E.G.S. PILLAY ENGINEERING COLLEGE (Autonomous)

Approved by AICTE, New Delhi | Affiliated to Anna University, Chennai|

Accredited by NAAC with 'A' Grade |Accredited by NBA

(CSE, EEE, MECH, CIVIL, ECE, IT)

$NAGAPATTINAM-611\,002$

MASTER OF COMPUTER APPLICATIONS

Curriculum and Syllabi

First Year - First Semester

	SEMESTER I								
Comme Code	Course Norma	т	Т	п	С	Maxi	imum I	Marks	C . A
Course Code	Course Name	L	I	Р	C	CIA	ES	Total	Category
Theory Cours	e								
2001CA101	Linear Algebra, Probability and Statistics	2	2	-	3	40	60	100	FC
2002CA102	Advanced Data structures and	3	-	-	3	40	60	100	PC
	Algorithms								
2002CA103	Computer Communications and Networks	3	-	-	3	40	60	100	PC
2002CA104	Advanced Databases		-	-	3	40	60	100	PC
2002CA105	Python Programming		-	-	3	40	60	100	PC
2002CA106	Software Engineering and Project	3	-	-	3	40	60	100	PC
	Management								
	Audit Course I*	2	-	-	-	100	-	100	AC
Laboratory Co	ourse								
2002CA107	Advanced Data structures and Algorithms	-	-	4	2	50	50	100	PC
Laboratory									
2002CA108	Python Programming Laboratory	-	-	4	2	50	50	100	PC
2004CA109	Life Skill I–Verbal Ability	-	-	2	1	100	-	100	EEC
	Total 19 2 10 23 540 460 1000								

2001CA102	1	LIN	IEAR .	ALGE	BRA, I	PROB	ABILI	TY A	AND ST.	ATIST	ICS			Т 2	P 0	C 3
PREREQUI	ISITE:													_	U	5
THE HELL QUI																
		1. Ba	isic Mu	ıltivaria	able Cal	lculus	& Eler	nenta	ary Linea	r Algeb	ora					
					CO	URSE	C OBJI	ECT	IVES:							
		1 T.	find th	. havis	the here											
					and di				ions and	ite aina	nyalua	e and a	igons	Port	ore	
					dation of					its eige	livalue	s and c	igenv		015	
									oplication	Proble	ems					
									periment			ysis				
COUDSEO		MEG														
COURSE O	UICC	JMES														
On the suc	cessful	comp	letion of	of the c	ourse, s	tudent	s will	be ab	le to CO	1: Test	the cor	nsistenc	cy and	1 so	lve sv	stem
of linear eq	uations	5.													- 5	
CO1:	Find t	the bas	is and o	dimens	ion of v	vector	space.									
CO2:	Apply	the P	robabil	ity axi	oms as	well a	s rules	and	the distri	bution	of disc	crete ar	nd con	ntin	uous	also
COA	the random variable ideas in solving real world problems.															
	CO3: Use statistical techniques in testing hypothesis on data analysis.															
<u> </u>	CO4: Use the appropriate statistical technique of design of experiments in data analysis.CO5: Find the basis and dimension of vector space.															
005:	rma (ine bas	is and o	unnens			space.									
COs Vs POs	s MAP	PING	•													
Г	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12															
-	COs CO1	PO1 3	PO2 3	PO3	PO4 2	PO5	PO6	3	7 PO8	PO9	PUIU	POII	PUI			
-	CO1	3	3	_	2	_	_	3		_	_	-	_			
	CO3	3	3	-	2	-	-	3	-	-	-	-	-			
-	CO4	3	3	-	2	-	-	3	-	-	-	-	-			
	CO5	3	3	-	2	-	-	3	-	-	-	-	-			
<u></u>			~													
COs Vs PSC)s MA	PPIN	j:													
					CO	s PS	01 P	SO2	PSO3							
					CO			-	-							
					CO	2 -		-	-							
					CO	3 -		-	-							
l					CO	4 -		-	-							
					CO	5 -		-	-							
	<u></u>															
COURSE C	ONTE	ENTS:														
MODULE I		VEC'	TOR S	PACE	S										8 Ho	urs
Real and Cor Linear indep	nplex	fields -	· Vecto	r space	s over l				fields - S	Sub spa	ice - Li	near sp	ace-			
*			•					1.							0 110	11100
MODULE IILINEAR TRANSFORMATION9 HoursLinear transformation - Rank space and null space - Rank and nullity - Dimension theorem - Matrix																
representatio					-			-		innear t	ransto	rmatior	1.			
MODULE I					ND RA							_		8	Hou	rs
Probability -	Axion	ns of P	robabil	ity - Co	ondition	nal Pro	babilit	y - A	ddition a	nd mul	tiplicat	tion lav	vs of			

Probability - Baye's theorem - Random Variables - Discrete and continuous random variables -Probability mass function and Probability density functions - Cumulative distribution function -Moments and variance of random variables - Properties - Binomial, Poisson, Geometric, Uniform, Exponential, Normal distributions and their properties. **12 Hours**

MODULE IV **TESTING OF HYPOTHESIS**

Sampling distributions - Tests based on small and large samples - Normal, Student's t, Chisquare and F distributions for testing of mean, variance and proportion and testing of difference of means variances and proportions - Tests for independence of attributes and goodness of fit.

MODULE V **DESIGN OF EXPERIMENTS**

Analysis of variance - Completely randomized design - Random block design (One-way and Twoway classifications) - Latin square design -2^2 Factorial design.

TOTAL: 45 HOURS

8 Hours

REFERENCES:

1. 1Friedberg A.H, Insel A.J. and Spence L, Linear Algebra, Prentice Hall of India, New Delhi, 2 004.

2. Faires J.D. and Burden R., Numerical Methods, Brooks/Cole (Thomson Publications), New Delhi, 2002.

3. Devore, J.L, Probability and Statistics for Engineering and Sciences, Cengage Learning, Eighth Edition, New Delhi, 2014.

4. I. Miller and M. Miller, Mathematical Statistics, Pearson Education Inc., Asia Seventh Edition, New Delhi, 2011.

5. Richard Johnson, Miller and Freund's Probability and Statistics for Engineer, Prentice Hall of India Private Ltd., Eighth Edition, New Delhi, 2011.

6. https://nptel.ac.in/

MODULE ILINEAR DATA STRUCTURES9 Hourntroduction – Arrays – Structures- Abstract Data Types (ADT)- Stack- Representing Stacks- Applications of stack – Infix to postfix conversion – evaluation of expression- Queue- Representing Queue- Applications of Queue- Linked Lists –singly Linked list- Doubly Linked lists.9 HourMODULE IITREE STRUCTURES9 HourBinary Trees – Operations on Binary trees – Binary Tree Representations – Node representation –	1. Problem Solving And Programming COURSE OBJECTIVES: 1. To understand the linear and non linear data structures available in solv 2. To know about the sorting and searching techniques and its efficiencies 3. Using the Graph data structures and algorithms in real time applications 4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: To select and apply the data structure to suit any given problem.	ing pro			
1. Problem Solving And Programming COURSE OBJECTIVES: 1. To understand the linear and non linear data structures available in solving problems 2. To know about the sorting and searching techniques and its efficiencies 3. Using the Graph data structures and algorithms in real time applications 4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to CO2: Design and Implement Tree data structures to suit any given problem. CO2: Design algorithms lor sorting CO4: To apply the algorithms for sorting CO4: To apply the algorithm design techniques to any of the real world problem. CO5: Design algorithms using dynamic programming and Greedy approaches and graph structure solve real-life problems. CO6: Analyze problems in terms of polynomial time. CO6: Analyze problems in terms of polynomial time. CO6: Analyze problems in terms of polynomial time. CO6: Analyze problems CO6: PSO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO6: A 3 2 2 CO6: A 3 3 2 2 CO6: A 3 3 2 2 CO3 i 3 2 2 <td cols<="" th=""><th>1. Problem Solving And Programming COURSE OBJECTIVES: 1. To understand the linear and non linear data structures available in solv 2. To know about the sorting and searching techniques and its efficiencies 3. Using the Graph data structures and algorithms in real time application: 4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: To select and apply the data structure to suit any given problem.</th><th></th><th>blem</th><th>S</th></td>	<th>1. Problem Solving And Programming COURSE OBJECTIVES: 1. To understand the linear and non linear data structures available in solv 2. To know about the sorting and searching techniques and its efficiencies 3. Using the Graph data structures and algorithms in real time application: 4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: To select and apply the data structure to suit any given problem.</th> <th></th> <th>blem</th> <th>S</th>	1. Problem Solving And Programming COURSE OBJECTIVES: 1. To understand the linear and non linear data structures available in solv 2. To know about the sorting and searching techniques and its efficiencies 3. Using the Graph data structures and algorithms in real time application: 4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: To select and apply the data structure to suit any given problem.		blem	S
COURSE OBJECTIVES: 1. To understand the linear and non linear data structures available in solving problems 2. To know about the sorting and searching techniques and its efficiencies 3. Using the Graph data structures and algorithms in real time applications 4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to COURSE OUTCOMES: On the successful completion of the course, students will be able to COURSE OUTCOMES: Out the data structure to suit any given problem. CO2: COME CO4: To apply the data structures and Sets GO4: Fo apply the algorithm design techniques to any of the real world problem. CO5: Design algorithms using dynamic programming and Greedy approaches and graph structure solve real-life problems. CO6: Analyze problems in terms of polynomial time. CO6: PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO3 3 3 - 2	COURSE OBJECTIVES: 1. To understand the linear and non linear data structures available in solv 2. To know about the sorting and searching techniques and its efficiencies 3. Using the Graph data structures and algorithms in real time application 4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: To select and apply the data structure to suit any given problem.		blem	S	
COURSE OBJECTIVES: 1. To understand the linear and non linear data structures available in solving problems. 2. To know about the sorting and searching techniques and its efficiencies 3. Using the Graph data structures and algorithms in real time applications 4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to COURSE OUTCOMES: On the successful completion of the course, students will be able to COURSE cource to a apply the data structure to suit any given problem. CO2: COURSE cource to a apply the data structure to any of the real world problem. CO2: CO4: COURSE cource the cata structures and Sets CO4: CO4: CO4: CO6: C	COURSE OBJECTIVES: 1. To understand the linear and non linear data structures available in solv 2. To know about the sorting and searching techniques and its efficiencies 3. Using the Graph data structures and algorithms in real time application: 4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: To select and apply the data structure to suit any given problem.		blem	S	
1. To understand the linear and non linear data structures available in solving problems 2. To know about the sorting and searching techniques and its efficiencies 3. Using the Graph data structures and algorithms in real time applications 4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: To select and apply the data structures and Sets CO2: Design and Implement Tree data structures and Sets CO3: Implement a variety of algorithms for sorting CO4: To apply the algorithm design techniques to any of the real world problem. CO5: Design algorithms using dynamic programming and Greedy approaches and graph structure solve real-life problems. CO6: Analyze problems in terms of polynomial time. CO5 S VS POS MAPPING: CO5 3 3 3 - 2	1. To understand the linear and non linear data structures available in solv 2. To know about the sorting and searching techniques and its efficiencies 3. Using the Graph data structures and algorithms in real time application 4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: To select and apply the data structure to suit any given problem.		blem	S	
2. To know about the sorting and searching techniques and its efficiencies 3. Using the Graph data structures and algorithms in real time applications 4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to C01: To select and apply the data structure to suit any given problem. C02: Design and Implement Tree data structures and Sets C03: Implement a variety of algorithms for sorting C04: To apply the algorithm design techniques to any of the real world problem. C05: Design algorithms using dynamic programming and Greedy approaches and graph structure solve real-life problems. C06: Analyze problems in terms of polynomial time. C03: 3 3 - 2	2. To know about the sorting and searching techniques and its efficiencies 3. Using the Graph data structures and algorithms in real time application 4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to COURSE outcomes:		blem	S	
2. To know about the sorting and searching techniques and its efficiencies 3. Using the Graph data structures and algorithms in real time applications 4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to C01: To select and apply the data structure to suit any given problem. C02: Design and Implement Tree data structures and Sets C03: Implement a variety of algorithms for sorting C04: To apply the algorithm design techniques to any of the real world problem. C05: Design algorithms using dynamic programming and Greedy approaches and graph structure solve real-life problems. C06: Analyze problems in terms of polynomial time. C03: 3 3 - 2	2. To know about the sorting and searching techniques and its efficiencies 3. Using the Graph data structures and algorithms in real time application 4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to COURSE outcomes:			.S	
3. Using the Graph data structures and algorithms in real time applications 4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: To select and apply the data structure to suit any given problem. CO2: Design and Implement Tree data structures and Sets CO3: Implement a variety of algorithms for sorting CO4: To apply the algorithm design techniques to any of the real world problem. CO5: Design algorithms using dynamic programming and Greedy approaches and graph structure solve real-life problems. CO6: Analyze problems in terms of polynomial time. CO3: 3 - 2 -	3. Using the Graph data structures and algorithms in real time application 4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to COURSE outcompletion of the course, students will be able to COURSE outcompletion of the course, students will be able to				
4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: To select and apply the data structure to suit any given problem. CO2: Design and Implement Tree data structures and Sets CO3: Implement a variety of algorithms for sorting CO4: To apply the algorithm design techniques to any of the real world problem. CO5: Design algorithms using dynamic programming and Greedy approaches and graph structure solve real-life problems. CO6: Analyze problems in terms of polynomial time. CO5 Vs POS MAPPING: CO4 3 3 - 2	4. To use algorithm design paradigms for algorithm design COURSE OUTCOMES: On the successful completion of the course, students will be able to CO1: To select and apply the data structure to suit any given problem.				
On the successful completion of the course, students will be able to CO1: To select and apply the data structure to suit any given problem. CO2: Design and Implement Tree data structures and Sets CO3: Implement a variety of algorithms for sorting CO4: To apply the algorithms for sorting CO4: To apply the algorithms for sorting CO6: Analyze problems. CO6: Analyze problems in terms of polynomial time. CO6: Vs POS MAPPING: CO3 3 3 - 2	On the successful completion of the course, students will be able to CO1: To select and apply the data structure to suit any given problem.				
On the successful completion of the course, students will be able to CO1: To select and apply the data structure to suit any given problem. CO2: Design and Implement Tree data structures and Sets CO3: Implement a variety of algorithms for sorting CO4: To apply the algorithms for sorting CO4: To apply the algorithms for sorting CO6: Analyze problems. CO6: Analyze problems in terms of polynomial time. CO8 Vs POS MAPPING: CO3 3 3 - 2	On the successful completion of the course, students will be able to CO1: To select and apply the data structure to suit any given problem.				
CO1: To select and apply the data structure to suit any given problem. CO2: Design and Implement Tree data structures and Sets CO3: Implement a variety of algorithms for sorting CO4: To apply the algorithm design techniques to any of the real world problem. CO5: Design algorithms using dynamic programming and Greedy approaches and graph structure solve real-life problems. CO6: Analyze problems in terms of polynomial time. CO6: $Analyze problems in terms of polynomial time. CO6: Analyze problems in terms of polynomial time. CO6: Analyze problems in terms of polynomial time. CO6: Analyze problems in terms of polynomial time. CO6: O3 3 3 - 2 $	CO1: To select and apply the data structure to suit any given problem.				
CO1: To select and apply the data structure to suit any given problem. CO2: Design and Implement Tree data structures and Sets CO3: Implement a variety of algorithms for sorting CO4: To apply the algorithm design techniques to any of the real world problem. CO5: Design algorithms using dynamic programming and Greedy approaches and graph structure solve real-life problems. CO6: Analyze problems in terms of polynomial time. CO6: NAPPING: CO3 3 3 - 2	CO1: To select and apply the data structure to suit any given problem.				
CO3: Implement a variety of algorithms for sorting CO4: To apply the algorithm design techniques to any of the real world problem. CO5: Design algorithms using dynamic programming and Greedy approaches and graph structure solve real-life problems. CO6: Analyze problems in terms of polynomial time. CO6: 3 3 - 2	CO2: Design and Implement Tree data structures and Sets				
CO4: To apply the algorithm design techniques to any of the real world problem. CO5: Design algorithms using dynamic programming and Greedy approaches and graph structure solve real-life problems. CO6: Analyze problems in terms of polynomial time. CO6: Analyze problems in terms of polynomial time. CO6: PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO3 3 - 2 - <th< td=""><td></td><td></td><td></td><td></td></th<>					
CO5: Design algorithms using dynamic programming and Greedy approaches and graph structure solve real-life problems. CO6: Analyze problems in terms of polynomial time. CO6: Analyze problems in terms of polynomial time. CO5: PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 3 3 - 2	CO4: To apply the algorithm design techniques to any of the real world problem				
Solve real-life problems. CO6: Analyze problems in terms of polynomial time. CO6: PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 3 3 - 2 - <td>CO5: Design algorithms using dynamic programming and Greedy approaches and</td> <td>l graph</td> <td>stru</td> <td>cture</td>	CO5: Design algorithms using dynamic programming and Greedy approaches and	l graph	stru	cture	
$ \frac{1}{COS} VS POS MAPPING: $ $ \frac{COS}{CO1} \frac{PO1}{3} \frac{PO2}{3} \frac{PO3}{2} \frac{PO4}{PO5} \frac{PO6}{PO7} \frac{PO8}{PO8} \frac{PO9}{PO10} \frac{PO11}{PO11} \frac{PO12}{PO12} $ $ \frac{CO2}{3} \frac{3}{3} \frac{2}{2} \frac{2} \frac$	solve real-life problems.	8 1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CO6: Analyze problems in terms of polynomial time.				
$ \frac{\hline COs}{CO1} \xrightarrow{PO1} PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12}{CO1 3 3 - 2$	'Os Vs POs MAPPINC:				
$ \frac{\begin{array}{ c c c c c c c c } \hline COI & 3 & 3 & - & 2 & - & - & - & - & - & - & - & -$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 PO1	2		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{ c c c c c c c c } \hline \hline CO4 & 3 & 3 & - & 2 & - & - & - & - & - & - & - & -$		-	_		
COs Vs PSOs MAPPING: COs Vs PSOs MAPPING: CO1 - 3 2 CO2 - 3 2 CO3 - 3 2 CO4 - 3 2 CO5 - 3 2 CO4 - 3 2 CO5 - 3 2 COURSE CONTENTS: 9 Hour NTODULE I LINEAR DATA STRUCTURES 9 Hour ntroduction – Arrays – Structures- Abstract Data Types (ADT)- Stack- Representing Stacks- Applications of stack – Infix to postfix conversion – evaluation of expression- Queue- Representing Queue- Applications of Queue- Linked Lists – singly Linked list- Doubly Linked lists. MODULE II TREE STRUCTURES 9 Hour Binary Trees – Operations on Binary trees – Binary Tree Representations – Node representation – 9 Hour		-	_		
COs PSO1 PSO2 PSO3 CO1 - 3 2 CO2 - 3 2 CO3 - 3 2 CO4 - 3 2 CO5 - 3 2 COURSE CONTENTS: 9 Hour ntroduction – Arrays – Structures- Abstract Data Types (ADT)- Stack- Representing Stacks- Applications of stack – Infix to postfix conversion – evaluation of expression- Queue- Representing Queue- Applications of Queue- Linked Lists –singly Linked list- Doubly Linked lists. 9 Hour MODULE II TREE STRUCTURES 9 Hour Binary Trees – Operations on Binary trees – Binary Tree Representations – Node representation – 9 Hour	CO5 3 3 - 2	-			
COs PSO1 PSO2 PSO3 CO1 - 3 2 CO2 - 3 2 CO3 - 3 2 CO4 - 3 2 CO4 - 3 2 CO4 - 3 2 CO5 - 3 2 COURSE CONTENTS: 9 Hour NTODULE I LINEAR DATA STRUCTURES 9 Hour ntroduction – Arrays – Structures- Abstract Data Types (ADT)- Stack- Representing Stacks- 9 Hour Number of stack – Infix to postfix conversion – evaluation of expression- Queue- Representing 9 Hour Queue- Applications of Queue- Linked Lists –singly Linked list- Doubly Linked lists. 9 Hour MODULE II TREE STRUCTURES 9 Hour Binary Trees – Operations on Binary trees – Binary Tree Representations – Node representation – 9 Hour					
CO1 - 3 2 CO2 - 3 2 CO3 - 3 2 CO4 - 3 2 CO5 - 3 2 COURSE CONTENTS: 9 Hour MODULE I LINEAR DATA STRUCTURES 9 Hour ntroduction – Arrays – Structures- Abstract Data Types (ADT)- Stack- Representing Stacks- 9 Hour Applications of stack – Infix to postfix conversion – evaluation of expression- Queue- Representing Queue- Applications of Queue- Linked Lists –singly Linked list- Doubly Linked lists. 9 Hour Binary Trees – Operations on Binary trees – Binary Tree Representations – Node representation – 9 Hour	LOS VS PSOS MAPPING:				
CO2 - 3 2 CO3 - 3 2 CO4 - 3 2 CO4 - 3 2 CO4 - 3 2 CO4 - 3 2 COURSE CONTENTS: 9 Hour Introduction – Arrays – Structures- Abstract Data Types (ADT)- Stack- Representing Stacks- 9 Hour Applications of stack – Infix to postfix conversion – evaluation of expression- Queue- Representing 9 Hour Queue- Applications of Queue- Linked Lists –singly Linked list- Doubly Linked lists. 9 Hour Binary Trees – Operations on Binary trees – Binary Tree Representations – Node representation –	COs PSO1 PSO2 PSO3				
CO3 - 3 2 CO4 - 3 2 CO5 - 3 2 COURSE CONTENTS: 9 Hour MODULE I LINEAR DATA STRUCTURES 9 Hour ntroduction – Arrays – Structures- Abstract Data Types (ADT)- Stack- Representing Stacks- 9 Hour Applications of stack – Infix to postfix conversion – evaluation of expression- Queue- Representing Queue- Applications of Queue- Linked Lists –singly Linked list- Doubly Linked lists. 9 Hour MODULE II TREE STRUCTURES 9 Hour Binary Trees – Operations on Binary trees – Binary Tree Representations – Node representation –	CO1 - 3 2				
CO4 - 3 2 COURSE CONTENTS: COURSE CONTENTS: MODULE I LINEAR DATA STRUCTURES 9 Hour ntroduction – Arrays – Structures- Abstract Data Types (ADT)- Stack- Representing Stacks- 9 Hour Applications of stack – Infix to postfix conversion – evaluation of expression- Queue- Representing 9 Hour Queue- Applications of Queue- Linked Lists –singly Linked list- Doubly Linked lists. 9 Hour Binary Trees – Operations on Binary trees – Binary Tree Representations – Node representation –					
CO5 - 3 2 COURSE CONTENTS: 9 Hour MODULE I LINEAR DATA STRUCTURES 9 Hour ntroduction – Arrays – Structures- Abstract Data Types (ADT)- Stack- Representing Stacks- 9 Hour Applications of stack – Infix to postfix conversion – evaluation of expression- Queue- Representing 9 Hour Queue- Applications of Queue- Linked Lists –singly Linked list- Doubly Linked lists. 9 Hour MODULE II TREE STRUCTURES 9 Hour Binary Trees – Operations on Binary trees – Binary Tree Representations – Node representation – 9 Hour					
COURSE CONTENTS: 9 Hour MODULE I LINEAR DATA STRUCTURES 9 Hour ntroduction – Arrays – Structures- Abstract Data Types (ADT)- Stack- Representing Stacks- 9 Hour Applications of stack – Infix to postfix conversion – evaluation of expression- Queue- Representing 9 Hour Queue- Applications of Queue- Linked Lists –singly Linked list- Doubly Linked lists. 9 Hour MODULE II TREE STRUCTURES 9 Hour Binary Trees – Operations on Binary trees – Binary Tree Representations – Node representation – 9					
MODULE ILINEAR DATA STRUCTURES9 Hourntroduction – Arrays – Structures- Abstract Data Types (ADT)- Stack- Representing Stacks- Applications of stack – Infix to postfix conversion – evaluation of expression- Queue- Representing Queue- Applications of Queue- Linked Lists –singly Linked list- Doubly Linked lists.9 HourMODULE IITREE STRUCTURES9 HourBinary Trees – Operations on Binary trees – Binary Tree Representations – Node representation –					
ntroduction – Arrays – Structures- Abstract Data Types (ADT)- Stack- Representing Stacks- Applications of stack – Infix to postfix conversion – evaluation of expression- Queue- Representing Queue- Applications of Queue- Linked Lists –singly Linked list- Doubly Linked lists. MODULE II TREE STRUCTURES Binary Trees – Operations on Binary trees – Binary Tree Representations – Node representation –	COURSE CONTENTS:				
ntroduction – Arrays – Structures- Abstract Data Types (ADT)- Stack- Representing Stacks- Applications of stack – Infix to postfix conversion – evaluation of expression- Queue- Representing Queue- Applications of Queue- Linked Lists –singly Linked list- Doubly Linked lists. MODULE II TREE STRUCTURES Binary Trees – Operations on Binary trees – Binary Tree Representations – Node representation –				TT	
Applications of stack – Infix to postfix conversion – evaluation of expression- Queue- Representing Queue- Applications of Queue- Linked Lists –singly Linked list- Doubly Linked lists. MODULE II TREE STRUCTURES Binary Trees – Operations on Binary trees – Binary Tree Representations – Node representation –			9	HOU	
Queue- Applications of Queue- Linked Lists –singly Linked list- Doubly Linked lists. MODULE II TREE STRUCTURES 9 Hour Binary Trees – Operations on Binary trees – Binary Tree Representations – Node representation – 9 Hour		enting			
		Jinning			
	MODULE II TREE STRUCTURES		9	Ног	
				-	

MODULE III	BALANCED SEARCH TREES, SORTING AND INDEXING	9 Hours
Red-Black trees –I	3-Trees - Sorting – Bubble sort - Quick Sort - Insertion Sort – Heap sort – Hashing	
Hashing functions	- Collision Resolution Techniques - Separate chaining - Open addressing - Multiple	
Hashing.		
MODULE IV	GRAPHS	9 Hours
Definitions – Repr	esentation of graph - Graph Traversals - Depth-first traversal – breadth-first	
traversal - applicat	ions of graphs - Topological sort – shortest-path algorithms – minimum spanning	
tree – Prim's and K	ruskal's algorithms – Single Source Shortest Path -Dijkstra"s Algorithm -	
biconnectivity – Eu	ıler circuits.	
MODULE V	ALGORITHM DESIGN AND ANALYSIS	9 Hours
Algorithm Analysi	s – Asymptotic Notations - Divide and Conquer – Merge Sort – Binary Search - Gree	edy
Algorithms – Activ	vity Selection Problem – Dynamic Programming – Matrix Chain Multiplication – Lo	ongest
Common Subseque	ence- Backtracking – Sum of Subset Problem-NP Problems -Polynomial Time –	
Polynomial-time V	Verification -Vertex Cover Problem-Clique.	
	TOTAL: 45	HOURS
REFERENCES:		
1. Y. Langsam,	M. J. Augenstein and A. M. Tenenbaum, "Data Structures using C", Pearson Education	Asia, 2004.
	n, C. E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to algorithms", Second	
3. Edition 3.An	any Levitin "Introduction to the Design and Analysis of Algorithms" Pearson Education	2003.

4. M. A. Weiss, "Data Structures and Algorithm Analysis in C++", Pearson Education Asia, 2013.
5. https://www.tutorialspoint.com/data_structures_algorithms/algorithms/algorithms/algorithms/

2002CA103		CON	APUT	ER CO	OMMU	JNICA	TION	IS AN	D NEI	WOR	RKS		L	Т	P	(
													3	0	0	
REREQUIS	ITE:															
-																
	1.	Com	puter (Drganiz	ation a	and Ar	chitect	ure								
	TEOD															
OURSE OB	JECT	IVES:														
	1	. To e	explore	e vario	us data	comm	nunicat	ion tec	hnique	s.						
	2		-				ls and		-							
	3						ssing a									
	4						t of rel								1.	
	5	. 101	unders	tand th	e funct	10111	y and o	concep	ots of v	arious	applic	ation I	ayer p	oroto	cols	
OURSE OU	TCON	AES:														
		<u> </u>					1	• 11 •	1.1							
On the s							<u>dents w</u> 1 and			ding	techni	anea	usad	in	Com	nut/
	Comm			mume	auon	widue	a anu	Data		ung	teenin	ques	uscu	111	Com	puu
CO2:	CO2: (Create	simple	netwo	rks by	applyi	ng net	workin	g Prote	ocols						
CO3:	CO3: E	Establis	sh Data	a comn	nunicat	tion la	yer in s	imple	networ	ks usi	ng Dat	a Link	Prot	ocols	•	
CO4: CO5:							sses of of other states of the second					using	nrote			
005.	0.05.1	2514011	511 1141	isport	layer a	nu app	incario	li layei	111 5111		tworks	using	prote	<i>c</i> 015.		
Os Vs POs N	IAPP	ING:														
	CO	DO1	DO1	DO1		DO5	DOC	D07	DOO	DOO		DO11		2		
	COs CO1		PO2	P03	PO4 -	- -	PO6	PO/ -	PO8 -	- -	- -	- POII	-	2		
	CO2		3	-	2	-	-	-	-	-	-	-	-			
	CO3		3	-	2	-	-	-	-	-	-	-	-			
	CO4 CO5		3	3	2	-	-	-	-	-	-	-	-			
	05	3	3	3	Z	-	-	-	-	-	-	-	-			
Os Vs PSOs	MAD	DINC														
<u>J8 V8 F 508</u>	WIAF	r mg:														
					С	Os PS	O1 PS	O2 PS	03							
						01 -	-	-								
						$\frac{02}{02}$ -	-									
						03 - 04 -	2									
						04 -	2									
OURSE CO	NTEN	TS:														
00102 00		2.51														
ODULE I				IMUN											8 Ho	our
ata communi				-								-				
rminology, T						-	-	-						ques:		
ror detection					-		-	exing:	FDM,	IDM	, Statis	stical I	DM.		0 11	
ODULE II				FUN											8 Ho	Jur
struggly A						ma - 1 - 1	NT - 4	-1- ·	nto-f-	a 1ar	•• E					
etwork Archi ansmission: s									nterfac	e layei	:: Fram	ning –	Relia	ble		

MODULE III	DATA LINK LAYER	10 Hours					
Data link control - F	low Control – Error Detection and Error Correction - MAC – Ethernet, Token ring	,					
Wireless LAN MAC	2 – Blue Tooth – Bridges – Spanning Tree Algorithm.						
MODULE IV	NETWORK LAYER	9 Hours					
Network layer functi	ions – circuit switching – packet switching – IP datagram – IPv4 – Sub netting and						
classless addressing	- IPv6 - ARP - Routing protocols: distance vector, link state - ICMP - ICMPv6 -	-					
Case study on Netwo	ork Design.						
	TRANSPORT LAYER AND APPLICATION LAYER	10 Hours					
Transport Layer: Du	ties of transport layer-User Datagram Protocol - Transmission Control Protocol -	-					
Congestion – Congestion control. Application Layer: Application layer Protocols – World Wide Web and							
HTTP – FTP – Domain name system– Telnet –Electronic mail protocols –SNMP – Case study on							
Software Defined Networks.							
	TOTAL: 45	HOURS					
REFERENCES:							
	rson and Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edit ublishers, 2012.	ion, Morgan					
	ngs, "Data and Computer Communications", Tenth Edition, Pearson, 2013						
3. James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", Fifth Edition,							
PearsonEducation, 2012. 4. Forouzan, "Data Communication and Networking", Fifth Edition, TMH, 2012.							
	nenbaum and David J. Wetherall, "Computer Networks", Fifth Edition, Pearson Educa	tion 2011					
6. https://www.javatpoint.com/computer-network-tutorial							
7. https://www.tutorialspoint.com/data_communication_computer_network/index.htm							
	8. https://www.geeksforgeeks.org/computer-network-tutorials/						
9. https://www.tutorialsweb.com/ns2/NS2-1.htm							

2002CA104	ADVANCED DATABASES	L	Т	Р	С
		3	0	0	3
	PREREQUISITE:				
	1. Basic Data Structures				
	2. Database management system				
COUDELOD					
COURSE OB.	JECTIVES:				
	1. To learn the fundamentals of Parallel and Distributed Data	bases			

1.	TO learn the fundamentals of Faraner and Distributed
2.	To make a study on Object Oriented Databases
2	To any low the second of YML Details and Mak

- 3. To explore the concepts of XML Databases and Mobile Databases
- 4. To gain knowledge on the intelligent Databases.

COURSE OUTCOMES:

On the su	ccessful con	pletion of the	he course,	, students will be able to)

CO1: Develop transaction processing systems with concurrency control.

CO2: Design Object oriented databases for real time applications. CO3: Develop XML databases for web applications.

CO3: Design Mobile databases for mobile devices.

CO4: Apply intelligent rules in database development

CO5: Develop transaction processing systems with concurrency control.

COs Vs POs MAPPING:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	2	-	-	2	-	-	-	-
CO2	2	3	-	2	2	-	-	2	-	-	-	-
CO3	2	3	3	2	2	-	-	2	-	-	2	-
CO4	2	3	3	2	2	-	-	2	-	-	2	-
CO5	2	3	3	2	2	-	-	2	-	-	-	-

COs Vs PSOs MAPPING:

COs	PSO1	PSO2
CO1	2	-
CO2	2	-
CO3	2	-
CO4	2	-
CO5	2	-

COURSE CONTENTS:

MODULE I	PARALLEL AND DISTRIBUTED DATABASES

 Database System Architectures: Centralized and Client-Server Architectures – Server System

 Architectures – Parallel Systems- Distributed Systems – Parallel Databases: I/O Parallelism – Inter and

 Intra Query Parallelism – Inter and Intra operation Parallelism – Distributed Database Concepts

 Distributed Data Storage – Distributed Transactions – Commit Protocols – Concurrency Control –

 Distributed Query Processing – Three Tier Client Server Architecture- Case Studies.

 MODULE II
 OBJECT AND OBJECT RELATIONAL DATABASES

9 Hours

9 Hours

Concepts for Object Databases: Object Identity – Object structure – Type Constructors – Encapsulation of Operations – Methods – Persistence – Type and Class Hierarchies – Inheritance – Complex Objects – Object Database Standards, Languages and Design: ODMG Model – ODL – OQL – Object Relational and Extended – Relational Systems : Object Relational features in SQL / Oracle – Case Studies.

MODULE III XML DATABASES

XML Databases: XML Data Model – DTD - XML Schema - XML Querying – Web Databases – JDBC– Information Retrieval – Data Warehousing – Data Mining.

MODULE IV MOBILE DATABASES

Mobile Databases: Location and Handoff Management - Effect of Mobility on Data Management -Location Dependent Data Distribution - Mobile Transaction Models - Concurrency Control -Transaction Commit Protocols- Mobile Database Recovery Schemes.

MODULE V INTELLIGENT DATABASES

Active databases – Deductive Databases – Knowledge bases – Multimedia Databases- Multidimensional Data Structures – Image Databases – Text/Document Databases- Video Databases– Audio Databases – Multimedia Database Design –Spatial Databases.

TOTAL: 45 HOURS

9 Hours

9 Hours

9 Hours

REFERENCES:

- 1. Henry F Korth, Abraham Silberschatz and S. Sudharshan, "Database System Concepts", Sixth Edition, McGraw Hill, 2011.
- 2. C.J.Date, A.Kannan, S.Swamynathan, "An Introduction to Database Systems", Eighth Edition, Pearson Education, 2006.
- 3. R. Elmasri, S.B. Navathe, "Fundamentals of Database Systems", Fifth Edition, Pearson Education/Addison Wesley, 2007.
- 4. Thomas Cannolly and Carolyn Begg, "Database Systems, A Practical Approach to Design, Implementation and Management", Third Edition, Pearson Education, 2007.

5. Subramaniam, "Multimedia Databases", Morgan Kauffman Publishers, 2008.

6. Frank. P. Coyle, "XML, Web Services And The Data Revolution", Pearson Education, 2012. 7. https://www.geeksforgeeks.org/introduction-of-dbms-database-management-system-set-1/

7. https://www.geeksjorgeeks.org/introduction-oj-abms-database-management 8. https://www.javatpoint.com/dbms-tutorial

9. https://www.tutorialspoint.com/dbms/index.htm

2002CA105				PY	ГНО	N PRO	GRAM	IMINO	Ĵ				L	Т	Р	С
													3	0	0	3
PREREQUI	ISITE:												•			
	-															
	1. P	rograi	mming	g Basic	s											
COURSE O	DIFCTI	VFC.														
JUURSE U	DJECII	VES:														
	1. T	o intr	oduce	the bas	sics c	of Pytho	on.									
						grams				nd looj	os					
	3. D	Demon	strate	the use	e of P	ython li	ists and	dictio	naries	.1 1	1					
	4. D	Descrit	be and	apply	objec	t-orient	ed prog	gramm	ing me	ethodo	logy.					
COURSE O	UTCOM	ES:														
				0.4												
On the su	ccessful c	omple	etion o	of the c	ourse	, studen	ts will	be able	e to							
CO1:	Describe	the b	asics c	of pyth	on pro	ogramm	ning									
	Develop Develop															
	Develop															
CO5:	Develop									P •~ ,						
COs Vs POs	S MAPPI	NG:														
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2		
	CO1	3	3	3	-	3	-	3	-	-	-	-	-	_		
	CO2	3	3	3	-	3	-	3	-	-	-	-	-			
	CO3 CO4		3	3	- 3	3	-	3	-	-	-	-	-			
	C04	3	3	3	-	3	-	3	-	-	-	-	-			
COs Vs PSC)s MAPP	ING:														
					[COs	PSO1	PSO 2	2							
						CO1	3	-								
						CO2	3	3	_							
						<u>CO3</u>	3	3	_							
						CO4 CO5	3	3	_							
							5	1								
COURSE C	ONTEN	ГS:														
MODULE I	- hr	NTRA		TION	рут	HON									9 Ho	lire
Introduction							tifier-D	ata tvr	es-Va	riables	s-opera	tors-E	xpres	sion-(
ist—stateme	•		•	•				• •			opere					
MODULE I		-		-		D FUN		-							9 Ho	urs
Conditionals				-					-							
elif-else); Ite						-					-					
global scope		-				-Strings	s-string	slices-	1mmu	itabilit	y- strii	ng fun	ctions	and		
nethods- stri	ing modul	ie- L18	sis as	arrays.												

MODULE III	LISTS, TUPLES, DICTIONARIES	9 Hours
Lists: list operatior	s-list slices- list methods-list loop- mutability-aliasing-cloning lists-list parameters	-
Tuples: tuple assig	mment- tuple as return valued-Dictionaries-operations and methods-advanced list	
processing - list co	omprehension- Illustrative programs-selection sort- insertion sort,-Mergesort-histog	,ram.
MODULE IV	NumPy	9 Hours
NumPy- NumPy A	rray-NumPy Side Effects-Subsetting NumPy Arrays-2D NumPy Arrays-2D Arithr	netic - Basic
Statistics		
MODULE V	FILES,MODULES AND PACKAGES	9 Hours
Files and exception	n-text files- reading and writing files-format operator-command line arguments-error	ors
and exceptions-ha	ndling modules-packages- Represent compound data using Python lists, tuples,	
dictionaries - word	l count- copy file.	
	TOTAL: 4	5 HOURS
REFERENCES:		

1. Allen B. Downey, ``Think Python: How to Think Like a Computer Scientist'', 2nd edition, Updated for Python 2. Guido van Rossum and Fred L. Drake Jr, -An Introduction to Python - Revised and updated for Python 3.2, Network Theory Ltd., 2011.

John V Guttag, —Introduction to Computation and Programming Using Python'', Revised and expanded Edition, MIT Press, 2013
 Robert Sedgewick, Kevin Wayne, Robert Dondero, —Introduction to Programming in Python: An Inter

disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.

Timothy A. Budd, -Exploring Python, Mc-Graw Hill Education (India) Private Ltd., 2015. 5.

2002CA106	SO	FTWA	ARE E	NGIN	EERI	NG A	ND PR	OJEC	CT MA	NAG	EMEN	T	L	Т	P	С
													3	0	0	3
PREREQUIS	SITE:															
Q																
	1.	Princ	iples o	f Softv	vare E	nginee	ring									
	IECTI															
COURSE OB	JECH	IVES:														
	1.	To in	troduc	e the h	asics	of Pvtl	non									
	2.						s with c	onditi	onals	and lo	ops					
	3.						lists an				1					
	4.	Desci	ribe an	d appl	y objec	ct-orie	nted pro	ogram	ming n	nethod	ology.					
COURSE OU	TCON	AFS.														
LUUKSE UU		1E5:														
On the su	ccessful	l comp	letion	of the	course	, stude	ents wil	l be ab	le to							
	Descrit									heir to	chniau					
	Transfe												Plan	ning f	orag	iven
	Project	•	-								°P 1			8		
	Develo															
	Develo Decerii												ment			
005:	Descrit	be the d	untere	nt type	s of Sc	onware	e requir	ement	s and t	neir te	cnniqu	les.				
COs Vs POs	MAPP	ING:														
			PO2		PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO1	2		
	CO1	-	-	3	-	-	-	-	3	-	-	3	-	_		
	CO2 CO3		-	3	-	-	-	-	3	-	-	3	-	_		
	CO4		-	3	-	-	-	-	3	-	-	3	-			
	C05		-	3	-	-	-	-	3	-	-	3	-			
	CO6	3	-	3	-	-	-	-	3	-	-	3	-			
	1.4.01															
COs Vs PSOs	5 MAPI	PING:														
					С	Os	PSO1	PSC)2							
						01	-	-								
					С	02	-	-								
					С	03	-	-								
					С	04	-	-								
					С	05	-	-								
					C	06	-	-								
COUDEE CO		ma														
COURSE CC	INTEN	15:														
MODULE I		REOU	IREN	IENT	ANAI	YSIS									9 Ho	urs
Introduction: S								proces	s mod	els - W	aterfal	l Life	cycle	mode		
Spiral Model -		•		0		-							•			
Software Requ																
Requirements													•			
•	•							-								

Master of Computer Applications | E.G.S. Pillay Engineering College | Regulations 2024 Approved in XI Academic Council Meeting held on 04-02-2024

MODULE II	SOFTWARE DESIGN AND TESTING	9 Hours
	lularity – Software Architecture – Cohesion – Coupling – Various Design Concepts a	
	me and Distributed System Design – Coding – Programming Practice – Top-dow	
L .	rnal Documentation Verification – Code Reading –Code Inspection or Reviews – Un	
Testing – Fundame	entals –Functional Testing versus structural Testing Coding – Software Metrics Over	rview
MODULE III	SOFTWARE PROJECT PLANNING	9 Hours
Business Case – Pi	roject selection and Approval - Project charter - Project Scope management: Scope	
definition and Proj	ect Scope management - Creating the Work Breakdown Structures - Scope Verifica	ation –
Scope Control.		
MODULE IV	PROJECT SCHEDULING AND PROCUREMENT MANAGEMENT	9 Hours
Relationship betwe	een people and Effort: Staffing Level – Estimation, Effect of schedule Change on Co	ost —
Degree of Rigor &	Task set selector - Project Schedule - Schedule Control - CPM (Numericals) - Bas	sic
Planning Purchase	s and Acquisitions, Planning Contracting – Requesting Seller – Responses – Selectir	ng
	cing: The Beginning of the outsourcing phenomenon – Types of outsourcing	-
relationship – The	realities of outsourcing – Managing the outsourcing relationship.	
MODULE V	OBJECT ORIENTED SOFTWARE ENGINEERING	9 Hours
Introduction-Defin	ing Models-Requirement Process-Use Cases-Object Oriented Development Cycle-	
	nified Modeling Language: UML Fundamentals and Notation-Object Oriented Anal	ysis-
Design-Implement		
	TOTAL: 45	HOURS
REFERENCES:		
NEFERENCES.		
1 Pankai Ialot	e, "An Integrated Approach to Software Engineering", Third Edition, Narosa Publicatio	ons 2011
	ville, "Software engineering", Ninth Edition, Pearson Education Asia, 2010.	<i>ms</i> , <i>2011</i> .
3. Roger S. Pre	essman, "Software Engineering – A Practitioner"s Approach", Seventh Edition, Tata al Edition, 2009.	McGrawHil
	Object Oriented Software Engineering – A Use Case Driven Approach, Addison - Wesel	y, 2009.
	ngineering Project Management, Richard H. Thayer (Editor), Edward Yourdon, 2001, V	

6. <u>https://www.tutorialspoint.com/software_engineering/index.htm</u>

Master of Computer Applications | E.G.S. Pillay Engineering College | Regulations 2024 Approved in XI Academic Council Meeting held on 04-02-2024

2002CA107	7	ADV	VANCI	ED DA			TURES ATOR		ALGC	RITH	MS]		1	P	C
												() 0		4	2
PREREQUI	SITE:															
	1	. C P	rogran	ming												
COURSE O	BJEC	TIVES	5:													
									2.1							
	_		^		0		plemen					eirappli	cation	s.		
							nonlin ata stru									
	_						ze the c									
	-	. 10	study,	mpien		u anary	ze the t	millerer	it sorth	ig teen	inques.					
COURSE O	UTCC	OMES:	•													
On the su	iccessf	ul com	pletion	of the	course	. stude	nts will	be abl	e to							
C01:							iitablefo			tobeso	lvedeff	iciently	/.			
CO2:	Des	sign an	d imple	ement l	inear, t	ree, an	d graph	structi	ures an	d its ap	plicatio					
CO3:	Des	sign va	rious so	orting t	echniq	ues, its	algorit	hm des	ign and	l analy	sis.					
COs Vs POs	MAP	PING														
[COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2		
•	CO1	3	3	-	-	-	-	-	-	-	-	-	-			
	CO2	3	3	-	-	-	-	-	-	-	-	-	-			
	CO3	3	3	-	-	-	-	-	-	-	-	-	-			
	CO4		3	-	-	-	-	I	-	-	-	-	I			
	CO5	3	3	-	-	-	-	-	-	-	-	-	-			
COs Vs PSC		DDINI	т <u>.</u>													
	/5 IVIA		J.													
						COS	PSO1	PSO	2							
						C O 1	2	-								
						202	2									

CUS	1301	1 302
CO1	2	-
CO2	2	-
CO3	2	-
CO4	2	-
CO5	2	-

LIST OF EXPERIMENTS:

- 1. Create the sales report for M sales person and N products using arrays.
- 2. Generate Student mark sheets using structures
- 3. Stack ADT implementation with arrays and linked lists.
- 4. Queue ADT implementation with arrays and linked lists
- 5. List ADT implementation with arrays and linked lists.
- 6. BST implementation,
- 7. Implementation of Quick sort algorithm.
- 8. Hashing implementation.
- 9. Implementation of Shortest path algorithm.
- 10. Sum of subset problem using backtracking

REFERENCES:

1. Y. Langsam, M. J. Augenstein and A. M. Tenenbaum, "Data Structures using C", Pearson Education Asia, 2004
2. Anany Levitin "Introduction to the Design and Analysis of Algorithms" Pearson Education 2003.
<i>3. M. A. Weiss, "Data Structures and Algorithm Analysis in C++", Pearson Education Asia, 2013.</i>

2002CA108	3		PY	THON	PRO	GRAM	IMING	LABO	ORAT	ORY]	LĽ	Г	Р	(
												(0 (0	4	,
REREQUIS	SITE															
x		-														
		1. C	Progra	mming	ç.											
OURSE OI	BJEC	TIVES	5:													
							ple Pyth									
							ms with			and lo	ops.					
							Python									
							ing Pyth			es, dicti	ionaries	3				
		5. R	ead and	d write	data f	rom/to	files in I	Python	•							
COURSE OU	JTCC) MES:														
On the su	cessf	ful com	nletior	of the	cours	e stude	nte will	he abl	e to							
							n progra		610							
							Conditio		atemer	its.						
							sorting.	Jilui Di	aterriter							
						using L										
						s using										
CO6	: De	evelop	the pyt	hon pro	gam	for regr	ession a	nd pro	bability	v proble	ems.					
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2		
	CO1	3	3	3	-	3	-	-	-	-	-	-	-			
	CO2	3	3	3	-	3	-	-	-	-	-	-	-			
	CO3	3	3	3	-	3	-	-	-	-	-	-	-			
	CO4	3	3	3	-	3	-	-	-	-	-	-	-			
	CO5	3	3	3	-	3	-	-	-	-	-	-	-			
	3.7.4	DDDI	7													
COs Vs PSO	S MA	PPIN	ј :													
						COs	PSO1	PSC)2							
						CO1	3	-	/_							
						CO2	3	3								
						CO3	3	3								
						CO4	3	3								
						CO5	3	-								
					L			1								
JST OF EX	PER	IMEN	rs:													
11.0		0.07														
11. Comp						4	.1 45									
12. Find	1			numbe f a nun		wton,,s	method)									
			OTTOM O	t 0 101110	abor)											

13. Exponentiation (power of a number)

14. Find the maximum of a list of numbers

15. Linear search and Binary search

16. Selection sort, Insertion sort

17. Merge sort

- 18. First n prime numbers
- 19. Multiply matrices
- 20. Programs that take command line arguments (word count)
- 21. Find the most frequent words in a text read from a file 12. Implementation of linear regression and probability concepts.

REFERENCES:

- 1. Prof.A.Hema, "Python Programming Laboratory Manual"
- 2. Guido van Rossum and Fred L. Drake Jr, —An Introduction to Python Revised and updated for Python 3. 3.2, Network Theory Ltd., 2011.
- 4. John V Guttag, —Introduction to Computation and Programming Using Python,,,, Revised and expanded Edition, MIT Press, 2013
 5. Robert Sedgewick, Kevin Wayne, Robert Dondero, —Introduction to Programming in Python: An Inter-
- 5. Robert Sedgewick, Kevin Wayne, Robert Dondero, —Introduction to Programming in Python: An Interdisciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.
- 6. *Timothy A. Budd*, —*Exploring Python*, *Mc-Graw Hill Education (India) Private Ltd.*, 2015.
- 7. <u>http://greenteapress.com/wp/think-python.html</u>