B.E. Electronics and Communication Engineering | E.G.S. Pillay Engineering College (Autonomous) | Regulations2019 Approved in IV Academic Council Meeting held on 25-05-2019

E.G.S. PILLAY ENGINEERING COLLEGE(Autonomous)

Approved by AICTE, New Delhi | Affiliated to Anna University, Chennai |

Accredited by NAAC with 'A'Grade |Accredited by NBA (CIVIL, CSE, ECE, EEE, IT, MECH)

NAGAPATTINAM - 611 002

B.E ELECTRONICS AND COMMUNICATION ENGINEERING <u>Full Time Curriculum And Svllabus</u>

Course Code	Course Name	L	Т	Р	С	Max	imum I	Marks	Category
Course Coue	Course Ivanie	L	1	I	C	CA	ES	Total	
Theory Cours	Se							•	
1901MA402	Probability Theory and Stochastic	3	0	0	3	40	60	100	BSC
1000000401	Processes		0	0	2	40	60	100	DCC
1902EC401	Electronics Circuits	3	0	0	3	40	60	100	PCC
1902EC402	Signals and Systems	2	2	0	3	40	60	100	PCC
1902EC403	Electromagnetic Fields	3	0	0	3	40	60	100	ESC
1902EC404	Analog Integrated Circuits	3	0	0	3	40	60	100	PCC
1902EC405	Microprocessors and Microcontrollers	3	0	0	3	40	60	100	PCC
Laboratory C	ourse								
1902EC451	Electronics and Integrated Circuits Laboratory	0	0	2	1	50	50	100	PCC
1902EC452	Microprocessors and Microcontrollers Laboratory	0	0	2	1	50	50	100	PCC
1904GE451	Life Skills: Verbal Reasoning	2	0	0	1	100	-	100	EEC
1901MCX01	Environmental Studies	2	0	0	0	100	-	100	МС
	Total	21	2	4	21	540	460	1000	

Second Year – Fourth Semester

 $L-Lecture |T-Tutorial| P-Practical |C-Credit| CA-Continuous Assessment| \ ES-EndSemester$

1901MA402		Р	ROBABILITY T	HEORY A	ND STOC	HASTIC	L	Т	Р	C
		-		ROCESSI						
							3	1	0	4
PREREQUISIT		L								
			nultivariate differen	tial calculus a	and integral c	alculus.				
COUDCE OD H		lgebra	and matrices							
COURSE OBJE			41	-1.:1:4						
		•	the concepts of prob	•						
		-	skill in handling situ			andom variab	le with tim	e funct	10n.	
	3. To a	inalyze	the concept of signa	ls and system	l.					
Module 1	PROBABI	LITV '	THEORY						9+3H	ours
			Conditional probab	ility and Bay	es theorem.	Discrete and o	ontinuous	randor		
– Moments – Mo	ment generatir	ng func	tions –Real Time Pr	oblems	es meorem,		onunuous	ranuor	li valla	UICS
Module 1I			CONTINUOUS RA		RIABLES				9+3 H	[ours
			sson, Geometric - (Uniform, Ex	ponential.			
			tion in Engineering			C , Z	pononiun,	1 (0111		
Module III			DNAL RANDOM		5				9+3 H	lours
Joint distribution	s – Marginal a	nd con	litional distributions	– Covarianc	e – Correlatio	n and Linear	regression	•		
Module IV	STOCHAS	TIC P	ROCESSES						9+3 H	lours
Stationary proce	ss – Markov p	rocess	- Markov chains – tr	ansition prob	abilities – Li	miting distribu	tions – Po	isson p	rocess	
Stochastic proce	sses, Stochast	tsticall	/larger-preposition	, coupling-st	ochastic mor	notonicity pro	perties of	birth a	nd dea	th
· ·			n Markov chains.							
Module V	RANDOM								9+3 H	
			er spectral density-c				Khintchin	e relati	on- Lir	near
time invariant sy	stem- system ti	ransfer	function-Linear syst	tem with rand	lom inputs-W	hite noise.				
						I	0			
						Т	OTAL:		60 HO	URS
FURTHER REA	ADING / CON	NIENI	BEYOND SYLLA	BUS / SEMI	INAK:					
COURSE OUT	COMES									
COURSEOUT		ation of	the course, Student	will be able t	0					
CO1	-						(170)			
CO1			techniques to analy				s.(K3)			
CO2	11 2		istributions in descri	0	1					
CO3 CO4			nvolving two diments related to rando			.3)				
C04 C05			pagation of random	.		miont austama	(V2)			
REFERENCES		na pro	bagation of random	signals in m	lear unie mva	u fant systems	(K 2)			
		Drohah	ility and Random P	rocassas with	Application	e to Signal P	rocessing	' Third	Editio	
Pearson Edu	ication	FIODAD		IUCESSES WILL	I Application					
2. A.Papoulis a McGraw Hi							" T	ourth	Edition	n,
3. K. L. Chung	ll	ishnan	Pillai, ``Probability	, Random Va	ariables and s	Stochastic Pro	Deesses, F	ourun		
-			Pillai, ``Probability pability Theory with					ourur		
4. P. G. Hoel,	Introduction	to Prol		Stochastic l	Processes, Sp	oringer Intern				
	Introduction S. C. Port and	to Prol C. J. S	ability Theory with	1 Stochastic 1 0 Probability	Processes, Sp , UBS Publi	pringer Intern shers,	ational			
5. P. G. Hoel,	Introduction S. C. Port and S. C. Port and	to Prol C. J. S C. J. S	ability Theory with tone, Introduction t	n Stochastic l o Probability o Stochastic	Processes, Sp 7, UBS Publi Processes, U	pringer Intern shers,	ational			

1902EC401		ELECTRONIC CIRCUITS	L	Т	Р	C
			3	0	0	3
Course Obj	ectives:					
		earn the fundamental concepts behind transistor biasing and to	diff	erenti	iate	
		Il signal and large signal circuit models				
	2. To s	tudy the performance metrics of Tuned amplifiers, Power ampl	lifie	rs and	b	
		illators.				
		liscuss various applications of analog circuits				
Unit I		S OF MOSFET			9 Ho	
		signal analysis CS, CG and source follower, miller effect, frequ ver, Current Sources, Current Mirrors	ienc	y resj	ponse	of
Unit II	DIFFEREN	NTIAL AMPLIFIERS AND FEEDBACK AMPLIFIERS			9 Ho	urs
		MRR, Differential amplifiers with active load, Two stage amp	olifie	ers,Fe	edbac	k
amplifiers - 0	Current Serie	s, Voltage Shunt, Current shunt and Voltage Series				
Unit III	TUNED A	MPLIFIERS AND POWER AMPLIFIERS			9 Ho	urs
		iers – Analysis of capacitor coupled single tuned amplifier – de	oubl			
	Stagger tuned		0000		•••	
		, class B, class AB, Biasing circuits, class C and class D				
Unit IV	OSCILLA				0 TT	
	ODOILLIN	IOKS			9 HO	urs
Sinusoidal o		neral form of oscillator circuit (Hartley & Colpitts), Barkhause	en C			urs
Design and a	scillators, Ge malysis of RO			riteri	on,	urs
Design and a Crystal oscil	scillators, Ge malysis of RC lator.	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu		riterio	on, tors,	
Design and a Crystal oscil Unit V	scillators, Ge malysis of RO lator. APPLICA	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu FIONS OF ANALOG ELECTRONICS	iit os	riterio	on, tors, 9 Ho	urs
Design and a Crystal oscil Unit V Selection of	scillators, Ge malysis of Ro lator. APPLICA Components	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu FIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on	it of	riterio scillat Lamp	on, tors, 9 Ho o in th	urs e
Design and a Crystal oscil Unit V Selection of Dark/Present	scillators, Ge analysis of Ro lator. APPLICA Components ce of Light –	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu FIONS OF ANALOG ELECTRONICS	it of	riterio scillat Lamp	on, tors, 9 Ho o in th	urs e
Design and a Crystal oscil Unit V Selection of Dark/Present	scillators, Ge analysis of Ro lator. APPLICA Components ce of Light –	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu FIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on	it of	riterio scillat Lamp	on, tors, 9 Ho o in th	urs e
Design and a Crystal oscil Unit V Selection of Dark/Presend Music Indust	scillators, Ge nalysis of Ro lator. APPLICA Components ce of Light – try.	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu FIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on	it os of I ly: F	riterio scillat Lamp	on, tors, 9 Ho o in th al in t	urs e
Design and a Crystal oscil Unit V Selection of Dark/Presend Music Indust	scillators, Ge nalysis of Ro lator. APPLICA Components ce of Light – try. ading:	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu TIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on Humidity and Smoke Detection - Future Advances – Case stud Total:	it os of I ly: F	riterio scillat Lamp Reviv	on, tors, 9 Ho o in th al in t	urs e
Design and a Crystal oscil Unit V Selection of Dark/Presend Music Indust	scillators, Ge malysis of Ro lator. APPLICA Components ce of Light – try. ading: Role of ana	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu TIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on Humidity and Smoke Detection - Future Advances – Case stud Total: log circuits in biomedical applications	it os of I ly: F	riterio scillat Lamp Reviv	on, tors, 9 Ho o in th al in t	urs e
Design and a Crystal oscil Unit V Selection of Dark/Present Music Indust	scillators, Ge nalysis of Ro lator. APPLICA Components ce of Light – try. ading: Role of ana Analog elec	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu TIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on Humidity and Smoke Detection - Future Advances – Case stud Total:	it os of I ly: F	riterio scillat Lamp Reviv	on, tors, 9 Ho o in th al in t	urs e
Design and a Crystal oscil Unit V Selection of Dark/Present Music Indust	scillators, Ge nalysis of R lator. APPLICA Components ce of Light – try. ading: Role of ana Analog elec comes:	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu TIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on Humidity and Smoke Detection - Future Advances – Case stud Total: log circuits in biomedical applications tronics applications in nanotechnology fields	it os of I ly: F	riterio scillat Lamp Reviv	on, tors, 9 Ho o in th al in t	urs e
Design and a Crystal oscil Unit V Selection of Dark/Presend Music Indust	scillators, Ge malysis of Ro lator. APPLICA Components ce of Light – try. ading: Role of ana Analog elec comes: After comp	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu TIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on Humidity and Smoke Detection - Future Advances – Case stud Total: log circuits in biomedical applications tronics applications in nanotechnology fields letion of the course, Student will be able to	iit os	Lamp Reviv	on, tors, 9 Ho in th al in t	urs e he
Design and a Crystal oscil Unit V Selection of Dark/Present Music Indust	scillators, Ge nalysis of Ro lator. APPLICA Components ce of Light – try. ading: Role of ana Analog elec comes: After comp 1. Dete	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu FIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on Humidity and Smoke Detection - Future Advances – Case stud Total: log circuits in biomedical applications tronics applications in nanotechnology fields letion of the course, Student will be able to ermine various parameters of transistor amplifier circuits using	iit os	Lamp Reviv	on, tors, 9 Ho in th al in t	urs e he
Design and a Crystal oscil Unit V Selection of Dark/Present Music Indust	scillators, Ge nalysis of Ro lator. APPLICA Components ce of Light – try. ading: Role of ana Analog elec comes: After comp 1. Dete 2. Exat	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu FIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on Humidity and Smoke Detection - Future Advances – Case stud Total: log circuits in biomedical applications tronics applications in nanotechnology fields letion of the course, Student will be able to ermine various parameters of transistor amplifier circuits using mine about differential amplifiers.	iit os	Lamp Reviv	on, tors, 9 Ho in th al in t	urs e he
Design and a Crystal oscil Unit V Selection of Dark/Present Music Indust	scillators, Ge nalysis of Ro lator. APPLICA Components ce of Light – try. ading: Role of ana Analog elec comes: After comp 1. Dete 2. Exa 3. Desi	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu TIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on Humidity and Smoke Detection - Future Advances – Case stud Total: log circuits in biomedical applications tronics applications in nanotechnology fields letion of the course, Student will be able to ermine various parameters of transistor amplifier circuits using mine about differential amplifiers. gn power amplifiers and tuned amplifiers	iit os	Lamp Reviv	on, tors, 9 Ho in th al in t	urs e he
Design and a Crystal oscil Unit V Selection of Dark/Present Music Indust	scillators, Ge malysis of Ro lator. APPLICA Components ce of Light – try. ading: Role of ana Analog elec comes: After comp 1. Dete 2. Exat 3. Desi 4. Desi	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu TIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on Humidity and Smoke Detection - Future Advances – Case stud Total: log circuits in biomedical applications tronics applications in nanotechnology fields letion of the course, Student will be able to ermine various parameters of transistor amplifier circuits using mine about differential amplifiers. gn power amplifiers and tuned amplifiers gn different types of oscillators.	iit os	Lamp Reviv	on, tors, 9 Ho in th al in t	urs e he
Design and a Crystal oscil Unit V Selection of Dark/Presend Music Indust Further Rea Course Out	scillators, Ge nalysis of Ro lator. APPLICA Components ce of Light – try. ading: Role of ana Analog elec comes: After comp 1. Dete 2. Exat 3. Desi 4. Desi 5. Disc	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu TIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on Humidity and Smoke Detection - Future Advances – Case stud Total: log circuits in biomedical applications tronics applications in nanotechnology fields letion of the course, Student will be able to ermine various parameters of transistor amplifier circuits using mine about differential amplifiers. gn power amplifiers and tuned amplifiers	iit os	Lamp Reviv	on, tors, 9 Ho in th al in t	urs e he
Design and a Crystal oscil Unit V Selection of Dark/Presend Music Indust Further Rea Course Out	scillators, Ge nalysis of Ro lator. APPLICA Components ce of Light – try. Ading: Role of ana Analog elec comes: After comp 1. Dete 2. Exa 3. Desi 4. Desi 5. Disc	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu TIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on Humidity and Smoke Detection - Future Advances – Case stud Total: log circuits in biomedical applications tronics applications in nanotechnology fields letion of the course, Student will be able to ermine various parameters of transistor amplifier circuits using mine about differential amplifiers. gn power amplifiers and tuned amplifiers gn different types of oscillators. uss the various applications of analog circuits	i of 1 ly: F	Lamp Reviv	on, tors, 9 Ho in th al in t	urs e he
Design and a Crystal oscil Unit V Selection of Dark/Presend Music Indust Further Rea Course Out References: 1. A. Sedra a	scillators, Ge nalysis of R lator. APPLICA Components ce of Light – try. ading: Role of ana Analog elec comes: After comp 1. Dete 2. Exa 3. Desi 4. Desi 5. Disc	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu TIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on Humidity and Smoke Detection - Future Advances – Case stud Total: log circuits in biomedical applications tronics applications in nanotechnology fields letion of the course, Student will be able to rmine various parameters of transistor amplifier circuits using nine about differential amplifiers. gn power amplifiers and tuned amplifiers gn different types of oscillators. uss the various applications of analog circuits Microelectronic Circuits, 7th edition. Oxford Univ. Press, 201	i of 1 ly: F	Lamp Reviv	on, tors, 9 Ho in th al in t	urs e he
Design and a Crystal oscil Unit V Selection of Dark/Presend Music Indusi Further Rea Course Out Course Out References: 1. A. Sedra a 2. Hernando	scillators, Ge malysis of Ro lator. APPLICA Components ce of Light – try. ading: Role of ana Analog elec comes: After comp 1. Dete 2. Exa 3. Desi 4. Desi 5. Disc and K. Smith, Lautaro Fern	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu TIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on Humidity and Smoke Detection - Future Advances – Case stud Total: log circuits in biomedical applications tronics applications in nanotechnology fields letion of the course, Student will be able to ermine various parameters of transistor amplifier circuits using mine about differential amplifiers. gn power amplifiers and tuned amplifiers gn different types of oscillators. uss the various applications of analog circuits Microelectronic Circuits, 7th edition. Oxford Univ. Press, 201 andez-Canque by Taylor & Francis Group, LLC, 2017	iit os of 1 ly: F	Lamp Reviv 45 H	on, tors, 9 Ho in th al in t cours alysis	urs e he
Design and a Crystal oscil Unit V Selection of Dark/Present Music Indust Further Rea Course Out Course Out References: 1. A. Sedra a 2. Hernando 3.Jacob Mill	scillators, Ge nalysis of R lator. APPLICA Components ce of Light – try. ading: Role of ana Analog elec comes: After comp 1. Dete 2. Exat 3. Desi 4. Desi 5. Disc und K. Smith, Lautaro Ferri man, C. Halk	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu TIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on Humidity and Smoke Detection - Future Advances – Case stud Total: log circuits in biomedical applications tronics applications in nanotechnology fields letion of the course, Student will be able to rmine various parameters of transistor amplifier circuits using nine about differential amplifiers. gn power amplifiers and tuned amplifiers gn different types of oscillators. uss the various applications of analog circuits Microelectronic Circuits, 7th edition. Oxford Univ. Press, 201	iit os of 1 ly: F	Lamp Reviv 45 H	on, tors, 9 Ho in th al in t cours alysis	urs e he
Design and a Crystal oscil Unit V Selection of Dark/Present Music Indust Further Rea Course Out References: 1. A. Sedra a 2. Hernando 3.Jacob Mill McGraw-Hil	scillators, Ge nalysis of Ro lator. APPLICA Components ce of Light – try. ading: Role of ana Analog elec comes: After comp 1. Dete 2. Exa 3. Desi 4. Desi 5. Disc und K. Smith, Lautaro Fern man, C. Halk Il, 2015.	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu FIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on Humidity and Smoke Detection - Future Advances – Case stud Total: log circuits in biomedical applications tronics applications in nanotechnology fields letion of the course, Student will be able to ermine various parameters of transistor amplifier circuits using mine about differential amplifiers. gn power amplifiers and tuned amplifiers uss the various applications of analog circuits Microelectronic Circuits, 7th edition. Oxford Univ. Press, 201 andez-Canque by Taylor & Francis Group, LLC, 2017 ias and Satyabrata Jit Electronic Devices and Circuits, 4TH Ed	iit on of 1 hy: F	riterio scillat Lamp Reviv 45 H hal an	on, tors, 9 Ho o in th al in t cours alysis	urs e he
Design and a Crystal oscil Unit V Selection of Dark/Present Music Indust Further Rea Course Out References: 1. A. Sedra a 2. Hernando 3.Jacob Mill McGraw-Hil	scillators, Ge nalysis of Ro lator. APPLICA Components ce of Light – try. ading: Role of ana Analog elec comes: After comp 1. Dete 2. Exa 3. Desi 4. Desi 5. Disc und K. Smith, Lautaro Fern man, C. Halk Il, 2015. an, N. Suresh	neral form of oscillator circuit (Hartley & Colpitts), Barkhause C phase shift oscillator, Wien bridge oscillators, Resonant circu TIONS OF ANALOG ELECTRONICS and Circuit Elements in an Application - Automatic Switch on Humidity and Smoke Detection - Future Advances – Case stud Total: log circuits in biomedical applications tronics applications in nanotechnology fields letion of the course, Student will be able to ermine various parameters of transistor amplifier circuits using mine about differential amplifiers. gn power amplifiers and tuned amplifiers gn different types of oscillators. uss the various applications of analog circuits Microelectronic Circuits, 7th edition. Oxford Univ. Press, 201 andez-Canque by Taylor & Francis Group, LLC, 2017	iit on of 1 hy: F	riterio scillat Lamp Reviv 45 H hal an	on, tors, 9 Ho o in th al in t cours alysis	urs e he

		SIGNALS AND SYSTEMS	L	Т	P		С
			3	1	0		4
CourseObject	ives:						
		udy and analyze the continuous and discrete-time signals	s and	syste	ems,	their	
		perties and representations.					
		ave Knowledge of time-domain representation and analy					1
		te to differential equations, difference equations, impuls	e resj	ponse	e and	conve	olution
	$\frac{\text{etc.}}{3 \text{ To fs}}$	miliarize the concepts of frequency-domain representation	on on	dan	1	. ucin	<u>т</u>
		urier Analysis tools, Z-transform.	JII all	u alla	ary 51	s using	5
		nderstand the conceptsof the sampling process and to	iden	tify a	and	Solve	
		intering problems.	luch	ury	ing		
		nalyze the systems by examining their input and output s	signa	ls.			
			U				
Unit I	CLASSIFI	CATION OF SIGNALS AND SYSTEMS		9)+3I	Iours	
Classification (of Signals-	Continuous time signals - Discrete time signals - Period	ic an	d Ap	erio	dic sig	nals -
		ergy and power signals -Deterministic and random sign					
and Sinusoidal	l signals. C	lassification of Systems: Continuous time systems-Dis	crete	time	e sys	tems-l	Linear
		tem- causal system-BIBO system-Systems with and with	nout				
		S OF CONTINUOUS TIME SIGNALS				Iours	
		gonometric Fourier series, Cosine Fourier series, Expone		Four	ier so	eries,	
		nuous time signals, Fourier transform, Laplace transform	•			-	
		INUOUS TIME SYSTEM				Iours	
		quation - Transfer function-Impulse response - Frequer					
•		s - Laplace transforms analysis - Block diagram represe	entati	on -	Cas	cade,	Paralle
		riable equation and Matrix.). 3 1	τ	
		S OF DISCRETE TIME SIGNALS				Iours	
		ansform (DTFT) – Properties of DTFT – Discrete Fo	urier	Irar	istor	m (D	FI) -
		of Z-Transform and Inverse Z-Transform. RETE TIME SYSTEMS) 21	Iours	
		uation – Transfer function – Impulse response – Convolu	tion				and
					- Л	arysis	anu
	on of DT sv	Siem iisiny z-iransiorm Difference contations – block (iiz	oran	ר			
Characterizatic	on of DT sys	stem using Z-transform Difference Equations – Block dia	-		+151	Tours	
	•	Tota	-		+151	Iours	
Further Read	ing:		al:	45			and ZT
Further Read	ing: Programs u	Tota	al:	45			and ZT
Further Read	ing: Programs u mes:	Tota	al:	45			and ZT
Further Read	ing: Programs u mes: After comp	Tota sing mathematical computing tool for CT and DT system	al:	45			and ZT
Further Read	ing: Programs u mes: After comp 1. Ana	Tot: sing mathematical computing tool for CT and DT syster letion of the course, Student will be able to	al: n ana	45			and ZT
Further Read	ing: Programs u mes: After comp 1. Ana 2. App 3. Ana	Tot:sing mathematical computing tool for CT and DT systerletion of the course, Student will be able tolyze the properties of Signals & Systemsly Laplace transform, Fourier transform in signal analysilyze continuous time LTI systems using Fourier and Lap	n ana	45 llysis Гrans	usin	g LT a	and ZT
Further Read	ing: Programs u mes: After comp 1. Ana 2. App 3. Ana	Total sing mathematical computing tool for CT and DT system letion of the course, Student will be able to lyze the properties of Signals & Systems ly Laplace transform, Fourier transform in signal analysi	n ana	45 llysis Гrans	usin	g LT a	and ZT
Further Read	ing: Programs u mes: After comp 1. Ana 2. App 3. Ana 4. App	Tot:sing mathematical computing tool for CT and DT systerletion of the course, Student will be able tolyze the properties of Signals & Systemsly Laplace transform, Fourier transform in signal analysilyze continuous time LTI systems using Fourier and Lap	n ana	45 llysis Гrans	usin	g LT a	and ZT
Further Read	ing: Programs u mes: After comp 1. Ana 2. App 3. Ana 4. App	Total sing mathematical computing tool for CT and DT system letion of the course, Student will be able to lyze the properties of Signals & Systems ly Laplace transform, Fourier transform in signal analysi lyze continuous time LTI systems using Fourier and Lap ly Z-transform and DTFT in signal analysis for Discrete	n ana	45 llysis Гrans	usin	g LT a	and ZT
Further Read	ing: Programs u mes: After comp 1. Ana 2. App 3. Ana 4. App 5. Ana	Tot: sing mathematical computing tool for CT and DT syster letion of the course, Student will be able to lyze the properties of Signals & Systems ly Laplace transform, Fourier transform in signal analysi lyze continuous time LTI systems using Fourier and Lap ly Z-transform and DTFT in signal analysis for Discrete lyze discrete time LTI systems using Z-transform.	n ana s lace '	45 Ilysis Frans signa	usin sform ils	g LT :	
Further Read Course Outco References: 1. Allan V.Opp	ing: Programs u mes: After comp 1. Ana 2. App 3. Ana 4. App 5. Ana	Total sing mathematical computing tool for CT and DT system letion of the course, Student will be able to lyze the properties of Signals & Systems ly Laplace transform, Fourier transform in signal analysi lyze continuous time LTI systems using Fourier and Lap ly Z-transform and DTFT in signal analysis for Discrete	n ana s lace '	45 Ilysis Frans signa	usin sform ils	g LT :	
Further Read Course Outco Course Outco References: 1. Allan V.Opp Edition 2015.	ing: Programs u mes: After comp 1. Ana 2. App 3. Ana 4. App 5. Ana penheim, Al	Tot: sing mathematical computing tool for CT and DT syster letion of the course, Student will be able to lyze the properties of Signals & Systems ly Laplace transform, Fourier transform in signal analysi lyze continuous time LTI systems using Fourier and Lap ly Z-transform and DTFT in signal analysis for Discrete lyze discrete time LTI systems using Z-transform.	n ana s lace ' time	45 Ilysis Frans signa	usin sforn als	g LT a	1
Further Read Course Outco Course Outco References: 1. Allan V.Opp Edition 2015. 2.Rodger E.Zie Discrete", Fou	ing: Programs u mes: After comp 1. Ana 2. App 3. Ana 4. App 5. Ana benheim, Al emer, Willi rth Edition	Total sing mathematical computing tool for CT and DT system letion of the course, Student will be able to lyze the properties of Signals & Systems ly Laplace transform, Fourier transform in signal analysi lyze continuous time LTI systems using Fourier and Lap ly Z-transform and DTFT in signal analysis for Discrete lyze discrete time LTI systems using Z-transform. lan S.Wilskywith S. Hamid Nawab, "Signals and System am H.Tranter and D.Ronald Fannin, "Signals and System	n ana s lace ' time	45 Ilysis Frans signa Pearse Cont	usin aforn ils	g LT a	1
Further Read Course Outco Course Outco References: 1. Allan V.Opp Edition 2015. 2.Rodger E.Zid Discrete", Four 3.Simon Hayk	ing: Programs u mes: After comp 1. Ana 2. App 3. Ana 4. App 5. Ana benheim, Al emer, Willi rth Edition	TotaTotasing mathematical computing tool for CT and DT systemletion of the course, Student will be able tolyze the properties of Signals & Systemsly Laplace transform, Fourier transform in signal analysilyze continuous time LTI systems using Fourier and Laply Z-transform and DTFT in signal analysis for Discretelyze discrete time LTI systems using Z-transform.lan S.Wilskywith S. Hamid Nawab, "Signals and System	n ana s lace ' time	45 Ilysis Frans signa Pearse Cont	usin aforn ils	g LT a	1
Further Read Course Outco Course Outco References: 1. Allan V.Opp Edition 2015. 2.Rodger E.Zie Discrete", Fou 3.Simon Hayk 2004.	ing: Programs u mes: After comp 1. Ana 2. App 3. Ana 4. App 5. Ana benheim, Al emer, Willi rth Edition in and Barr	Total sing mathematical computing tool for CT and DT system letion of the course, Student will be able to lyze the properties of Signals & Systems ly Laplace transform, Fourier transform in signal analysi lyze continuous time LTI systems using Fourier and Lap ly Z-transform and DTFT in signal analysis for Discrete lyze discrete time LTI systems using Z-transform. lan S.Wilskywith S. Hamid Nawab, "Signals and System am H.Tranter and D.Ronald Fannin, "Signals and System y Van Veen, "Signals and Systems", John Willey & S	n ana s lace ' time ems ' dons,	45 Ilysis Frans signa Pearse Cont	usin aforn ils	g LT a	1
Further Read Course Outco Course Outco References: 1. Allan V.Opp Edition 2015. 2.Rodger E.Zio Discrete", Four 3.Simon Hayk 2004. 4.B.P.Lathi, "F	ing: Programs u mes: After comp 1. Ana 2. App 3. Ana 4. App 5. Ana benheim, Al emer, Willi rth Edition in and Barn Principles of	Totasing mathematical computing tool for CT and DT systerletion of the course, Student will be able tolyze the properties of Signals & Systemsly Laplace transform, Fourier transform in signal analysilyze continuous time LTI systems using Fourier and Laply Z-transform and DTFT in signal analysis for Discretelyze discrete time LTI systems using Z-transform.lan S.Wilskywith S. Hamid Nawab, "Signals and Systemam H.Tranter and D.Ronald Fannin, "Signals and Systemry Van Veen, "Signals and Systems", John Willey & SLinear Systems and Signals", Second Edition, Oxford, 2	n ana s lace ' time ems ' dons,	45 Ilysis Frans signa Pearse Cont	usin aforn ils	g LT a	1
Further Read Course Outco Course Outco References: 1. Allan V.Opp Edition 2015. 2.Rodger E.Zie Discrete", Fou 3.Simon Hayk 2004. 4.B.P.Lathi, "F 5.John Alan St	ing: Programs u mes: After comp 1. Ana 2. App 3. Ana 4. App 5. Ana benheim, Al benheim, Al cemer, Willi rth Edition in and Barr Principles of uller, "An I	Totasing mathematical computing tool for CT and DT systerletion of the course, Student will be able tolyze the properties of Signals & Systemsly Laplace transform, Fourier transform in signal analysilyze continuous time LTI systems using Fourier and Laply Z-transform and DTFT in signal analysis for Discretelyze discrete time LTI systems using Z-transform.lan S.Wilskywith S. Hamid Nawab, "Signals and Systemam H.Tranter and D.Ronald Fannin, "Signals and Systemry Van Veen, "Signals and Systems", John Willey & SLinear Systems and Signals", Second Edition, Oxford, 2ntroduction to Signals and Systems", Thomson, 2007.	n ana s lace ' time ems ', F ems ' Sons,	45 Ilysis Frans signa Pearse Cont	usin aforn ils	g LT a	1
Further Read Course Outco Course Outco References: 1. Allan V.Opp Edition 2015. 2.Rodger E.Zie Discrete", Fou 3.Simon Hayk 2004. 4.B.P.Lathi, "F 5.John Alan St 6.Hwei.P.Hsu,	ing: Programs u mes: After comp 1. Ana 2. App 3. Ana 4. App 5. Ana benheim, Al emer, Willi rth Edition in and Barn Principles of uller, "An In Schaum, "C	Total sing mathematical computing tool for CT and DT system letion of the course, Student will be able to lyze the properties of Signals & Systems ly Laplace transform, Fourier transform in signal analysi lyze continuous time LTI systems using Fourier and Lap lyZ-transform and DTFT in signal analysis for Discrete lyze discrete time LTI systems using Z-transform. lan S.Wilskywith S. Hamid Nawab, "Signals and System am H.Tranter and D.Ronald Fannin, "Signals and System ty Van Veen, "Signals and Systems", John Willey & S Linear Systems and Signals", Second Edition, Oxford, 2 ntroduction to Signals and Systems", Thomson, 2007. Dutlines: Signals and Systems", Pearson Education, 2002	n ana s lace ' time ems ' cons,	45 Ilysis Trans signa Pearso Cont Inc.	usin aforn ils	g LT a	1
Further Read Course Outco Course Outco References: 1. Allan V.Opp Edition 2015. 2.Rodger E.Zie Discrete", Four 3.Simon Hayk 2004. 4.B.P.Lathi, "F 5.John Alan St 6.Hwei.P.Hsu, 7.Anand Kuma	ing: Programs u mes: After comp 1. Ana 2. App 3. Ana 4. App 5. Ana benheim, Al conheim, Conheim, Conh	Totasing mathematical computing tool for CT and DT systerletion of the course, Student will be able tolyze the properties of Signals & Systemsly Laplace transform, Fourier transform in signal analysilyze continuous time LTI systems using Fourier and Laply Z-transform and DTFT in signal analysis for Discretelyze discrete time LTI systems using Z-transform.lan S.Wilskywith S. Hamid Nawab, "Signals and Systemam H.Tranter and D.Ronald Fannin, "Signals and Systemry Van Veen, "Signals and Systems", John Willey & SLinear Systems and Signals", Second Edition, Oxford, 2ntroduction to Signals and Systems", Thomson, 2007.	n ana s lace ' time ms", F ems Gons, 0009.	45 Ilysis Frans signa Pearso Cont Inc.	usin form lls inuo , Sec	g LT a	1

1902EC403	ELECTROMAGNETIC FIELDS	Т	Р	С	
		3	0	0	3
Course Objective	s:	•	Ŭ	Ŭ	
	1. To impart knowledge on the basics of static electric and ma laws.	gnetic fie	eld and	the asso	ociated
	2. To give insight into the propagation of EM waves and also to computational electromagnetic.	o introdu	ce the n	nethods	in
	3. To analyze the time varying fields.				
UNIT I	STATIC ELECTRIC FIELDS			9	Hours
theorem and div intensity– Electr	em – Rectangular – Cylindrical and spherical co-ordinate s vergence theorem –Coulomb's law in vector form – I ic field due to charges distributed uniformly on an infini of a uniformly charged circular disc – Electric flux Dens ications.	Definitio te and f	on of e inite li	electric ne – E	field lectric
UNIT II	STATIC MAGNETIC FIELDS			9	Hours
a current I – M current I – Ampe equation for a m dinamagnetic fiel		rectangu density a curren	lar loo –The l t I plac	p carry Lorentz xe	ying a z force
UNIT III	ELECTRIC AND MAGNETIC FIELDS IN MATE	ERIALS		9	Hours
Inductance of lo fields. UNIT IV Faraday's law –	 Current density – Continuity equation for current – ops and solenoids – Definition of mutual inductance – H TIME VARYING ELECTRIC AND MAGNETIC I Maxwell's equations in integral form and point form al law in integral form –Modified form of ampere's circulation 	Energy c FIELDS – Disp	lensity laceme	in mag 9 ent cur	gnetic Hours rent –
equation in integ	ral form – Pointing vector and the flow of power – Powe erage and complex pointing vector.				
UNIT V	ELECTROMAGNETIC WAVES			9	Hours
homogenous mat Propagation in g	ave equation–Wave equation in phasor form – Plane w terial – Wave equation for a conducting medium – Plane bod conductors – Skin effect – Linear elliptical and circul om a conductor–Normal incidence - Dependence on polariz	waves i ar polari	in lossy	y dieleo – Refle er angle	ctrics– ection
Further Reading		otun		10	liouis
	Vector analysis - Vector Calculus -Principle of Superposi magnetic materials – Magnetization and permeability – M conditions.				of
Course Outcomes					
	After completion of the course, Student will be able to 1. Explain the fundamentals of electromagnetic.				
	 2. Analyze field potentials due to static changes and static 	magnet	ic field	s	
	3. Explain how materials affect electric and magnetic fiel			U .	
	4. Analyze the relation between the fields under time vary		ations	P	age o or i
	5. Discuss the principles of propagation of uniform plane				
References:					

- 1. Hayt, WH and Buck, J.A., "Engineering Electromagnetics", 7th Edition, TMH, 2007.
- 2. Jordan, E.C, and Balmain, K. G., "Electromagnetic Waves and Radiating Systems", 4th Edition, Pearson Education / PHI, 2006.
- 3. Mathew N.O. Sadiku, "Elements of Engineering Electromagnetics", 4th Edition, Oxford University Press, 2007.
- 4. Narayana Rao, N., "Elements of Engineering Electromagnetics", 6th Edition, Pearson Education, 2006.
- 5. Ramo, Whinnery and Van Duzer., "Fields and Waves in Communication Electronics", 3rd Edition, John Wiley and Sons, 2003.

1902EC404		ANALOG INTEGRATED CIRCUITS	L	Т	Р	С
			3	0	0	3
Course Object	ives:					
		o learn the fundamental concepts behind Operational Amplifiers a nall signal and large signal circuit models.	ind t	to diff	ferenti	ate
	c	o learn the concepts of Active filters, Analog to Digital and Digita onverters for microelectronics.			0	
		o study the performance metrics of Phase Locked Loop and CMO nplifiers.)S d	liffere	ntial	
Unit I	BASICS	OF OPERATIONAL AMPLIFIERS			9 H	Iours
Offset voltages Applications of Antilog amplifi	s and curr Op-amp: ers, Instrum	C and AC characteristics, Typical op-amp parameters: Finite gain, ents, Common-mode rejection ratio, Power supply rejection Precision rectifiers, Summing amplifier, Integrator and Differen entation amplifiers, Voltage to Current converters.	rat	io, S	lew r .og ar	ate, 1d
Unit II		FILTERS				Iours
		function (low pass, high pass, band pass and band reject), Butte		orth,	Cheby	shev
		l capacitor filter, Notch filter, All pass filters and self-tuned filters				
Unit III		TO DIGITAL AND DIGITAL TO ANALOG CONVERTER				Iours
	-	chmitt trigger, Astable and Monostable multivibrators, Triangula	ar w	ave g	enerat	or,
	-	her, Data converters: A/D and D/A converters.			_	
Unit IV		OCKED LOOP				Iours
PLL – Basic blo	ook diaaran			instic	ons of	PLL
	•	and operation, Four quadrant multipliers, Phase detector, VCO, A	Appi	incatio		
Frequency synth	nesizers, AN	1 detection, FM detection and FSK demodulation.	аррі	licatio		
Frequency synth Unit V	nesizers, AN	1 detection, FM detection and FSK demodulation. IFFERENTIAL AMPLIFIERS			9 H	Iours
Frequency synth Unit V DC analysis ar current source l	nesizers, AM CMOS D nd small signord, Input	A detection, FM detection and FSK demodulation. IFFERENTIAL AMPLIFIERS anal analysis of differential amplifier with Resistive load, current common-mode range and Common-mode feedback circuits, OTA age amplifiers, Compensation in amplifiers (Dominant pole comp	ent As va	mirro s Op-	9 E or load amps,).	Iours d and Slew
Frequency synth Unit V DC analysis ar current source l	nesizers, AM CMOS D nd small signord, Input	A detection, FM detection and FSK demodulation. IFFERENTIAL AMPLIFIERS anal analysis of differential amplifier with Resistive load, current common-mode range and Common-mode feedback circuits, OTA	ent As va	mirro s Op-	9 E or load amps,).	Iours d and
Frequency synth Unit V DC analysis ar current source I rate, CMRR, PS	nesizers, AM CMOS D nd small sig load, Input SRR, Two s	A detection, FM detection and FSK demodulation. IFFERENTIAL AMPLIFIERS anal analysis of differential amplifier with Resistive load, current common-mode range and Common-mode feedback circuits, OTA age amplifiers, Compensation in amplifiers (Dominant pole comp	ent As va	mirro s Op-	9 E or load amps,).	Iours d and Slew
Frequency synth Unit V DC analysis ar current source l	nesizers, AM CMOS D nd small sig load, Input SRR, Two s	A detection, FM detection and FSK demodulation. IFFERENTIAL AMPLIFIERS anal analysis of differential amplifier with Resistive load, current common-mode range and Common-mode feedback circuits, OTA age amplifiers, Compensation in amplifiers (Dominant pole comp	ent As va	mirro s Op-	9 E or load amps,).	Iours d and Slew
Frequency synth Unit V DC analysis ar current source I rate, CMRR, PS	nesizers, AN CMOS D nd small sig load, Input SRR, Two s SRR, Two s	A detection, FM detection and FSK demodulation. IFFERENTIAL AMPLIFIERS mal analysis of differential amplifier with Resistive load, curre common-mode range and Common-mode feedback circuits, OTA age amplifiers, Compensation in amplifiers (Dominant pole comp Total:	ent As va	mirro s Op-	9 E or load amps,).	Iours d and Slew
Frequency synth Unit V DC analysis ar current source I rate, CMRR, PS Further Readin	nesizers, AM CMOS D nd small sig load, Input SRR, Two s SRR, Two s Collector nes: After com	A detection, FM detection and FSK demodulation. IFFERENTIAL AMPLIFIERS mal analysis of differential amplifier with Resistive load, curre common-mode range and Common-mode feedback circuits, OTA age amplifiers, Compensation in amplifiers (Dominant pole comp	ent As va	mirro s Op-	9 E or load amps,).	Iours d and Slew
Frequency synth Unit V DC analysis ar current source I rate, CMRR, PS Further Readin	nesizers, AM CMOS D nd small sig load, Input SRR, Two s SRR, Two s Collector nes: After com	A detection, FM detection and FSK demodulation. IFFERENTIAL AMPLIFIERS anal analysis of differential amplifier with Resistive load, current common-mode range and Common-mode feedback circuits, OTA age amplifiers, Compensation in amplifiers (Dominant pole comp Total: Emitter Feedback Bias.	ent As va	mirro s Op-	9 E or load amps,).	Iours d and Slew
Frequency synth Unit V DC analysis ar current source I rate, CMRR, PS Further Readin	nesizers, AM CMOS D nd small sig load, Input SRR, Two s SRR, Two s Collector nes: After com	A detection, FM detection and FSK demodulation. IFFERENTIAL AMPLIFIERS mal analysis of differential amplifier with Resistive load, curre common-mode range and Common-mode feedback circuits, OTA age amplifiers, Compensation in amplifiers (Dominant pole comp	ent As va	mirro s Op-	9 E or load amps,).	Iours d and Slew
Frequency synth Unit V DC analysis ar current source I rate, CMRR, PS Further Readin	nesizers, AN CMOS D nd small sig load, Input SRR, Two s SRR, Two s Collector nes: After com 1 In 2 In 3 C	A detection, FM detection and FSK demodulation.	ent As viewens	mirro s Op- ation)	9 E or load amps,). 45 E	Iours d and Slew Iours
Frequency synth Unit V DC analysis ar current source I rate, CMRR, PS Further Readin	nesizers, AM CMOS D nd small sig load, Input SRR, Two s SRR, Two s Collector nes: After com 1 In 2 In 3 C c	A detection, FM detection and FSK demodulation.	ent As vi bens :	mirro s Op- ation)	9 E or load amps,). 45 E	lours d and Slew Hours
Frequency synth Unit V DC analysis ar current source I rate, CMRR, PS Further Readin	nesizers, AN CMOS D nd small sig load, Input SRR, Two s Collector nes: After com 1 In 2 In 3 C c 4 Il a	A detection, FM detection and FSK demodulation. IFFERENTIAL AMPLIFIERS anal analysis of differential amplifier with Resistive load, currents common-mode range and Common-mode feedback circuits, OTA age amplifiers, Compensation in amplifiers (Dominant pole comp Total: Emitter Feedback Bias. pletion of the course, Student will be able to applement basic applications of Op-amp using IC 741. Iterpret the concept of Active filter for Analog integrated circuits. onstruct an Multi vibrators using IC 555 and Data Converters for rcuits. Instructer function of application specific ICs such as Voltage regulato oplication in communication.	ent As vi bens : Dr A	mirro s Op- ation)	9 E or load amps,). 45 E g integ and	Iours d and Slew Hours rated its
Frequency synth Unit V DC analysis ar current source I rate, CMRR, PS Further Readi Course Outcor	nesizers, AN CMOS D nd small sig load, Input SRR, Two s Collector nes: After com 1 In 2 In 3 C c 4 Il a	A detection, FM detection and FSK demodulation.	ent As vi bens : Dr A	mirro s Op- ation)	9 E or load amps,). 45 E g integ and	Iours d and Slew Hours rated its
Frequency synth Unit V DC analysis ar current source I rate, CMRR, PS Further Readi Course Outcor References:	nesizers, AM CMOS D nd small sig load, Input SRR, Two s SRR, Two s Collector nes: After com 1 In 2 In 3 C c 4 II a 5 E	A detection, FM detection and FSK demodulation. IFFERENTIAL AMPLIFIERS mal analysis of differential amplifier with Resistive load, current common-mode range and Common-mode feedback circuits, OTA age amplifiers, Compensation in amplifiers (Dominant pole comp Total: Emitter Feedback Bias. pletion of the course, Student will be able to mplement basic applications of Op-amp using IC 741. terpret the concept of Active filter for Analog integrated circuits. onstruct an Multi vibrators using IC 555 and Data Converters for rcuits. lustratethefunctionofapplicationspecificICssuchasVoltageregulato oplication in communication. escribe the working of CMOS Differential amplifier in Analog integrated circuits.	ent As vi bens : Dr A Drs,F	mirro s Op- ation)	9 H or load amps,). 45 H g integ and	Iours d and Slew Hours rated its 3.
Frequency synth Unit V DC analysis ar current source I rate, CMRR, PS Further Readi Course Outcor References: 1 S.Franc 2003.	nesizers, AN CMOS D nd small signad, Input SRR, Two s After com 1 In 2 In 3 C c 4 II a 5 D co, Design	I detection, FM detection and FSK demodulation. IFFERENTIAL AMPLIFIERS anal analysis of differential amplifier with Resistive load, current common-mode range and Common-mode feedback circuits, OTA age amplifiers, Compensation in amplifiers (Dominant pole comp Total: Emitter Feedback Bias. pletion of the course, Student will be able to mplement basic applications of Op-amp using IC 741. terpret the concept of Active filter for Analog integrated circuits. Instruct an Multi vibrators using IC 555 and Data Converters for rouits. InstratethefunctionofapplicationspecificICssuchasVoltageregulato oplication in communication. escribe the working of CMOS Differential amplifier in Analog integrated Circuits, T with Operational Amplifiers and Analog Integrated Circuits, T	ent As vo bens :]	mirro s Op- ation)	9 H or load amps,). 45 H g integ and	Iours d and Slew Iours rated its 3.
Frequency synth Unit V DC analysis ar current source I rate, CMRR, PS Further Readin Course Outcor References: 1 S.France 2003. 2 Sedra a	nesizers, AN CMOS D nd small sig load, Input SRR, Two s SRR, Two s Collector nes: After com 1 h 2 h 3 C c 4 ft a 5 f co, Design	I detection, FM detection and FSK demodulation. IFFERENTIAL AMPLIFIERS mal analysis of differential amplifier with Resistive load, curre- common-mode range and Common-mode feedback circuits, OTA age amplifiers, Compensation in amplifiers (Dominant pole comp Total: Emitter Feedback Bias. Emitter Feedback Bias. pletion of the course, Student will be able to nplement basic applications of Op-amp using IC 741. terpret the concept of Active filter for Analog integrated circuits. onstruct an Multi vibrators using IC 555 and Data Converters for rcuits. IustratethefunctionofapplicationspecificICssuchasVoltageregulato oplication in communication. escribe the working of CMOS Differential amplifier in Analog integrated Circuits, T Micro electronics Circuits, First Edition, Oxford Univ. Press, 2004.	ent As vio bens : : : : : : : : : : : : : : : : : : :	mirro s Op- ation) ation)	9 E or load amps,). 45 E g integ and circuits	Iours d and Slew Iours rated its 3.
Frequency synth Unit V DC analysis ar current source I rate, CMRR, PS Further Readin Course Outcor References: 1 S.France 2003. 2 Sedra a 3 Cough	nesizers, AN CMOS D nd small sig load, Input SRR, Two s Collector nes: After com 1 In 2 In 3 C c c 4 Ii a 5 E co, Design and Smith, N lin, Driscoll	I detection, FM detection and FSK demodulation. FFERENTIAL AMPLIFIERS mal analysis of differential amplifier with Resistive load, curre- common-mode range and Common-mode feedback circuits, OTA age amplifiers, Compensation in amplifiers (Dominant pole comp Total: Emitter Feedback Bias. pletion of the course, Student will be able to mplement basic applications of Op-amp using IC 741. terpret the concept of Active filter for Analog integrated circuits. Instruct an Multi vibrators using IC 555 and Data Converters for rcuits. InstratethefunctionofapplicationspecificICssuchasVoltageregulato oplication in communication. escribe the working of CMOS Differential amplifier in Analog integrated Circuits, T Micro electronics Circuits, First Edition, Oxford Univ. Press, 2004. OP-AMPS and Linear Integrated Circuits, First Edition, Prentice	ent As vio bens : : : : : : : : : : : : : : : : : : :	mirro s Op- ation) nalog	9 F or load amps,). 45 F g integ and circuits ion, T	Iours and Slew Iours rated its s. TMH,
Frequency synth Unit V DC analysis ar current source I rate, CMRR, PS Further Readin Course Outcor References: 1 S.Franc 2003. 2 Sedra a 3 Cough	nesizers, AN CMOS D nd small signad, Input SRR, Two s SRR, Two s Collector nes: After com 1 In 2 In 3 C c 4 II a 5 E co, Design and Smith, M lin, Driscoll P Ryder, Ele	I detection, FM detection and FSK demodulation. IFFERENTIAL AMPLIFIERS mal analysis of differential amplifier with Resistive load, curre- common-mode range and Common-mode feedback circuits, OTA age amplifiers, Compensation in amplifiers (Dominant pole comp Total: Emitter Feedback Bias. Emitter Feedback Bias. pletion of the course, Student will be able to nplement basic applications of Op-amp using IC 741. terpret the concept of Active filter for Analog integrated circuits. onstruct an Multi vibrators using IC 555 and Data Converters for rcuits. IustratethefunctionofapplicationspecificICssuchasVoltageregulato oplication in communication. escribe the working of CMOS Differential amplifier in Analog integrated Circuits, T Micro electronics Circuits, First Edition, Oxford Univ. Press, 2004.	ent As vio bens : : : : : : : : : : : : : : : : : : :	mirro s Op- ation) nalog	9 F or load amps,). 45 F g integ and circuits ion, T	Iours d and Slew Hours rated its s.

1902EC405		L	Т	Р	С
1902EC403	MICROPROCESSOR AND MICROCONTROLLER	3	0	0	$\frac{c}{3}$
Course Object	ctives:				
	1. To teach the architecture and functions of 8085 and 8086 Mid	cropro	cesso	rs.	
	2. To impart the concepts of 8051 microcontroller.				
	3. To convey aspects of I/O and Memory Interfacing circuits.				
UNIT I	INTRODUCTION TO MICROPROCESSORS	9	Hou	rs	
Evolution Of I	Microprocessors - 8-Bit Processor - 8085 Architecture, Register Org	ganiza	tion,	Instru	ction
	Diagram, Addressing Modes, Interrupts, Interrupt Service Routines-	Asse	mbly	Lang	uage
Programming					
UNIT II	8086 MICROPROCESSORS		Hou		
	p 8086 – Microprocessor architecture – Addressing modes - Instruc				
	ssembly language programming – Modular Programming - Linking		Reloc	ation	-
	dures - Macros - Interrupts and interrupt service routines - 8086 si	-			
UNIT III	MICROCONTROLLERS		Hou		
	f 8051 – Special Function Registers (SFRs) - I/O Pins Ports and Cir	rcuits	- Inst	ructio	n set
<u> </u>	nodes - Assembly language programming.				
UNIT IV	I/O INTERFACING		Hou		
interface – D/	facing and I/O interfacing - Parallel communication interface – Seri A and A/D Interface - Timer – Keyboard /display controller – Inter				
controller	A DVA NOED MICDOBDOCESSOD 8		TT		
UNIT V	ADVANCED MICROPROCESSOR & MICROCONTROLLER	9	Hou	rs	
Advanced co	processor Architectures- 286, 486, Pentium -RISC Processors- I		Ve C		PISC
	d evolution- ARM Processor fundamentals, ARM Architectur				
	eptions and interrupts interrupt vector table, ARM instruction set				
	ctions, load store instructions.	 1	Jala	proces	sing,
	Total:	4	5 Ho	urs	
Further Read	ling:				
	1. Raspberry pi				
	2. Machine learning using raspberry pi				
Course Outco	omes:				
	After completion of the course, Student will be able to				
	1. Construct hardware, software and programming concepts	of Mic	ropro	ocesso	r
	2. Summarize architecture, instructions and addressir Microprocessor	ng m	odes	of	8086
	3. Describe addressing modes, Architecture, pins of 8051 Mi	croco	ntroll	er	
	4. Illustrate interfacing of Serial, parallel, Keyboard, Display	with]	Micro	ocontr	oller
	5. Use the programming concepts to write assembly language	e prog	rams		
References:		1 0			
1.R. S. Gaonk	ar, "Microprocessor Architecture: Programming and Applications v	vith th	e 808	5/808	0A",
	ational Publishing, Third Edition, 1996				,
2. D A Patters	on and J H Hennessy, "Computer Organization and Design The har	dware	and	softwa	are
	rgan Kaufman Publishers, Fourth Edition, 2011.				
3. Douglas Ha	ill, "The Microprocessors and its Interfacing", Tata McGraw Hill, T	'hird E	ditio	n, 201	2.
	Ayala, "The 8051 Microcontroller: Architecture Programming & A Publishing, Second Edition, 1996	pplica	ations	s", Per	nram
•	Liu, Glenn A. Gibson, "Microcomputer Systems: The 8086 / 8088 F and Design", Second Edition, Prentice Hall of India, 2011.	Family	- Ar	chitec	ture,
6. Mohamed A	Ali Mazidi, Janice Gillispie Mazidi, Rolin McKinlay, "The 8051 Mi stems: Using Assembly and C", Second Edition, Pearson education	croco , 2011	ntroll	er and	l
	'. Hall, "Microprocessors and Interfacing, Programming and Hardw			nd Edi	tion,

8. John P. Hayes, "Computer Architecture and Organization", Third illustrated Edition, Tata McGraw Hill, 2007.

E-R	eferences:	
1	11	/1

<u>https://www.coursera.org/learn/raspberry-pi-interface</u> (University of California) <u>https://www.coursera.org/learn/raspberry-pi-platform</u> (University of California)

LABORATORY COURSE

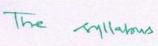
1902EC451	ELECTRONICS AND INTEGRATED CIRCUITS LABORATORY	L	Т	Р	C
		0	0	2	1
Course Objectives:					
	1. To understand the basics of Analog integrated Ics.	circuit	ts and a	availab	le
	2. To gain hands on experience in designing Ana	log int	egrate	d circu	its.
	3. To learn PSPICE software used in circuit desi	gn.			
	4. To apply operational amplifiers in linear and r	non-lin	ear app	olicatio	ons.
	XPERIMENTS:				
DESIGN, S	IMULATION AND IMPLEMENTATION OF				
1. Inver	ing, Non inverting and Differential amplifiers.				
2. Integr	ator and Differentiator.				
3. Instru	mentation amplifier				
4. Activ	e low-pass, High-pass, band-pass, and Band stop filter	s.			
5. Astab	le& Monostable multivibrators and Schmitt Trigger				
6. Phase	shift and Wien bridge Oscillator				
7. Astab	le and monostable multivibrators using NE555 Timer				
8. PLL 0	characteristics and its use as Frequency Multiplier.				
9. RPS j	power supply using LM317 and LM723.				
MINI PROJ	IECT:				
Mini project	using Op-Amp and Specialized IC's.				
	vare/Software Required				
1.CRO (Min	30MHz) – 15 Nos.				
2. Signal Ge	nerator /Function Generators (2 MHz) – 15 Nos.				
3. Dual Regi	lated Power Supplies $(0 - 30V) - 15$ Nos.				

B.E. Electronics and Communication Engineering | E.G.S. Pillay Engineering College (Autonomous) | Regulations2019 Approved in IV Academic Council Meeting held on 25-05-2019

		regulations		I V I Ioudol		leeting held on 25-05-201
4. Digital M	ultimete	er – 15 Nos IC t	ester - 2 Nos.			
5. Standalor	e deskt	ops PC – 15 No	s.			
6. SPICE Ci	rcuit Si	mulation Softw	are: (any public	c domain	or commerc	cial software)
Components	s and A	ccessories: - 50	Nos.			
wires, Powe Note: Op-A	r transis mps uA	stors, Potentiom	eter, A/D and M311, LM 324	D/A conv 4, LM317	ertors, LED , LM723, 7	ls, Transformers, s. 805, 7812, 2N3524,
					TOTAL	45 HOURS
Course Outcomes:						
	After	completion of th	ne course, Stud	ent will b	e able to	
	1.	Design oscillat	ors and amplifi	ers using	operational	amplifiers.
	2.	Design filters response.	using Op-amp	and per	form exper	iment on frequency
	3.	Analyse the wo	orking of PLL a	and use P	LL as freque	ency multiplier.
	4.	Design Regula	ted power supp	ly using	ICs.	
	5.	Analyse the PSPICE	performance of	of oscilla	ators and r	nultivibrators using

1902EC452		Microprocessors and Microcontrollers Laboratory	L	Т	Р	С
	_		0	0	4	2
		(Common to B.E / B.Tech – ECE,CSE & IT)				
Course Objectiv	ves:	The student should be made to:				
		ite ALP for arithmetic and logical operations in 8085, 8086 and	8051			
	2. Dif	ferentiate Serial and Parallel Interface				
		erface different I/Os with Microprocessors& Microcontrollers				
	4. Be	familiar with MASM				
List of Experime						
8085 Programs						
1. Basic arithm						
2. Basic Logica						
3. Ascending an	nd descent	ding				
4. Maximum ar						
8086 Programs						
5. Move a data						
		ns, string manipulations				
7. Code conver						
8. sorting and s						
8051 Experimen						
		ogical operations				
		gram, Find 2's complement of a number				
Peripherals and		ng Experiments				
11. Traffic light						
12. Stepper moto						
13. Key board E	Display					
14. Serial interfa	ice and Pai	rallel interface and Printer status.				

15. A/D and D/A	interface	and Waveform Generation				
			Total:	45 Hours		
Additional Exper	riments:	https://www.intel.in				
	Basic exp	periments using Arduino processor				
Course Outcome	es:					
	After con	npletion of the course, Student will be able to				
	1. Wri	te ALP Programmes for fixed and Floating Point and Arithmetic				
	2. Interface different I/Os with processor					
	3. Generate waveforms using Microprocessors&Execute Programs in 8051					
	4. Exp	lain the difference between simulator and Emulator				


1904GE451		L	Т	Р	С	
	LIFE SKILLS - REASONING	0	0	2	0	
Course Obje	ctives:					
	1. To help students comprehend and use vocabulary words in their day to day communication.					
	2. To apply appropriate reading strategies for interpreting technica documents used in job-related settings					
	3. To ensure students will be able to use targeted grammatical stru and appropriately in oral and written production					
	4. To enable the students to arrange the sentences in meaningful u whether constructions rely on active or passive voice	init a	nd to	detei	mine	
	5. To Apply the principles of effective business writing to hone co	mmu	nicati	ion sk	tills	
-	6. To apply the principles of business etiquettes and Market survey	ying.				
UNIT I	VOCABULARY USAGE	6	Hou	rs		
	- Synonyms and Antonyms based on Technical terms – Single word Sul Audio and video listening activity.	ostitu	tion –	-		
UNIT II	COMPREHENSION ABILITY	6	Hou	rs		
	nd Scanning – Social Science passages – Business and Economics passage event based passages – Theme detection – Deriving conclusion from pass		latest	t polit	ical	
UNIT III	BASIC GRAMMAR AND ERROR DETECTION		Hou	rs		
	Redundancy – Ambiguity – Concord - Common Errors – Spotting Error tt– Error Detection FAQ in Competitive exams.	s - S	enten	ce		
UNIT IV	REARRANGEMENT AND GENERAL USAGE	6	Hou	rs		
Jumble Sent	ences – Cloze Test - Idioms and Phrases – Active and passive voice – Sp	elling	g test.			
UNIT V	APPLICATION OF VERBAL ABILITY	6	Hou	rs		
Business Wi	riting - Business Vocabulary - Delivering Good / Bad News - Media Cor	nmun	icatio	on - E	mail	
Etiquette – H	Report Writing - Proposal writing – Essay writing– Indexing – Market sur	rveyir	ng.			
	Total: 3	30 Ho	urs			
Course Outc						
	After completion of the course, Student will be able to					
	1. Construct new words in their day to day communication.					
	2. Predict the information swiftly while reading passages.					
	3. Elaborate their oral and written communication.					

	4. Rephrase the sentences and able to identify the voice of the sentence.
	5. Summarize their knowledge of the best practices to craft effective business
	documents
	6. Make use of the etiquettes in business.
References:	
1. Arun	Sharma and Meenakshi Upadhyav, How to Prepare for Verbal Ability and Reading
Comp	prehension for CAT, McGrawHill Publication, Seventh Edition 2017
2. R S .	Aggarwal and Vikas Aggarwal, Quick Learning Objective General English, S.Chand
Publi	shing House, 2017
3. Dr.K.	Alex, Soft Skills, S. Chand Publishing House, Third Revise Edition, 2014
4. Raym	ond Murphy, Essential English Grammar in Use, Cambridge University press, New Delhi,
Third	Edition, 2007

Common to CSE,IT,EEE,ECE,Civil ,Mech &BME branches PREREQUISITE: 1. Basic knowledge about the valuable environment 2. Basic knowledge to conserve this precious environment 20URSE OBJECTIVES: 1. Realize the interdisciplinary and holistic nature of the environment. 2. Understand how natural resources and environment affect the quality of life and stimulate quest for sustainable development 3 Recognize the socio-economic, political and ethical issues in environmental science. MDULLE I ECOSYSTEMS AND BIODIVERSITY 10 Hou prediction of an ecosystem – structure and function of anecosystem – producers, consumers and decompose throduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassli toduction to biodiversity definition: genetic, species and ecosystem diversity – value of biodiversity roductive use, social, ethical, aesthetic and option values – hot-spots of biodiversity netats to biodiversity habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and ender the ordicristic on forests and orer-exploitation, deforestation, case studies – food resources: World food problems, changes caus tracting and using mineral resources: Use and over-exploitation, deforestation, case studies – food resources – World food problems, changes caus y agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, danges caus y agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, stanges caus y agriculture and overgrazing. Conversion processee – Biogas – production and uses, anaerof gesotion, case studies – Land resources: Leng Conversion				T	P	C
1. Basic knowledge about the valuable environment 2. DURSE OBJECTIVES: COURSE OBJECTIVES: 1. Realize the interdisciplinary and holistic nature of the environment. 2. Understand how natural resources and environment affect the quality of life and stimulate quest for sustainable development 3 Recognize the socio-economic, political and ethical issues in environmental science. IODULE I ECOSYSTEMS AND BIODIVERSITY 10 Hou Concept of an ecosystem – structure and function of anecosystem – producers, consumers and decompose throduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassis grassistic features, structure and function of the (a) forest ecosystem (b) grassist induction to biodiversity enditic and existic construm diversity: value of biodiversity intrast to biodiversity: Institu and ex-situ conservation of biodiversity: neats to biodiversity: Institu and ex-situ conservation of biodiversity. bocumentation of the medicinal plants in your native place 10 Hou IODULE II NATURAL RESOURCES 10 Hou are: dams-benefits and problems – Mineral resources: Use and overutilization of surface and grow atter, dams-benefits and problems – Mineral resources: Use and onernewable energysourcater, dams-benefits and problems – Mineral resources: Use and overutilization, environmental effects strating and using mineral resources: Growing energy needs, renewable and nonrenewable energysourcater, dams-benefits and problems – Mineral resources: Use and exploitation, environmental energysourcater, dams-benefits and problems – Mineral resourc		(Common to all Branches of B.E/ B.Tech) Common to CSE,IT,EEE,ECE,Civil, Mech & BME branches	3	0	0	0
2. Basic knowledge to conserve this precious environment 20URSE OBJECTIVES: 1. Realize the interdisciplinary and holistic nature of the environment. 2. Understand how natural resources and environment affect the quality of life and stimulate quest for sustainable development 3 Recognize the socio-economic, political and ethical issues in environmental science. 10DULE I ECOSYSTEMS AND BIODIVERSITY 10 Hou oncept of an ecosystem – structure and function of anecosystem – producers, consumers and decompose bxygen cycle and Nitrogen cycle – energy flow in the ecosystem – ecological succession processes tooduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassl cosystem (c) desert ecosystem (d) aquatic ecosystem (ponds, streams, lakes, rivers, oceans, estuaries introduction to biodiversity definition: genetic, species and ecosystem diversity – value of biodiversity onsumptive use, productive use, social, ethical, aesthetic and option values – hot-spots of biodiversity inerats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and ender pecies of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. bocumentation of the medicinal plants in your native place 10 Hou orest resources: Use and over-exploitation, deforestation, case studies - timber extraction, mining, dams a heir effects on forests and tribal people – Water resources: Use and exploitation, environmental effects tracting and using mineral resources: Growing energy needs, renewable and nonrenewable energysource so dilemate energy sources. Energy Conversion processes – Biogas – production and uses, anaero gestion; case studies – Land resources: Corwing energy needs, renewable and nonrenewable energysource so alternate energy sources. Energy Conversion processes – Biogas – production and uses, anaero oreunentation of the effects and control measures	REREQUISI	TE:				
2. Basic knowledge to conserve this precious environment 20URSE OBJECTIVES: 1. Realize the interdisciplinary and holistic nature of the environment. 2. Understand how natural resources and environment affect the quality of life and stimulate quest for sustainable development 3 Recognize the socio-economic, political and ethical issues in environmental science. 10DULE I ECOSYSTEMS AND BIODIVERSITY 10 Hou oncept of an ecosystem – structure and function of anecosystem – producers, consumers and decompose bxygen cycle and Nitrogen cycle – energy flow in the ecosystem – ecological succession processes tooduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassl cosystem (c) desert ecosystem (d) aquatic ecosystem (ponds, streams, lakes, rivers, oceans, estuaries introduction to biodiversity definition: genetic, species and ecosystem diversity – value of biodiversity onsumptive use, productive use, social, ethical, aesthetic and option values – hot-spots of biodiversity inerats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and ender pecies of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. bocumentation of the medicinal plants in your native place 10 Hou orest resources: Use and over-exploitation, deforestation, case studies - timber extraction, mining, dams a heir effects on forests and tribal people – Water resources: Use and exploitation, environmental effects tracting and using mineral resources: Growing energy needs, renewable and nonrenewable energysource so dilemate energy sources. Energy Conversion processes – Biogas – production and uses, anaero gestion; case studies – Land resources: Corwing energy needs, renewable and nonrenewable energysource so alternate energy sources. Energy Conversion processes – Biogas – production and uses, anaero oreunentation of the effects and control measures		1. Basic knowledge about the valuable environment	1.1			
1. Realize the interdisciplinary and holistic nature of the environment. 2. Understand how natural resources and environment affect the quality of life and stimulate quest for sustainable development 3 Recognize the socio-economic, political and ethical issues in environmental science. IODULE I ECOSYSTEMS AND BIODIVERSITY 10 Hon concept of an ecosystem – structure and function of anecosystem – producers, consumers and decompose bygen cycle and Nitrogen cycle – energy flow in the ecosystem – ecological succession processes turduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassle cosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries introduction types, characteristic features, structure and function of the value of biodiversity use, productive use, social, ethical, aesthetic and option values – hot-spots of biodiversity reats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and ender becies of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Joocumentation of the medicinal plants in your native place IODULE II NATURAL RESOURCES 10 Hou orset resources: Use and over-exploitation, deforestation, case studies – timber extraction, mining, dams a neir effects on forests and tribal people – Water resources: Use and ontonrenwable energysources forsing energy needs, renewable and nonrenewable energysource or sustainable lifestyles. ostion case studies – Energy resources: Land as a resource, land degradation, man induced landslides, s fosion and desertification – role of an individual in conservation of natural resources. eff		2. Basic knowledge to conserve this precious environment	200		1	
2. Understand how natural resources and environment affect the quality of life and stimulate quest for sustainable development 3 Recognize the socio-economic, political and ethical issues in environmental science. IODULE I ECOSYSTEMS AND BIODIVERSITY 10 Hou Oncept of an ecosystem – structure and function of ancosystem – producers, consumers and decompose bygen cycle and Nitrogen cycle – energy flow in the cosystem – ecological succession processes itroduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassite cosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries, itroduction to biodiversity definition: genetic, species and ecosystem diversity – value of biodiversity reats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and ender poecies of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Jocumentation of the medicinal plants in your native place IODULE II NATURAL RESOURCES 10 Hou orest resources: Use and over-exploitation, deforestation, case studies – timber extraction, mining, dams a leir effects on forests and tribal people – Water resources: Use and overultization of surface and grow rater, dams-benefits and problems – Mineral resources: Use and overultization of surface and grow rater, dams-benefits and problems – Mineral resources: Use and overultization, environmental effects withating and using mineral resources. Growing energy needs, renewable and nonrenewable energysource se of alternate energy sources. Energy Conversion processes – Biogas – production and uses, anaerol gestion; case studies – Lenergy Conversion processes – Biogas – production and uses, anaerol gestion; cas	OURSE OBJ	ECTIVES:				
quest for sustainable development 3 Recognize the socio-economic, political and ethical issues in environmental science. IODULEI ECOSYSTEMS AND BIODIVERSITY 10 Hou concept of an ecosystem – structure and function of anecosystem – producers, consumers and decompose Navgen cycle and Nitrogen cycle – energy flow in the cosystem diversity – value of biodiversity toduction to biodiversity definition: genetic, species and ecosystem diversity – value of biodiversity introduction to biodiversity definition: genetic, species and ecosystem diversity – value of biodiversity intradu to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and ender pocies of India – conservation of biodiversity: nu and ex-situ conservation of biodiversity. Bocumentation of the medicinal plants in your native place IODULE II NATURAL RESOURCES 10 Hou orest resources: Use and over-exploitation, deforestation, case studies - timber extraction, mining, dams a neir effects on forests and tribal people – Water resources: Use and overtilization of surface and grou aret, dams-benefits and problems – Mineral resources: Use and overtilization of surface ang ground aret, dams-benefits and problems – Mineral resources: Use and overtilization and using mineral resources: Growing energy needs, renewable and nonrenewable energysource set of alternate energy sources. Energy Conversion processes – Biogas – production and uses, anaero (gestion; case studies – Land resources: Land as a resource, land degradation, man induced landslikes, socian and descrification – role of an individual in conservation of natural resources – Equitable use sources for sustainable lifestyles. occumentation of the effect of modern Agriculture in your nearby Village<					04	
IDDULE I ECOSYSTEMS AND BIODIVERSITY 10 Hou Oncept of an ecosystem – structure and function of anecosystem – producers, consumers and decomposed by gen cycle and Nitrogen cycle – energy flow in the ecosystem – ecological succession processes troduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grasslatic cosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries furduction to biodiversity definition: genetic, species and ecosystem diversity – value of biodiversity use, productive use, social, ethical, aesthetic and option values – hot-spots of biodiversity reats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and ender pecies of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Jocumentation of the medicinal plants in your native place 10 Hou IODULE II NATURAL RESOURCES 10 Hou orest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams a graiter (facts on forests and tribal people – Water resources: Use and overutilization of surface and groutater, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects variating and using mineral resources; case studies – Food resources: World food problems, changes cause studies – Energy resources: Growing energy needs, renewable and nonrenewable energysources for sustainable lifestyles. ocumentation of the effect of modern Agriculture in your nearby Village 9 Hours IDDULE II ENVNONMENTAL POLLUTION 9 Hours Gestinterate energy sources: Energy Conversion processes		2. Understand how natural resources and environment affect the qual quest for sustainable development	ity of life	and s	timul	ate the
Concept of an ecosystem – structure and function of anecosystem – producers, consumers and decompose Dexygen cycle and Nitrogen cycle – energy flow in the ecosystem – ecological succession processes throduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassle cosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries introduction to biodiversity definition: genetic, species and ecosystem diversity – value of biodiversity introduction to biodiversity definition: genetic, species and ecosystem diversity – value of biodiversity interast to biodiversity habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and ender poecies of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. locumentation of the medicinal plants in your native place IDDULE II NATURAL RESOURCES IDDULE II NATURAL RESOURCES Interast static and problems – Mineral resources: Use and overtilization of surface and grou ater, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects ater dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects ater dams bein effects of modern agriculture, fertilizer-pesticide problems, changes caus y agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, changes caus y agriculture and overgrazing, effects a			onmental	scienc	ce.	
Description System cycle and Nitrogen cycle energy flow in the ecosystem (a) forest ecosystem (b) grassite attroduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassite attroduction to biodiversity definition: genetic, species and ecosystem diversity – value of biodiversity in the ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries, throduction to biodiversity definition: genetic, species and ecosystem diversity – value of biodiversity in the stream of biodiversity. In-situ and ex-situ conservation of biodiversity. Decise of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. In Hou Documentation of the medicinal plants in your native place In Hou IODULE II NATURAL RESOURCES In Hou orest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams a neir effects on forests and tribal people – Water resources: Use and overutilization of surface and grou rater, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects or gradice, ase studies – Energy resources: Growing energy needs, renewable and nonrenewable energysources es of alternate energy sources. Energy Conversion processes – Biogas – production and uses, anaerol igestion; case studies – Land resources: Land as a resource, land degradation, man induced landslides, s sources for sustainable lifestyles. Individual in conservation of natural resources – Equitable use to sources for sustainable lifestyles. ocumentation of the effect of modern Agriculture in your nearby Village Individual in	ODULE I	ECOSYSTEMS AND BIODIVERSITY			10 F	Iours
neir effects on forests and tribal people – Water resources: Use and overutilization of surface and group ater, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects extracting and using mineral resources, case studies – Food resources: World food problems, changes cause of a griculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water loggin alinity, case studies – Energy resources: Growing energy needs, renewable and nonrenewable energysources of alternate energy sources. Energy Conversion processes – Biogas – production and uses, anaerol igestion; case studies – Land resources: Land as a resource, land degradation, man induced landslides, s rosion and desertification – role of an individual in conservation of natural resources – Equitable use sources for sustainable lifestyles. Nocumentation of the effect of modern Agriculture in your nearby Village 9 Hours (a) 9 Hours (a) 9 Hours (b) Water pollution – Waste water treatment processes. (c) Soil pollution – s aste management: causes, effects and control measures of: (a) Air pollution – Mitigation procedures- Cont f particulate and gaseous emission, Control of SO _x , NO _x , CO and HC) – Technology for capturing C netallo organic frame works)(b) Water pollution – Waste water treatment processes. (c) Soil pollution – s aste management: causes, effects and control measures of municipal solid wastes – (d) Marine pollution oise pollution (f) Thermal pollution (g) Nuclear hazards–role of an individual in prevention of pollution of pollution s aster management is used studies. 10DULE IV SOCIAL ISSUES AND THE ENVIRONMENT 8 Hours for on unsustainable to sustainable development – urban problems related to energy – water conservation, f green chemistry – consumerism and waste products – environment protection act – Air act – Water act (ildlife protection act – Forest conservation act – The Biomedical Waste (Management and Handling) Rule	ocumentation	a – conservation of biodiversity: In-situ and ex-situ conservation of bio of the medicinal plants in your native place	- endange odiversit	ered a y.		
Occumentation of the effect of modern Agriculture in your nearby Village IODULE III ENVIRONMENTAL POLLUTION 9 Hours efinition – Source, causes, effects and control measures of: (a) Air pollution - Mitigation procedures- Cont f particulate and gaseous emission, Control of SO _X , NO _x , CO and HC) -Technology for capturing C netallo organic frame works)(b) Water pollution – Waste water treatment processes. (c) Soil pollution - s sate management: causes, effects and control measures of municipal solid wastes – (d) Marine pollution oise pollution (f) Thermal pollution (g) Nuclear hazards–role of an individual in prevention of pollution case studies. ocumentation study of local polluted site – Urban / Rural / Industrial / Agricultural. IODULE IV SOCIAL ISSUES AND THE ENVIRONMENT 8 Hours rom unsustainable to sustainable development – urban problems related to energy – water conservation, ra ater harvesting, watershed management -environmental ethics: Issues and possible solutions – 12 Principal f green chemistry – consumerism and waste products – environment protection act – Air act – Water act Vildlife protection act – Forest conservation act – The Biomedical Waste (Management and Handling) Rule	eir effects on ater, dams-be tracting and agriculture	es: Use and over-exploitation, deforestation, case studies- timber ext a forests and tribal people – Water resources: Use and overutilizat enefits and problems – Mineral resources: Use and exploitation, using mineral resources, case studies – Food resources: World food and overgrazing, effects of modern agriculture, fertilizer-pesticide	ion of su environi problems problem	rface menta s, char s, wa	g, dan and g l effe nges c ter lo	ns and round cts of caused
efinition – Source, causes, effects and control measures of: (a) Air pollution - Mitigation procedures- Control f particulate and gaseous emission, Control of SO _x , NO _x , CO and HC) -Technology for capturing C netallo organic frame works)(b) Water pollution – Waste water treatment processes. (c) Soil pollution - s aste management: causes, effects and control measures of municipal solid wastes – (d) Marine pollution oise pollution (f) Thermal pollution (g) Nuclear hazards–role of an individual in prevention of pollution ollution case studies. occumentation study of local polluted site – Urban / Rural / Industrial / Agricultural. IODULE IV SOCIAL ISSUES AND THE ENVIRONMENT rom unsustainable to sustainable development – urban problems related to energy – water conservation, ra ater harvesting, watershed management -environmental ethics: Issues and possible solutions – 12 Principal f green chemistry – consumerism and waste products – environment protection act – Air act – Water act/ildlife protection act – Forest conservation act – The Biomedical Waste (Management and Handling) Rule	eir effects on ater, dams-be tracting and tr agriculture linity, case st e of alternate gestion; case osion and de	es: Use and over-exploitation, deforestation, case studies- timber ext a forests and tribal people – Water resources: Use and overutilizat enefits and problems – Mineral resources: Use and exploitation, using mineral resources, case studies – Food resources: World food and overgrazing, effects of modern agriculture, fertilizer-pesticide udies – Energy resources: Growing energy needs, renewable and no e energy sources. Energy Conversion processes – Biogas – produ studies – Land resources: Land as a resource, land degradation, misertification – role of an individual in conservation of natural res	ion of su environ problems problem nrenewab action and an induce	arface menta s, chan s, wa ble ene d uses ed land	g, dan and g l effe nges c ter lo ergyso s, ana dslide	ns and cround cts of caused gging, ources, erobic s, soil
f particulate and gaseous emission, Control of SO _X , NO _x , CO and HC) -Technology for capturing C netallo organic frame works)(b) Water pollution – Waste water treatment processes. (c) Soil pollution – s aste management: causes, effects and control measures of municipal solid wastes – (d) Marine pollution oise pollution (f) Thermal pollution (g) Nuclear hazards–role of an individual in prevention of pollution ollution case studies. ocumentation study of local polluted site – Urban / Rural / Industrial / Agricultural. IODULE IV SOCIAL ISSUES AND THE ENVIRONMENT rom unsustainable to sustainable development – urban problems related to energy – water conservation, ra ater harvesting, watershed management -environmental ethics: Issues and possible solutions – 12 Princip. f green chemistry – consumerism and waste products – environment protection act – Air act – Water act/ildlife protection act – Forest conservation act – The Biomedical Waste (Management and Handling) Rule	eir effects on ater, dams-be tracting and u agriculture linity, case st e of alternate gestion; case posion and de sources for su pocumentation	es: Use and over-exploitation, deforestation, case studies- timber ext a forests and tribal people – Water resources: Use and overutilizat enefits and problems – Mineral resources: Use and exploitation, using mineral resources, case studies – Food resources: World food and overgrazing, effects of modern agriculture, fertilizer-pesticide udies – Energy resources: Growing energy needs, renewable and no e energy sources. Energy Conversion processes – Biogas – produ studies – Land resources: Land as a resource, land degradation, misertification – role of an individual in conservation of natural res- ustainable lifestyles.	ion of su environ problems problem nrenewab action and an induce	arface menta s, chan s, wa ble ene d uses ed land	g, dan and g l effe nges c ter lo ergyso s, ana dslide	ns and cround cts of caused gging, ources, erobic s, soil
rom unsustainable to sustainable development – urban problems related to energy – water conservation, ra ater harvesting, watershed management -environmental ethics: Issues and possible solutions – 12 Princip f green chemistry – consumerism and waste products – environment protection act – Air act – Water act /ildlife protection act – Forest conservation act – The Biomedical Waste (Management and Handling) Rule	eir effects on ater, dams-be tracting and u agriculture linity, case st e of alternate gestion; case posion and de sources for su pocumentation ODULE III	es: Use and over-exploitation, deforestation, case studies- timber ext a forests and tribal people – Water resources: Use and overutilizat enefits and problems – Mineral resources: Use and exploitation, using mineral resources, case studies – Food resources: World food and overgrazing, effects of modern agriculture, fertilizer-pesticide udies – Energy resources: Growing energy needs, renewable and non e energy sources. Energy Conversion processes – Biogas – produ studies – Land resources: Land as a resource, land degradation, mis sertification – role of an individual in conservation of natural res- ustainable lifestyles. of the effect of modern Agriculture in your nearby Village ENVIRONMENTAL POLLUTION	ion of su environ problems problems nrenewab action and an induce ources –	rface menta s, chan s, wa ble ene d uses ed land Equit	g, dan and g l effe nges o ter lo ergyso s, ana dslide able n 9 Ho	ns and ground cts of caused gging, urces, erobic s, soil use of ours
rom unsustainable to sustainable development – urban problems related to energy – water conservation, ra ater harvesting, watershed management -environmental ethics: Issues and possible solutions – 12 Princip f green chemistry – consumerism and waste products – environment protection act – Air act – Water act /ildlife protection act – Forest conservation act – The Biomedical Waste (Management and Handling) Rule	eir effects on ater, dams-be tracting and u agriculture linity, case st e of alternate gestion; case bosion and de sources for su bources for	es: Use and over-exploitation, deforestation, case studies- timber ext a forests and tribal people – Water resources: Use and overutilizat enefits and problems – Mineral resources: Use and exploitation, using mineral resources, case studies – Food resources: World food and overgrazing, effects of modern agriculture, fertilizer-pesticide udies – Energy resources: Growing energy needs, renewable and nor e energy sources. Energy Conversion processes – Biogas – produ studies – Land resources: Land as a resource, land degradation, mi- sertification – role of an individual in conservation of natural res- ustainable lifestyles. of the effect of modern Agriculture in your nearby Village ENVIRONMENTAL POLLUTION urce, causes, effects and control measures of: (a) Air pollution - Miti and gaseous emission, Control of SO _x , NO _x , CO and HC) -Tech- c frame works)(b) Water pollution – Waste water treatment process nent: causes, effects and control measures of municipal solid wastes a (f) Thermal pollution (g) Nuclear hazards–role of an individual in tudies.	ion of su environ problem problem nrenewab action and an induce ources – gation pro- nology fo es. (c) So – (d) Ma	rface mental s, char s, char s, wa ble ene d uses ed land Equit Equit	g, dan and g l effe nges o ter lo ergyso s, ana dslide able n 9 Ho res- C oturing lution	ns and ground cts of caused gging, urces, erobic s, soil use of ours ontrol g CO ₂ - soil on (e)
2098 and amendments- scheme of labeling of environmentally friendly products (Ecomark) central and sta collution control boards- disaster management: floods, earthquake- Public awareness.	eir effects on ater, dams-be tracting and a gariculture linity, case st e of alternate gestion; case bosion and de sources for su bournentation ODULE III effinition – So particulate a betallo organi aste managem bise pollution llution case s bournentation	es: Use and over-exploitation, deforestation, case studies- timber ext a forests and tribal people – Water resources: Use and overutilizat enefits and problems – Mineral resources: Use and exploitation, using mineral resources, case studies – Food resources: World food and overgrazing, effects of modern agriculture, fertilizer-pesticide udies – Energy resources: Growing energy needs, renewable and nor e energy sources. Energy Conversion processes – Biogas – produ studies – Land resources: Land as a resource, land degradation, mi- sertification – role of an individual in conservation of natural res- nstainable lifestyles. of the effect of modern Agriculture in your nearby Village ENVIRONMENTAL POLLUTION urce, causes, effects and control measures of: (a) Air pollution - Miti, and gaseous emission, Control of SO _x , NO _x , CO and HC) -Tech c frame works)(b) Water pollution – Waste water treatment process nent: causes, effects and control measures of municipal solid wastes (f) Thermal pollution (g) Nuclear hazards–role of an individual in tudies. study of local polluted site – Urban / Rural / Industrial / Agricultural	ion of su environ problem problem nrenewab action and an induce ources – gation pro- nology fo es. (c) So – (d) Ma	rface mental s, char s, char s, wa ble ene d uses ed land Equit Equit	g, dan and g l effe nges c ter lo rrgysco s, ana dslide able 9 Hc res- C turing lution polluti	ns and ground cts of caused gging, urces, erobic s, soil use of ours ontrol g CO ₂ - soil on (e) tion –
10010	eir effects on ater, dams-be tracting and u agriculture linity, case st e of alternate gestion; case bosion and de sources for su bocumentation ODULE III efinition – So particulate a betallo organi aste managem bise pollution llution case s bocumentation ODULE IV for unsustain ater harvesting green chemis iddlife protect 98 and amen llution contro	es: Use and over-exploitation, deforestation, case studies- timber ext a forests and tribal people – Water resources: Use and overutilizat enefits and problems – Mineral resources: Use and exploitation, using mineral resources, case studies – Food resources: World food and overgrazing, effects of modern agriculture, fertilizer-pesticide udies – Energy resources: Growing energy needs, renewable and nor e energy sources. Energy Conversion processes – Biogas – produ- studies – Land resources: Land as a resource, land degradation, mi- sertification – role of an individual in conservation of natural res- ustainable lifestyles. of the effect of modern Agriculture in your nearby Village ENVIRONMENTAL POLLUTION urce, causes, effects and control measures of: (a) Air pollution - Miti- and gaseous emission, Control of SO _x , NO _x , CO and HC) -Tech- c frame works)(b) Water pollution – Waste water treatment process nent: causes, effects and control measures of municipal solid wastes (f) Thermal pollution (g) Nuclear hazards-role of an individual in tudies. study of local polluted site – Urban / Rural / Industrial / Agricultural SOCIAL ISSUES AND THE ENVIRONMENT able to sustainable development – urban problems related to energy g, watershed management -environmental ethics: Issues and possible stry – consumerism and waste products – environment protection a tion act – Forest conservation act – The Biomedical Waste (Manager dments- scheme of labeling of environmentally friendly products (I boards- disaster management: floods, earthquake- Public awareness	ion of su environ problem problem nrenewab action and an induce ources – gation pro- nology fc es. (c) So – (d) Ma preventi – water c e solution ct – Air a nent and Ecomark) 3.	rface menta s, chan s, chan s, wa ble ene d uses ed land Equit Equit cocedur or cap bil pol urine p on of conser act – 12 act – 12 Handl	g, dan and g l effe nges (ter lo rgysc s, ana dslide able 9 Hd res- C turing lution volluti pollu 8 Hd vation 2 Prin Water ling) 1	ns and ground cts of aused gging, urces, erobic s, soil use of ours ontrol g CO ₂ - soil on (e) tion – vurs h, rain ciples act – Rules;
12/06/2020	eir effects on ater, dams-be tracting and u agriculture linity, case st e of alternate gestion; case bosion and de sources for su bocumentation ODULE III efinition – So particulate a betallo organi aste managem bise pollution llution case s bocumentation ODULE IV for unsustain ater harvesting green chemis iddlife protect 98 and amen llution contro	es: Use and over-exploitation, deforestation, case studies- timber ext a forests and tribal people – Water resources: Use and overutilizat enefits and problems – Mineral resources: Use and exploitation, using mineral resources, case studies – Food resources: World food and overgrazing, effects of modern agriculture, fertilizer-pesticide udies – Energy resources: Growing energy needs, renewable and nor e energy sources. Energy Conversion processes – Biogas – produ- studies – Land resources: Land as a resource, land degradation, mi- sertification – role of an individual in conservation of natural res- ustainable lifestyles. of the effect of modern Agriculture in your nearby Village ENVIRONMENTAL POLLUTION urce, causes, effects and control measures of: (a) Air pollution - Miti- and gaseous emission, Control of SO _x , NO _x , CO and HC) -Tech- c frame works)(b) Water pollution – Waste water treatment process nent: causes, effects and control measures of municipal solid wastes (f) Thermal pollution (g) Nuclear hazards-role of an individual in tudies. study of local polluted site – Urban / Rural / Industrial / Agricultural SOCIAL ISSUES AND THE ENVIRONMENT able to sustainable development – urban problems related to energy g, watershed management -environmental ethics: Issues and possible stry – consumerism and waste products – environment protection a tion act – Forest conservation act – The Biomedical Waste (Manager dments- scheme of labeling of environmentally friendly products (I boards- disaster management: floods, earthquake- Public awareness	ion of su environ problem problem nrenewab action and an induce ources – gation pro- nology fc es. (c) So – (d) Ma preventi – water c e solution ct – Air a nent and Ecomark) 3.	rface menta s, chan s, chan s, wa ble ene d uses ed land Equit Equit cocedur or cap bil pol urine p on of conser act – 12 act – 12 Handl	g, dan and g l effe nges (ter lo rgysc s, ana dslide able 9 Hd res- C turing lution volluti pollu 8 Hd vation 2 Prin Water ling) 1	ns and ground cts of aused gging, urces, erobic s, soil use of ours ontrol g CO ₂ - soil on (e) tion – vurs h, rain ciples act – Rules;

The

Analyze the recent steps taken by government of India to prevent pollution (Green India a	and Clean India)
MODULE V HUMAN POPULATION AND THE ENVIRONMENT Population growth, variation among nations – population explosion – family welfare prog	8 Hours
environment and human health – human rights – value education – HIV / AIDS – women Environmental impact analysis (EIA) -GIS-remote sensing-role of information technolog numan health – Case studies. Documentation study of the Human health and the environment in nearby Hospital (Statis	y in environment and
	OTAL: 45 HOURS
FURTHER READING / CONTENT BEYOND SYLABUS / SEMINAR :	
Human rights violation	
E - waste and biomedical waste -Identification of adulterants in food mater	rials
 1 Trivedi.R.K., "Handbook of Environmental Laws, Rules, Guidelines, Compliar Vol. I and II, Enviro Media, 3rd edition, BPB publications, 2010. 	nces and Standards",
2. 2. Cunningham, W.P. Cooper, T.H. Gorhani, "Environmental Encyclopedia", Jaio Mumbai, 2001.	co Publ., House,
 Dharmendra S. Sengar, "Environmental law", Prentice hall of India PVT LTD, New D 2007. 	elhi,
4. Rajagopalan, R, "Environmental Studies-From Crisis to Cure", Oxford University Pres	ss, 2005.
5. Benny Joseph, "Environmental Science and Engineering", Tata McGraw-Hill, New	Delhi, 2006
6. Ravikrishnan"Environmental Science and Engineering" Sri Krishna Hi-tech Publishin	g Company Pvt .

Illabous is

upproved.

Manpau 2000 12/06