E.G.S. PILLAY ENGINEERING COLLEGE

(Autonomous)

Approved by AICTE, New Delhi | Affiliated to Anna University, Chennai |

Accredited by NAAC with 'A'Grade |Accredited by NBA (CIVIL, CSE, ECE, EEE, IT, MECH)

NAGAPATTINAM - 611 002

B.E Mechanical Engineering

FullTimeCurriculumand Syllabus

Third Year – Sixth Semester

CourseCode	CourseName	L	Т	Р	С	Maxir	Maximum Marks			
			-			CA	ES	Total		
Theory Cours	se	_ 1 1	1				1			
1902ME601	Materials science and Metallurgy	3	0	0	3	40	60	100		
1902ME602	Design of Transmission systems	3	2	0	4	40	60	100		
1902ME603	Dynamics of Machines	3	2	0	4	40	60	100		
1903ME018 1903ME015	PC ElectiveII (Gas dynamics and jet propulsion / Refrigeration and air-conditioning)	3	0	0	3	40	60	100		
1901MGX01	HSSElective1 (Total Quality Management)	3	0	0	3	40	60	100		
1903ME028	Open ElectiveI (Renewable energy sources)	3	0	0	3	40	60	100		
LaboratoryC	ourse									
1902ME651	Theoryof MachinesLaboratory	0	0	2	1	50	50	100		
1904ME652	Mini project (Design and fabrication Project)	0	0	4	2	50	50	100		
1904ME653	IndustrialVisit Presentation	0	0	0	1	100	-	100		
1904GE651	LifeSkills:AptitudeII	0	0	2	1	100	-	100		

 $L-Lecture |T-Tutorial| P-Practical | CA-Continuous Assessment| \ ES - EndSemester$

B.E. – Mechanical Engineering E.G.S. Pillay Engineering College (Autonomous) Regulations 2019 Approved in IV Academic Council Meeting held on 25.05.2019					
1902ME601	MATERIALS SCIENCEANDMETALLURGY		_	Р 0	-

MODULE I PHASE DIAGRAMS AND CONSTITUTION OF ALLOYS

Alloys, Solidsolutions-Phasediagram, phaserule, leverrule, Binaryphasediagram-Isomorphous, eutectic, peritectic, eutectoid reactions - Iron-Carbon phasediagram -Metallography, microstructure.

MODULE II ENGINEERING METALS AND ALLOYS

Classification of Engineering materials-Ferrous metals-Plain carbon steel (low,medium steels), microstructure/composition, properties, applications-Alloysteels, effect of alloying additions on steels HighStrengthLowAlloy Steels(HSLA), maraging, toolsteels-Castiron-grey, white, -stainlesssteels, Copper, malleable, spheroidal graphite castiron, microstructure, properties, applications-Non-ferrousmetals-Nickel, Titanium, Aluminium, Magnesium, Zinc alloys, properties and applications- Bearing materials.

MODULE III HEAT TREATMENT OF STEELS

Purposeofheattreatment-Annealing(stressrelief,recrystallization,spheroidizing)-Normalizing-Hardening and Tempering, Isothermaltransformation diagrams (T-T-T diagrams), Cooling curves superimposed on T-T-T diagrams(martensiteandbainitephaseformation)-Hardenability,Jominy endquenchtest, Casehardening processes, carburizing, nitriding, carbontiriding, cyaniding, flame hardening, induction hardening.

MODULE IV INTRODUCTION TO POLYMERS AND ENGINEERING CERAMICS 9 Hours

Polymers-Plasticsandelastomers-Thermoplasts and thermosets, properties and applications (polyethylene, polypropylene,polyurethane,polystyrene,polyvinylchloride,polymethylmethacrylate,polyethyleneterapthalate, polycarbonate, polyamide, acrylonitrilebutadiene styrene, polyamide, polyamideimide, polypropyleneoxide, polypropylenesulphide, polyetheretherketone, polytetrafluroethylene,ureaformaldehyde, phenol formaldehyde, polyester, nylon, epoxy)- Rubberand its types-Types of Ceramics and applications.

MODULE V MECHANICAL PROPERTIES AND MATERIALS TESTING

Elasticandplasticdeformation, slipandtwinning- Tensiletest, stress-strainbehaviorofductileandbrittlematerials- Stress-strain behaviour ofelastomers-Viscoelasticity-Compressiontest-Hardnessandtestingmethods-Impact test-Fatiguetest, Stressvsnumberofcycles (S-N)curve, endurancelimit, factors affecting fatigue -Creep test, creep curves-Types of fracture - Fracture toughness- Three crack propagation modes.

FOR FURTHERREADING-SEMINAR-CPS

Review on Super alloys, Shape memory alloys, Composite Materials, Case studies inMetallurgical failure analysis.

Reference(s)

- 1. WilliamDCallisterJr., Materials Science and Engineering: An Introduction, 7th Edition, John Wiley &Sons Inc., New York, 2007.
- 2. G.E.Dieter, MechanicalMetallurgy, McGrawHill, 2007.
- 3. V.Raghavan, Materials Science and Engineering, Prentice HallofIndia, Delhi, 2009.
- 4. WilliamSmith and Javed Hashemi, Foundations of Materials Science and Engineering, 5th Edition, McGrawHill, NewYork, 2009.
- 5. G. Murray, C. White and W.Weise, Introduction to Engineering Materials, 2ndEdition, Chemical RubberCompany(CRC)Press, Taylor & Francis Group, Florida, 2007.
- 6. https://onlinecourses.nptel.ac.in/noc18 mm05/preview

9 Hours

9 Hours

Total: 45 Hours

9 Hours

9 Hours

andhighcarbon

1902ME602 DESIGN OF TRANSMISSIONSYSTEMS L Т Р С 3 2 0 4 **12 Hours**

MODULE I DESIGN OF FLEXIBLE ELEMENTS

Design of Flatbeltsandpulleys-Selection of Vbeltsandpulleys-Selectionofhoistingwireropesandpulleys-Design of Transmission chains and Sprockets.

MODULE II SPUR GEARS AND PARALLELAXIS HELICALGEARS 12 Hours

Speedratiosandnumberofteeth-Forceanalysis-Toothstresses-Dynamiceffects-Fatiguestrength-Factorofsafety-Gearmaterials–Designofstraighttoothspur&helicalgearsbasedonstrengthandwearconsiderations–Pressure angle in the normaland transverse plane-Equivalentnumberof teeth-forces for helicalgears

MODULE III BEVEL, WORM AND CROSS HELICALGEARS

Straightbevelgear:Tooth terminology, tooth forcesandstresses, equivalentnumberof teeth. Estimatingthe dimensions ofpairofstraightbevelgears.Worm Gear: Merits and demerits-terminology. Thermal capacity, materials-forces and stresses, efficiency, estimating the size of the pair of crosshelicalgears.

MODULE IV GEARBOXES

Geometric progression -Standard step ratio- Raydiagram, kinematicslayout-Design of slidingmesh gearbox- Design ofmultispeedgearboxformachinetoolapplications-Constantmeshgearbox- Speedreducerunit.-Variablespeedgearbohx, Fluid Couplings, TorqueConvertersfor automotive applications.

MODULE V CAMS, CLUTCHES AND BRAKES

Types-pressureangleandundercuttingbasecircledetermination-forcesandsurfacestresses. Cam Design: Designof plateclutches-axialclutches-coneclutches-internalexpandingrim clutches-Electromagneticclutches.BandandBlock brakes externalshoe brakes- Internalexpanding shoe brake.

FOR FURTHER READING

Design of MachineTool4Structures:Functions of Machine Tool Structures and their Requirements, Design for Strength,

Reference(s)

1. BhandariV, "DesignofMachine Elements", 3rdEdition, Tata McGraw-HillBookCo, 2010.

2. JosephShigley, Charles Mischke, Richard Budynas and Keith Nisbett"Mechanical Engineering Design", 8th Edition, Tata McGraw-Hill, 2008.

3. Prabhu. T.J., "Design of Transmission Elements", ManiOffset, Chennai, 2000.

4. C.S.Sharma, KamleshPurohit, "Designof Machine Elements", PrenticeHallof India, Pvt. Ltd., 2003.

5. BernardHamrock, Steven Schmid, BoJacobson, "Fundamentals ofMachine Elements", 2nd Edition, Tata McGraw-HillBookCo., 2006.

6. http://nptel.ac.in/courses/108102047/

12 Hours

12 Hours

12 Hours

TOTAL:60Hours

DYNAMICS OFMACHINES

MODULE I DYNAMICFORCEANALYSIS OF MECHANISMS

Principleofsuperposition, Conditionfordynamicanalysis, Dynamicanalysis of fourbar&slider crank mechanism - Engine force analysis. Turning moment diagram for steam &IC Engine. Energy stored in flywheel, Dimensionofflywheel rim, Flywheelin punchingpress.

MODULE II BALANCING

Introduction-

1902ME603

Staticbalancinganddynamicbalancing,BalancingofRotatingmassseveralmassesinsameanddifferentplane.Balan cingofreciprocatingmassSwayingcouple,Tractive force, HammerBlow. Balancingof coupled locomotives.

MODULE III GOVERNORANDGYROSCOPE

GovernorTerminology, workingprinciple,Types- Watt,PorterandProellgovernor,CharacteristicsofGovernorsensitiveness,Hunting,Ichoronisn,Stability.Gyroscope- Gyroscopiceffect,gyroscopiccouple, gyroscopic effecton aeroplanesand navalships.

MODULE IV FUNDAMENTAL OF VIBRATION

Introduction-Terminology, Classification, elements of vibration, free undampedvibration, Free Damped vibration(ViscusDamping)- Dampingratioandlogarithmicdecrement.Forcedampedvibration- Magnification factor. Vibration isolation and transmissibility.

MODULE V TRANSVERSEANDTORSIONAL VIBRATION

Transverse vibration of shafts and beams Shaft carrying several loads, whirling of shafts. Torsional vibration-effectofinertiaontorsionalvibration-TorsionallyequivalentShaft,singlerotor,tworotorsandthree rotors system.

Reference(s)

- 1. Uicker, J.J., Pennock G.Rand Shigley, J.E., "Theoryof Machines and Mechanisms", 3rd Edition, Oxford University Press, 2009.
- 2. Rattan, S.S, "Theoryof Machines", 3rdEdition, TataMcGraw-Hill, 2009
- 3. Thomas Bevan, "Theoryof Machines", 3rd Edition, CBSPublishers and Distributors, 2005.
- 4. 2. Cleghorn.W. L, "Mechanisms of Machines", OxfordUniversityPress, 2005
- 5. 3. BensonH.Tongue, "Principles of Vibrations", OxfordUniversityPress, 2ndEdition, 2007
- 6. http://nptel.ac.in/12106166.

12 Hours shafts. To:

12 Hours

12 Hours

TOTAL 45Hours

12 Hours

Т

2

Р

С

4

L

3

12 Hours

1000000000000	THEORY OF MACHINES LABORATORY	L	Т	Р	С
1902ME651		0	0	2	1

EXPERIMENT1

Determination of massmomentof inertia of axisymmetric bodies using turntable apparatus

EXPERIMENT2

Determine the characteristics and effortofWatt,PorterProellandHartnellGovernors

EXPERIMENT3

Exercise onBalancing of reciprocating masses.

EXPERIMENT4

Exercise onBalancing of four rotating masses placed on differentplane.

EXPERIMENT5

Analyze the gyroscopic effectusing Gyroscope and verifyits laws.

EXPERIMENT6

Determination of criticalspeed of shaft with concentrated loads by Whirling of shaft & vibration table apparatus.

EXPERIMENT7

Determine the momentofinertia of objectby Bifilar suspension, Trifilar & method of oscillation.

EXPERIMENT8

Kinematic analysis ofcam model, Epicycle gear train anddifferentialmodel.

EXPERIMENT9

Determination of natural frequency of single degree of freedom system & two rotor system

EXPERIMENT10

Determine the frequency of forced vibration using Cantileverbeam.

EXPERIMENT11

Determination of natural frequency of Torque measurement system.

Total: 30 Hours

1904ME652	4ME652 MINIPROJECT		Т	Р	С
	(Design and fabricationProject)	0	0	4	2

GUIDELINEFORREVIEW ANDEVALUATION

Thestudentsmaybegroupedinto2to 4 andworkunderaprojectsupervisor.Thedevice/system/component(s) tobefabricatedmay bedecidedinconsultationwiththesupervisorandifpossiblewithanindustry.Aproject reporttobesubmitted by thegroupandthefabricatedmodel,whichwillbereviewedandevaluatedforinternal assessmentbyaCommitteeconstitutedby theHeadoftheDepartment.Attheendofthe semester examination theprojectworkis evaluatedbasedonoralpresentation andtheprojectreportjointly by externalandinternal examiners constituted bytheHeadof theDepartment

Total: 60 Hours

1904ME653INDUSTRIALVISIT PRESENTATIONL T P C0 0 0 1

GUIDELINEFORREVIEW ANDEVALUATION

In order to provide the experiential learning to the students, shall take efforts to arrange at leastone industrialvisit/field visits in a year. Apresentation based on Industrialvisits shallbemade in this semesterand suitable creditmaybe awarded by the Committee constituted by the Head of the Department at the end of the semesterexamination

1904GE651	LIFESKILLS: APTITUDE– II	L	Т	Р	С
		0	0	2	1

MODULEI PARTNERSHIP, MIXTURES AND ALLEGATIONS, PROBLEM ON 6 Hours AGES, SIMPLEINTEREST, COMPOUNDINTEREST

Introduction Partnership - Relation between capitals, Period of investments and Shares- Problems on mixtures - Allegationrule- ProblemsonAllegation–Problemsonages-DefinitionsSimpleInterest- Problemsoninterestand amount-Problemswhenrateofinterestandtimeperiodarenumericallyequal- Definitionandformulaforamountin compoundinterest-Differencebetweensimpleinterestandcompoundinterestfor2yearsonthesameprincipleand time period.

MODULEII BLOOD RELATIONS, CLOCKS, CALENDARS

Defining the various relations among the members of a family-Solving Blood Relation puzzles-Solving the problems on Blood Relations using symbols and notations-Finding the angle when the time is given - Finding the time when the angle is known-Relation between Angle, Minutes and Hours - Exceptional cases in clocks - Definition of a Leap Year - Finding the number of Odd days- Framing the year code for centuries - Finding the day of any random calendard ate .

MODULEIII TIMEANDDISTANCE, TIMEANDWORK

Relationbetweenspeed, distance and time- Converting kmphintom/sandviceversa-Problemsonaverage speed-Problemson relative speed-Problemson trains-Problemson boats and streams-Problemson circular tracks- Problemson races-Problemson Unitary method-Relation between Men, Days, Hours and Work- Problemson Man- Day-Hours method - Problems on alternate days-Problems on Pipes and Cisterns

MODULEIV DATAINTERPRETATION AND DATASUFFICIENCY 6 Hours

Problemsontabularform-ProblemsonLineGraphs- ProblemsonBarGraphs- ProblemsonPieCharts- Different models in Data Sufficiency- Problems on data redundancy

MODULEV ANALYTICALAND CRITICALREASONING

ProblemsonLineararrangement-ProblemsonCirculararrangement- ProblemsonDoubleline-up- Problemson Selections-ProblemsonComparisons-FindingtheImplicationsforcompoundstatements-FindingtheNegationsfor compoundstatements- Problemsonassumption- Problemsonconclusions- Problemsoninferences- Problemson strengthening andweakening of arguments

TOTAL 30 Hours

6 Hours

6 Hours

6 Hours

1903ME018GAS DYNAMICS AND JET PROPULSIONL T P C

UNIT I BASIC CONCEPTS AND ISENTROPIC FLOW

Energy and momentum equations of compressible fluid flows – Stagnation states, Mach waves and Mach cone – Effect of Mach number on compressibility – Isentropic flow through variable ducts – Nozzle and Diffusers

UNIT II FLOW THROUGH DUCTS

Flows through constant area ducts with heat transfer (Rayleigh flow) and Friction (Fanno flow) – variation of flow properties.

UNIT III NORMAL AND OBLIQUE SHOCKS

Governing equations – Variation of flow parameters across the normal and oblique shocks – Prandtl – Meyer relations – Applications.

UNIT IV JET PROPULSION

Theory of jet propulsion – Thrust equation – Thrust power and propulsive efficiency – Operating principle, cycle analysis and use of stagnation state performance of ram jet, turbojet, turbofan and turbo prop engines.

UNIT V SPACE PROPULSION

Types of rocket engines – Propellants-feeding systems – Ignition and combustion – Theory of rocket propulsion – Performance study – Staging – Terminal and characteristic velocity – Applications – space flights.

FOR FURTHER READING

Case Study: Advanced Aircraft Engines, select Fuel for Air-craft engines.

Reference(s)

- 1. Patrick H. Oosthuizen and William E. Carscallen, Introduction to Compressible Fluid Flow, 2nd edition, CRC Press, Taylor & Francis Group, Florida, 2014.
- 2. Robert D. Zucker, Fundamentals of Gas Dynamics, 2nd edition, John Wiley & Sons Inc., New York,2002.
- 3. George P. Sutton and Oscar Biblarz, Rocket Propulsion Elements, 9th edition, John Wiley &Sons Inc., New York,2016.
- 4. S. M. Yahya, Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion, 6th edition, New Age International private Limited, 2018.

Total 45 Hours

3 0 0 3

9

9

9

9

9

1903ME028 RENEWABLE ENERGY SOURCES	L	ΤP	C C
------------------------------------	---	----	-----

Course Objectives

 $\hfill\square$ To learn about solar radiation and solar thermal system application.

□To provide knowledge on fundamentals and sizing of solar photovoltaics.

 \Box To study about the potential and energy conversion process of Wind Energy and Bio Energy.

□ To impart fundamental knowledge about Ocean Thermal Energy and Geothermal Energy.

 $\hfill\square$ To provide knowledge about the recent trends in Hydrogen and Fuel Cells.

9 Hours

9 Hours

9 Hours

3

0 0

3

UNIT I INTRODUCTION

World Energy Use – Reserves of Energy Resources – Environmental Aspects of Energy Utilisation –Renewable Energy Scenario in Tamil nadu, India and around the World – Potentials - Achievements /Applications – Economics of renewable energy systems.

UNIT II SOLAR ENERGY

Solar Radiation – Measurements of Solar Radiation - Flat Plate and Concentrating Collectors – Solardirect Thermal Applications – Solar thermal Power Generation - Fundamentals of Solar Photo VoltaicConversion – Solar Cells – Solar PV Power Generation – Solar PV Applications. UNIT III WIND ENERGY 9 Hours

Wind Data and Energy Estimation – Types of Wind Energy Systems – Performance – Site Selection –Details of Wind Turbine Generator – Safety and Environmental Aspects

UNIT IV BIO – ENERGY

Biomass direct combustion – Biomass gasifiers – Biogas plants – Digesters – Ethanol production –Bio diesel – Cogeneration - Biomass Applications

UNIT VOTHER RENEWABLE ENERGY SOURCES9 HoursTidal energy – Wave Energy – Open and Closed OTEC Cycles – Small Hydro-GeothermalEnergy –Hydrogen and Storage - Fuel Cell Systems – Hybrid Systems.FOR FURTHER READING – SEMINAR – CBSTotal: 45 Hours

Solar pond ,types of pvpanels,Thermal energy storage materials, Renewable energy harvesting by nanomaterials

Reference(s)

1. Rai. G.D., "Non Conventional Energy Sources", Khanna Publishers, New Delhi, 2018.

2. Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, second edition

3. Boyle, Godfrey. 2004. "Renewable Energy (2nd edition)". Oxford University Press, 450 pages (ISBN: 0-19- 926178-4).

4. J A Duffie and W A Beckman"Solar Engineering of Thermal Processes" 3rdedition

5. Sukhatme, Suhas P., and J. K. Nayak. "Solar energy", McGraw-Hill Education, 2017.

6. <u>https://onlinecourses.nptel.ac.in/noc19_ge11/course</u>