topology-Topology Variants- Service Design and Granularity- Database Partitioning- Example Architecture- Architecture Characteristics Ratings

MODULE IV EVENT DRIVEN ARCHITECTURE

Event-Driven Architecture Style- Topology- Broker Topology- Mediator Topology- Asynchronous Capabilities- Error Handling- Preventing Data Loss- Broadcast Capabilities- Request-Reply- Choosing Between Request-Based and Event-Based- Hybrid Event-Driven Architectures- Architecture Characteristics Ratings. 9 Hours

MODULE V SPACE BASED ARCHITECTURE

Space Based Architecture General Topology- Processing Unit- Virtualized Middleware- Data Pumps- Data Writers- Data Readers- Data Collisions- Cloud Versus On-Premises Implementations- Replicated Versus Distributed Caching- Near-Cache Considerations- Implementation Examples- Online Auction System-Architecture Characteristics Ratings.

TOTAL: 45 HOURS

REFERENCES:

- 1. Mark Richards & Neal Ford, "Fundamental of Software Architecture: An engineering approach", O'Reilly *Media*,2020
- Mark Richards, "Software Architecture Patterns", O'Reilly Media, Third Edition, 2017.
- 3. Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, Second Edition, Pearson, 2013.
- 4. Erich Gamma, Design Patterns: Elements of Reusable Object-Oriented Software, First Edition, Pearson, 2011.
- 5. George H. Fairbanks, Just Enough Software Architecture: A Risk-Driven Approach, First Edition, Marshall & Brainerd, 2010.

9 Hours

9 Hours

9 Hours

)			PA	RALI	LEL A	LGOR	ITHN	1S			Ι		T	Р	(
												3	3	0	0	(°.)
REREQUI	SITE:															
Ľ			e about	t Data s	structu	res and	l Desig	gn and	Analys	sis of a	lgorith	ms				
OURSE O	BJEC															
						l algori										
						s types										
						ious m	ethodo	logy fo	or sorti	ng, sea	irching	, multi	plica	atior	n and	
	-		trix op			11 1	1 1	1.1								
	2	4. To	summ	arıze t	he par	allel gr	aph alg	gorithn	ns.							
OURSE O	UTCO)MES	•													
the succes				the co	ourse. s	tudent	s will ł	be able	to							
CO1:						veen se				el algo	rithms.					
CO2:						arious										
CO3:						ocesso				1						
CO4:		gn par														
						sorung	aigon	unns.								
CO5:			allel gi				algon	unns.								
	Desi	gn par	allel gi				aigon	unns.								
	Desi	gn par	allel gi				aigon									
	Desi os MA	gn par PPIN	allel gi G:	raph al	gorith	ms.			POS	PO0	PO10	PO11	DO	12		
	Desi Ds MA COs	gn par PPIN PO1	allel gi	raph al	gorith		PO6		PO8	PO9	PO10	PO11	PO	12		
	Desi os MA COs CO1	gn par PPIN PO1 2	allel gi G:	raph al PO3	gorithi PO4 -	ns. PO5 -	PO6 -	PO7 -	-	-	-	-	-	12		
	Desi Ds MA COs CO1 CO2	gn par PPIN PO1 2 -	allel gi G:	PO3 1 3	PO4 - 2	ns. PO5 - -	PO6	PO7 - -	PO8 - -	-	-	-	PO 2 - -	12		
	Desi Ds MA COs CO1 CO2 CO3	gn par PPIN PO1 2 - 1	allel gr G: PO2 - -	PO3 1 3 2	PO4 - 2 -	ns. PO5 -	PO6 - -	PO7 -	-	-		-	-	12		
	Desi Ds MA COs CO1 CO2	gn par PPIN PO1 2 - 1 3	allel gr G: PO2 - -	PO3 1 3	PO4 - 2	ns. PO5 - -	PO6 - -	PO7 - -		-	-	-	-			
	Desi Os MA COs CO1 CO2 CO3 CO4	gn par PPIN PO1 2 - 1 3	allel gr G: PO2 - -	PO3 1 3 2 3	PO4 - 2 - 3	ns. PO5	PO6 - -	PO7 - -		-	- - -		-	12		
COs Vs PO	Desi Des MA COs CO1 CO2 CO3 CO4 CO5	gn par PPIN 2 - 1 3 2	allel gr G: PO2 - - - - - - - - -	PO3 1 3 2 3	PO4 - 2 - 3	ns. PO5	PO6 - -	PO7 - -		-	- - -		-	12		
COs Vs PO	Desi Des MA COs CO1 CO2 CO3 CO4 CO5	gn par PPIN 2 - 1 3 2	allel gr G: PO2 - - - - - - - - -	PO3 1 3 2 3	PO4 - 2 - 3 3	ns. PO5	PO6 - - - -	PO7 - - - -	- - - -	-	- - -		-			
COs Vs PO	Desi Des MA COs CO1 CO2 CO3 CO4 CO5	gn par PPIN 2 - 1 3 2	allel gr G: PO2 - - - - - - - - -	PO3 1 3 2 3	PO4 - 2 - 3 3 -	ns. PO5 - - - - Os PS	PO6 - - - - - 01PS	PO7 - - - - - 02 PS	- - - -	-	- - -		-			
COs Vs PO	Desi Des MA COs CO1 CO2 CO3 CO4 CO5	gn par PPIN 2 - 1 3 2	allel gr G: PO2 - - - - - - - - -	PO3 1 3 2 3	PO4 - 2 - 3 3 C C	ms. PO5 - - - - - - - - - - - - -	PO6 - - - - - 01 PS 2 3	PO7 - - - - - O2 PS	- - - -	-	- - -		-			
COs Vs PO	Desi Des MA COs CO1 CO2 CO3 CO4 CO5	gn par PPIN 2 - 1 3 2	allel gr G: PO2 - - - - - - - - -	PO3 1 3 2 3	PO4 - 2 - 3 3 C C C C	ms. PO5 - - - - Os PS O1 2 O2 2	PO6 - - - - - 01 PS 2 32 2 2	PO7 - - - - - - - - - - - - - - - - - - -	- - - -	-	- - -		-			
CO5: COs Vs PO	Desi Des MA COs CO1 CO2 CO3 CO4 CO5	gn par PPIN 2 - 1 3 2	allel gr G: PO2 - - - - - - - - -	PO3 1 3 2 3	PO4 - 2 - 3 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - - 2 - - 2 - - 2 - - - -	ms. PO5 - - - - - - - - - - - - -	PO6 - - - - - - - 01 PS 2 2 2 2 2 2 3	PO7 - - - - - - - - - - - - - - - - - - -	- - - -	-	- - -		-			
COs Vs PO	Desi Des MA COs CO1 CO2 CO3 CO4 CO5	gn par PPIN 2 - 1 3 2	allel gr G: PO2 - - - - - - - - -	PO3 1 3 2 3	PO4 - 2 - 3 3 C C C C C C C C	ms. PO5 - - - - - - - - - - - - -	PO6 - - - - - - - - - - - - - - - - - - -	PO7 - - - - - - - - - - - - - - - - - - -	- - - -	-	- - -		-			
COs Vs PO	Desi Des MA COs CO1 CO2 CO3 CO4 CO5	gn par PPIN 2 - 1 3 2	allel gr G: PO2 - - - - - - - - -	PO3 1 3 2 3	PO4 - 2 - 3 3 C C C C C C C C	ms. PO5 - - - - - - - - - - - - -	PO6 - - - - - 01 PS 2 2 2 2 3 2 2 3 2 2 3	PO7 - - - - - - - - - - - - - - - - - - -		-	- - -		-			

MODULE I INTRODUCTION	9 Hours
Introduction to Parallel Algorithms – Principles of Parallel Algorithm Design- Paral	lel Algorithm
Models - Analyzing Parallel Algorithms- PRAM Algorithms: PRAM Model of Computa	6
Reduction – Prefix Sum-List ranking- Merging Sorted lists	
MODULE II PROCESSOR ORGANISATION	9 Hours
Mesh -Binary Tree Network-Hyper Tree Network- Pyramid - Butterfly- Hypercube -	-Shuffle- Exchange
Networks – Multiprocessor- Multicomputer- Data Mapping	C
MODULE III SORTING & SEARCHING	9 Hours
Sorting Networks - Sorting on a Linear Array - Sorting on CRCW, CREW, EREW - Sea	arching a sorted
sequence – Searching a random sequence – Bitonic Sort	
MODULE IV ALGEBRAIC PROBLEMS	9 Hours
Permutations and Combinations – Matrix Transpositions – Matrix by Matrix Multiplic	ations – Matrix by
Vector Multiplication	
MODULE V GRAPH ALGORITHMS	9 Hours
Connectivity Matrix - Connected Components - All Pair Shortest Paths - Single Sou	
Minimum Crowning Trace Callin's Algorithm Verslal's Algorithm Algorithms for Cr.	arse Graphs.
winimum Spanning Trees – Solin 's Algorithm - Kruskal's Algorithm-Algorithms for Spa	
Minimum Spanning Trees – Sollin's Algorithm - Kruskal's Algorithm-Algorithms for Spa	•
winnimum Spanning Trees – Solim's Algoriunm - Kruskal's Algoriunm-Algoriunns for Spa	
	TAL: 45 HOURS
ТО	
	•
ТО	TAL: 45 HOURS

- 2. Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar, "Introduction to Parallel Computing", Pearson, 2012.
- 3. Selim G. Akl, "The Design and Analysis of Parallel Algorithms", Prentice Hall, New Jercy, 1989
- 4. Joseph JaJa, "Introduction to Parallel Algorithms", Addison-Wesley, 1992.

Audit Course-I

	CONSTITUTION OF INDIA	L	Т	Р	С
		2	0	0	0
REREQUI	SITE:			1	1
ILLILL QUI					
COURSE O	BJECTIVES:				
	1.Understand the premises informing the twin themes of liberty and freed perspective				0
	2. To address the growth of Indian opinion regarding modern Indian intellect				
	3. Role and entitlement to civil and economic rights as well as the emerge early years of Indian nationalism.				
	4.To address the role of socialism in India after the commenceme Revolutionin1917 and its impact on the initial drafting of the Indian Constitu-		f the	Bols	shevi
COURSE O	UTCOMES:				
CO1:	Discuss the growth of the demand for civil rights in India for the bulk of arrival of Gandhi in Indian politics.	Indiar	s bef	ore th	e
CO1: CO2:	arrival of Gandhi in Indian politics.				
	Discuss the growth of the demand for civil rights in India for the bulk of arrival of Gandhi in Indian politics. Discuss the intellectual origins of informed the conceptualization the frant that				
	arrival of Gandhi in Indian politics. Discuss the intellectual origins of informed the conceptualization the fram that of social reforms leading to revolution in India.	newoi	'k of a	argum	ent
CO2:	arrival of Gandhi in Indian politics. Discuss the intellectual origins of informed the conceptualization the fram that of social reforms leading to revolution in India. Discuss the circumstances surrounding the foundation of the Congress So under the leadership of Jawaharlal Nehru and the eventual failure of the p	newor	k of a	argum	ent
CO2: CO3:	arrival of Gandhi in Indian politics. Discuss the intellectual origins of informed the conceptualization the fram that of social reforms leading to revolution in India. Discuss the circumstances surrounding the foundation of the Congress So	newor	k of a	argum	ent
CO2: CO3: CO4:	 arrival of Gandhi in Indian politics. Discuss the intellectual origins of informed the conceptualization the fram that of social reforms leading to revolution in India. Discuss the circumstances surrounding the foundation of the Congress Sounder the leadership of Jawaharlal Nehru and the eventual failure of the pelections through adult suffrage in the Indian Constitution. 	newor	k of a	argum	ent
CO2: CO3: CO4: CO5:	arrival of Gandhi in Indian politics. Discuss the intellectual origins of informed the conceptualization the fram that of social reforms leading to revolution in India. Discuss the circumstances surrounding the foundation of the Congress So under the leadership of Jawaharlal Nehru and the eventual failure of the p elections through adult suffrage in the Indian Constitution. Discuss the passage of the Hindu Code Bill of 1956.	newor	k of a	argum	ent
CO2: CO3: CO4: CO5:	 arrival of Gandhi in Indian politics. Discuss the intellectual origins of informed the conceptualization the fram that of social reforms leading to revolution in India. Discuss the circumstances surrounding the foundation of the Congress Sounder the leadership of Jawaharlal Nehru and the eventual failure of the pelections through adult suffrage in the Indian Constitution. 	newor	k of a	argum	ent
CO2: CO3: CO4: CO5: COURSE C	arrival of Gandhi in Indian politics. Discuss the intellectual origins of informed the conceptualization the fram that of social reforms leading to revolution in India. Discuss the circumstances surrounding the foundation of the Congress Soc under the leadership of Jawaharlal Nehru and the eventual failure of the p elections through adult suffrage in the Indian Constitution. Discuss the passage of the Hindu Code Bill of 1956.	newor	t Part	argum	P]
CO2: CO3: CO4: CO5: COURSE CO 10DULE I	arrival of Gandhi in Indian politics. Discuss the intellectual origins of informed the conceptualization the fram that of social reforms leading to revolution in India. Discuss the circumstances surrounding the foundation of the Congress Soc under the leadership of Jawaharlal Nehru and the eventual failure of the p elections through adult suffrage in the Indian Constitution. Discuss the passage of the Hindu Code Bill of 1956. ONTENTS: HISTORY OF MAKING OF THE INDIAN CONSTITUTION:	newor	t Part	y[CS]	P]
CO2: CO3: CO4: CO5: COURSE CO IODULE I listory, Draft	arrival of Gandhi in Indian politics. Discuss the intellectual origins of informed the conceptualization the fram that of social reforms leading to revolution in India. Discuss the circumstances surrounding the foundation of the Congress Soc under the leadership of Jawaharlal Nehru and the eventual failure of the p elections through adult suffrage in the Indian Constitution. Discuss the passage of the Hindu Code Bill of 1956.	newor	t Part	y[CS]	P]
CO2: CO3: CO4: CO5: COURSE CO MODULE I listory, Draft MODULE I	arrival of Gandhi in Indian politics. Discuss the intellectual origins of informed the conceptualization the fram that of social reforms leading to revolution in India. Discuss the circumstances surrounding the foundation of the Congress So under the leadership of Jawaharlal Nehru and the eventual failure of the p elections through adult suffrage in the Indian Constitution. Discuss the passage of the Hindu Code Bill of 1956. ONTENTS: HISTORY OF MAKING OF THE INDIAN CONSTITUTION: ing Committee, (Composition & Working)	newor	t Part	y[CS] direct	P]

M.E. Computer Science and Engineering | E.G.S. Pillay Engineering College | Regulations 2024 Approved in XI Academic Council Meeting held on 04-02-2024

Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

MODULE IV ORGANS OF GOVERNANCE:

Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions. 9 Hours

MODULE V

District"s Administration head: Role and Importance Municipalities: Introduction, Mayor and role of Elected Representative, CEO, Municipal Corporation. Pachayati raj: Introduction, PRI: Zila Pachayat. Elected officials and their roles, CEO Zila Pachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.

TOTAL: 45 HOURS

9 Hours

REFERENCES:

1. The Constitution of India, 1950 (Bare Act), Government Publication.

2.Dr.S.N.Busi, Dr.B. R.Ambedkar framing of Indian Constitution, 1st Edition, 2015.

3.M.P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.

4.D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

M.E. Computer Science and Engineering | E.G.S. Pillay Engineering College | Regulations 2024 Approved in XI Academic Council Meeting held on 04-02-2024