E.G.S. PILLAY ENGINEERING COLLEGE

(Autonomous)

Approved by AICTE, New Delhi | Affiliated to Anna University, Chennai Accredited by NAAC with 'A'Grade | Accredited by NBA

NAGAPATTINAM - 611002

B.E. COMPUTER SCIENCE ENGINEERING

2019 Regulation : Full Time Curriculum and Syllabus

	SEMEST	ER I	V						
Course Code	Course Name	L	Т	Р	С	Maxi	Catego		
Course Code	Course manie	LI	r	C	CA	ES	Total	ry	
Theory Course	e								
1902CS401	Software Engineering	3	0	0	3	40	60	100	PC
1902CS402	Operating System	3	0	0	3	40	60	100	PC
1902CS403	Computer Networks	3	0	0	3	40	60	100	PC
1902CS404	Design and Analysis of Algorithms	3	0	0	3	40	60	100	PC
1901CS405	Biology for Engineers	3	0	0	3	50	50	100	BS
1902CS406	Database Management Systems	3	0	0	3	40	60	100	PC
1901MCX01	Environmental Science	2	0	0	0	100	0	100	MC
Laboratory C	ourse								
1902CS451	Networks Laboratory	0	0	2	1	50	50	100	PC
1902CS452	Operating System Laboratory	0	0	2	1	50	50	100	PC
1902CS453	Database Management Systems	0	0	2	1	50	50	100	PC
	Laboratory	U	U			50	50	100	rC
1904GE451	Life Skills: Verbal Ability	0	0	2	1	100	-	100	EEC
	Total	20	0	8	22	600	500	1100	

L – Lecture | T – Tutorial | P – Practical | CA – Continuous Assessment | ES – End Semester

1902CS401	SOFTWARE ENGINEERING	L	T	P	C
PREREQUIS	TFS.	3	0	0	3
	r knowledge,C Programming				
COURSE OB					
	students in understanding the basic theory of software engineering and	to ap	plv tł	nese t	basic
	ciples to a software project development.	····r	F-J		
	dents to develop skills that will enable them to construct software of				
	oftware that is reliable and that is reasonably easy to understand, modify and	maint	ain.		
	n understanding of why these skills are important.				
Module I	SOFTWARE ENGINEERING CONCEPTS		9	9 Hou	irs
Software Engin	neering introduction- Project management concepts - Software engineering	parad	igms	– Gei	neric
	s, water fall life cycle model -prototype model - RAD model - spiral model -				
Understanding	requirements.				
Module II	MANAGING SOFTWARE PROJECTS		9	9 Hou	irs
Metrics : Metr	ics in process and project domains - Software measurement - Metrics for	r soft	ware	Qual	ity -
Integrating me	trics in a software engineering process - Estimation , Scheduling - Risk M	anage	ment	– Re	view
Techniques - S	oftware quality assurance.				
	DESIGN CONCEPTS			9 Hou	
	s - Design Principles - Design Concepts - Software architecture - Architecture	ıral st	yle, d	lesign	and
	interface design.				
Module IV	SOFTWARE TESTING AND DEBUGGING			9 Hou	
	nentals and strategies - White-box and Black box testing - Basis path testin				
	cial environments - Module testing, - Integration testing - validation testin	ng - s	ystem	testi	ng –
	ftware maintenance – software configuration management.				
	ADVANCED CONCEPTS			9 Hou	
	ed Software Engineering - Clean room software engineering - Reen	gineer	ring ·	- Rev	erse
Engineering.	1				
	Tota	4	45 Ho	ours	
	EADING / SEMINAR :				
Version manag					
ISO 9000 Qual					
COURSE OU					
001	After completion of the course, students will be able to				
CO1	Build an appropriate process model for a given project				
CO2	Analyse the principles at various phases of software development	.1	1.		<u> </u>
CO3	Translate specifications into design and identify the components to build	the ar	chited	cture 1	or a
<u> </u>	given problem, all using an appropriate software engineering methodology		1.00	. 1	1
CO4	Define a Project management plan and tabulate appropriate testing plan	is at	differ	ent le	vels
005	during the development of the software	1 .	1	1	1
CO5	Understand the software project estimation models and estimate the w	ork to	o be	done	and
DEEDENICE	resources required and the schedule for a software project				
REFERENCE		<u>E1'4'</u>		10	
	ssman, Software Engineering: A Practitioner's Approach, Mc-Graw Hill, 7 th	Ealtic	on, 20	10.	
	lle, Software Engineering, Addison-Wesley, 8th edition, 2006.				
	nnell, Code Complete, Second Edition, Microsoft Press.				
	Cairley, Software Engineering Concepts, McGraw-Hill, 1985				
5.mups://nptel.a	ac.in/courses/106105087/#				

B.E. Computer Science Engineering – | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2019 Approved in IV Academic Council Meeting held on 25.05.2019

1902CS402	OPERATING SYSTEMS	L 3	Т 0	P 0	C 3
PREREQUIS	ITES:	5	U	U	5
Basic Compute					
COURSE OB					
The student sh	buld be made to:				
1.Understand t	he structure and functions of OS.				
	Processes, Threads and Scheduling algorithms.				
	he principles of concurrency and Deadlocks.				
	s memory management schemes.				
	nagement and File systems.				
	ics of Linux system and perform administrative tasks on Linux Servers.				
Module I	INTRODUCTION			9 Hou	
	em overview – Types of Operating Systems - Operating Systems Structures Operating System Services – System Calls – System Programs – System				
Module II	PROCESS MANAGEMENT			9 Hou	
	ess Concept, Process Scheduling, Co-operating process, Inter process Comm				
Semaphores, (ltithreading Models; CPU Scheduling, Process Synchronization - Critica Classic problems of synchronization; Deadlocks - Deadlock Characteriza llocks -Deadlock Prevention – Deadlock avoidance – Deadlock detection	tion	- Me	ethods	for
Module III	MEMORY MANAGEMENT			9 Hou	rs
	gement: Background - Swapping - Contiguous memory allocation - Pagin				
	with paging. Virtual Memory: Background -Demand paging - Proce	SS CI	reatio	n — 1	Page
-	Allocation of frames – Thrashing.				
Module IV	FILE SYSTEMS AND I/O SYSTEMS			9 Hou	
	File concept – Access methods – Directory structure – File system mountin				
	nentation: Directory implementation – Allocation methods – Free-space	mana	igeme	ent. N	lass-
Module V	re: Disk scheduling – Disk management –Swap-space management – RAID. CASE STUDY			9 Hou	rc
Linux System-	Basic Concepts;System Administration-Requirements for Linux System A fultifunction Server, Domain Name System, Setting Up Local Network Server		istrate	or, Se	tting
Basic Concept	s, Setting Up Xen,VMware on Linux Host and Adding Guest OS.		<u> </u>		
EUDTHED D	Total:	: '	45 H	ours	
	EADING / SEMINAR : x Multi-Function Server				
Study about St					
	able and Tertiary Storage devices				
Learn about M	able and Tertiary Storage devices ulti-threading issues in Linux Systems				
Learn about M COURSE OU CO1	able and Tertiary Storage devices ulti-threading issues in Linux Systems TCOMES: After completion of the course, Student will be able to Understand Operating System Structure, Operations and Services & Illu	Istrate	e the	opera	ating
Learn about M COURSE OU CO1	able and Tertiary Storage devices ulti-threading issues in Linux Systems TCOMES: After completion of the course, Student will be able to Understand Operating System Structure, Operations and Services & Illus system concepts and its functionalities.			•	ating
Learn about M COURSE OU CO1 CO2	able and Tertiary Storage devices ulti-threading issues in Linux Systems TCOMES: After completion of the course, Student will be able to Understand Operating System Structure, Operations and Services & Illus system concepts and its functionalities. Design various Scheduling algorithms and deadlock, prevention and avoidance			•	ating
Learn about M COURSE OU CO1 CO2 CO3	able and Tertiary Storage devices ulti-threading issues in Linux Systems TCOMES: After completion of the course, Student will be able to Understand Operating System Structure, Operations and Services & Illus system concepts and its functionalities. Design various Scheduling algorithms and deadlock, prevention and avoidance Compare and contrast various memory management schemes.			•	ating
Learn about MCOURSE OUCO1CO2CO3CO4	able and Tertiary Storage devices ulti-threading issues in Linux Systems TCOMES: After completion of the course, Student will be able to Understand Operating System Structure, Operations and Services & Illusystem concepts and its functionalities. Design various Scheduling algorithms and deadlock, prevention and avoidance Compare and contrast various memory management schemes. Analyze the File systems and disk scheduling mechanism.			•	ating
Learn about M COURSE OU CO1 CO2 CO3 CO4 CO5	able and Tertiary Storage devices ulti-threading issues in Linux Systems TCOMES: After completion of the course, Student will be able to Understand Operating System Structure, Operations and Services & Illus system concepts and its functionalities. Design various Scheduling algorithms and deadlock, prevention and avoidance Compare and contrast various memory management schemes. Analyze the File systems and disk scheduling mechanism. Perform administrative tasks on Linux Servers.			•	ating
Learn about M COURSE OU CO1 CO2 CO3 CO4 CO5 REFERENCE 1. Abraham Si	able and Tertiary Storage devices ulti-threading issues in Linux Systems TCOMES: After completion of the course, Student will be able to Understand Operating System Structure, Operations and Services & Illus system concepts and its functionalities. Design various Scheduling algorithms and deadlock, prevention and avoidance Compare and contrast various memory management schemes. Analyze the File systems and disk scheduling mechanism. Perform administrative tasks on Linux Servers.	ce alg		•	ating
Learn about M COURSE OU CO1 CO2 CO3 CO4 CO5 REFERENCE 1. Abraham Si Edition, John V 2. Andrew S. T Pvt. Ltd, 2015	able and Tertiary Storage devices ulti-threading issues in Linux Systems TCOMES: After completion of the course, Student will be able to Understand Operating System Structure, Operations and Services & Illus system concepts and its functionalities. Design various Scheduling algorithms and deadlock, prevention and avoidance Compare and contrast various memory management schemes. Analyze the File systems and disk scheduling mechanism. Perform administrative tasks on Linux Servers. S: berschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", Viley and Sons Inc., 2012. 'anenbaum, "Modern Operating Systems", Fourth Edition Prentice Hall of Inc.	xe alg , 9th dia		•	ating
Learn about M COURSE OU CO1 CO2 CO3 CO4 CO5 REFERENCE 1. Abraham Si Edition, John V 2. Andrew S. T Pvt. Ltd, 2015 3. Harvey M. I	able and Tertiary Storage devices ulti-threading issues in Linux Systems TCOMES: After completion of the course, Student will be able to Understand Operating System Structure, Operations and Services & Illus system concepts and its functionalities. Design various Scheduling algorithms and deadlock, prevention and avoidance Compare and contrast various memory management schemes. Analyze the File systems and disk scheduling mechanism. Perform administrative tasks on Linux Servers. S: berschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts". Viley and Sons Inc., 2012. 'anenbaum, "Modern Operating Systems", Fourth Edition Prentice Hall of Index. Detell, "Operating Systems", Pearson Education Pvt. Ltd, Third Edition, 2004.	xe alg , 9th dia		•	ating
Learn about M COURSE OU CO1 CO2 CO3 CO4 CO5 REFERENCE 1. Abraham Si Edition, John V 2. Andrew S. T Pvt. Ltd, 2015 3. Harvey M. I 4. William Sta	able and Tertiary Storage devices ulti-threading issues in Linux Systems TCOMES: After completion of the course, Student will be able to Understand Operating System Structure, Operations and Services & Illus system concepts and its functionalities. Design various Scheduling algorithms and deadlock, prevention and avoidance Compare and contrast various memory management schemes. Analyze the File systems and disk scheduling mechanism. Perform administrative tasks on Linux Servers. S: berschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", Viley and Sons Inc., 2012. 'anenbaum, "Modern Operating Systems", Fourth Edition Prentice Hall of Inc.	xe alg , 9th dia		•	ating

PREREQUISITES: 1.3 0 0 0 3 1.Basic Computer knowledge. 2. Computer knowledge. 2. Computer Mowledge about the functions of different network layers. 3. Gain knowledge about the functions of different networks. 2. Gain knowledge about the functions of different networks. 9 Data Communications – Network Criteria - Components of Networks -Types of Connection - Direction of Data Flow - Network Topologies – Protocols and standards-Categories of Networks - Network Models: The OSI Model - TCP/IP Protocol Suite - Addressing - Networking Devices. 10 Physical Layer - Types of errors-Media Access Control: CSMA, CSMA/CD, CSMA/CA-Ethernet-Wireless LAN- Bluetooth - Flow Control-Error Control - Error Detection Techniques- HDLC and other Data Link Protocols 9 Internetworking - IPv4 - IPv6 - Network Layer: Delivery, Forwarding and Routing-Routing Protocols - IP Protocols: ARP and RARP, BOOTP, ICMP, DHCP 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP, - TCP Connection Management - Flow Control - Congestion Control, Congestion Avoidance and Quality of service: (QoS). 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP - Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. 10 COURSE OTCOMES: 1 45 Hours COURSE OTCOMES: 1 45 Hours COURSE OTCOMES: 1 10 SHI benetis functions of different layers and in depth knowledge	1902CS403		COMPUTER NETWORKS	L 3	Т 0	P 0	C 3
1. Basic Computer Knowledge. 2. Computer Organization and Architecture COURSE OBJECTIVES: 1. Understand the state-of-the-art in network protocols, architectures and applications. 2. Gain knowledge about the functions of different network layers. 3.Familharize in the various sapects of computer networks. MODULE I INTRODUCTION 9 Data Communications – Network Criteria - Components of Networks -Types of Connection - Direction of Data Flow - Network Topologies- Protocols and standards-Categories of Networks - Network Models: The OSI Model - TCP/IP Protocol Suite - Addressing - Networking Devices. 10 Physical Layer - Types of errors-Media Access Control: CSMA, CSMA/CD, CSMA/CA-Ethernet-Wireless LAN- Bluetooth - Flow Control-Error Control - Error Detection Techniques- HDLC and other Data Link Protocols 9 Internetworking - IPv4 - IPv6 - Network Layer: Delivery, Forwarding and Routing-Routing Protocols - IP Protocols: ARP and RARP, BOOTP, ICMP, DHCP 9 MODULE IV TRANSPORT LAYER 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP,- TCP Connection Management - Flow Control - Congestion Control, Congestion Avoidance and Quality of Service: (QoS). MODULE V APPLICATION LAYER 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP - Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. 8 COI Describe the basics	PREREOUISI	TFS.		5	U	U	3
2. Computer Organization and Architecture COURSE OBJECTIVES: UNDERSE OBJECTIVES: OURSE OBJECTIVES: Cian knowledge about the functions of different network layers. Cian knowledge about the functions of different network layers. Cian knowledge about the functions of different network layers. Cian knowledge about the functions of different network layers. Cian knowledge about the functions of different network layers. Cian knowledge about the functions of different network layers. Cian knowledge about the functions of different network layers. Cian knowledge about the functions of different networks. Computer Network Topologies- Protocols and standards-Categories of Networks –Network Models: The OSI Model - TCP/IP Protocol Suite - Addressing - Networking Devices. Cian Cian Cian Cian Cian Cian Cian Cian	-						
COURSE OBJECTIVES: 1. Understand the state-of-the-art in network protocols, architectures and applications. 2. Gain knowledge about the functions of different network layers. 3.Familiarize in the various aspects of computer networks. 9 Data Communications – Network Criteria - Components of Networks -Types of Connection - Direction of Data Flow - Network Topologies – Protocols and standards-Categories of Networks – Network Models: The OSI Model - TCP/IP Protocol Suite - Addressing - Networking Devices. 10 Physical Layer - Types of errors-Media Access Control: CSMA, CSMA/CD, CSMA/CA.E-Hernette Wireless LAN- Bluetooth - Flow Control-Error Control - Error Detection Techniques- HDLC and other Data Link Protocols 9 MODULE II INTRNOPK LAYER 9 Internetworking - IPv4 - IPv6 -Network Layer: Delivery, Forwarding and Routing-Routing Protocols - IP Protocols: ARP and RARP, BOOTP, ICMP, DHCP 9 MODULE IV TRANSPORT LAYER 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP,- TCP Connection Management - Flow Control - Congestion Control, Congestion Avoidance and Quality of Service: (QoS). NODULE V APPLICATION LAYER 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP - Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. Total: 45 Hours FURTHER READING : Stheight and in depth knowledge of data link layer CO3 Analyze the different protocol and			Architecture				
1. Understand the state-of-the-art in network protocols, architectures and applications. 2. Gain knowledge about the functions of different network layers. 3.Familiarize in the various aspects of computer networks. MODULE I INTRODUCTION 9 Data Communications – Network Criteria - Components of Networks -Types of Connection - Direction of Data Flow - Network Topologies – Protocols and standards-Categories of Networks –Network Models: The OSI Model - TCP/IP Protocol Suite - Addressing - Networking Devices. 10 Physical Layer- Types of errors-Media Access Control: CSMA, CSMA/CD, CSMA/CA-Ethernet-Wireless LAN- Bluetooth - Flow Control-Error Control - Error Detection Techniques- HDLC and other Data Link Protocols 9 MODULE III NETWORK LAYER 9 Internetworking - IPv4 - IPv6 -Network Layer: Delivery, Forwarding and Routing-Routing Protocols - IP Protocols: ARP and RARP, BOOTP, ICMP, DHCP 9 MODULE IV TRANSPORT LAYER 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP, - TCP Connection Management - Flow Control - Congestion Avoidance and Quality of Service: (QoS). 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP - Email: SMTP, POP3and IMAP - File Transfer Protocol -SMP-Web Services. 8 COURSE OUTCOMES:	1	0					
2.Gain knowledge about the functions of different network layers. 3.Familiarize in the various aspects of computer networks. MODULE I INTRODUCTION 9 Data Communications – Network Criteria - Components of Networks -Types of Connection - Direction of Data Flow - Network Topologies – Protocols and standards-Categories of Networks –Network Models: The OSI Model - TCP/IP Protocol Suite - Addressing - Networking Devices. MODULE II PHYSICAL AND DATA LINK LAYER 10 Physical Layer - Types of errors-Media Access Control: CSMA, CSMA/CD, CSMA/CA-Ethernet- Wireless LAN - Bluetooth - Flow Control-Error Control - Error Detection Techniques - HDLC and other Data Link Protocols MODULE II NETWORK LAYER 9 Internetworking - IPv4 - IPv6 - Network Layer: Delivery, Forwarding and Routing-Routing Protocols - IP Protocols: ARP and RARP, BOOTP, ICMP, DHCP MODULE IV TRANSPORT LAYER 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP,- TCP Connection Management - Flow Control - Congestion Control, Congestion Avoidance and Quality of Service: (QoS). MODULE V APPLICATION LAYER 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP - Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. FURTHER READING : SSH: Simple Socket Shell - Security Services - Firewalls. COU Describe the basics of computer networks and protocols CO2 Apply the functions of different layers and in depth knowledge of data link layer CO3 Analyze the different protocols and network layer components. CO4 Identify the basic functions of transport layer and congestion in networks. CO5 Explain the working of application layer REFERENCES: 1.BehrouzA.Forouzan, Data Communication and Networking, 5th Edition, Tata McGraw-Hill, 2013 2.James F.Kurose and Keith W.Ross, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2007 6.profameences. weebly.com			rt in network protocols, architectures and application	ns.			
MODULE I INTRODUCTION 9 Data Communications – Network Criteria - Components of Networks -Types of Connection - Direction of Data Flow - Network Topologies – Protocols and standards-Categories of Networks –Network Models: The OSI Model - TCP/IP Protocol Suite - Addressing - Networking Devices. 10 Physical Layer - Types of errors-Media Access Control: CSMA, CSMA/CD, CSMA/CA-Ethernet-Wireless LAN - Bluetooth - Flow Control-Error Control - Error Detection Techniques- HDLC and other Data Link Protocols 9 MODULE II NETWORK LAYER 9 Internetworking - IPv4 - IPv6 – Network Layer: Delivery, Forwarding and Routing-Routing Protocols - IP Protocols: ARP and RAP, BOOTP, ICMP, DHCP 9 MODULE IV TRANSPORT LAYER 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP, – TCP Connection Management - Flow Control - Congestion Control, Congestion Avoidance and Quality of Service: (QoS). 8 MODULE V APPLICATION LAYER 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP – Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. 8 FURTHER READING : SSH: simple Socket Shell - Security Services - Firewalls. 5 CO1 Describe the basics of computer networks and protocols 5 CO2 Apply the functions of different layers and in depth knowledge of data link layer 60 CO3							
Data Communications – Network Criteria - Components of Networks -Types of Connection - Direction of Data Flow - Network Topologies– Protocols and standards-Categories of Networks –Network Models: The OSI Model - TCP/IP Protocol Suite - Addressing - Networking Devices. MODULE II PHYSICAL AND DATA LINK LAYER 10 Physical Layer- Types of errors-Media Access Control: CSMA, CSMA/CA, Ethernet- Wireless LAN- Bluetooth - Flow Control-Error Control - Error Detection Techniques- HDLC and other Data Link Protocols MODULE III NETWORK LAYER 9 Internetworking - IPv4 - IPv6 - Network Layer: Delivery, Forwarding and Routing-Routing Protocols - IP Protocols: ARP and RARP, BOOTP, ICMP, DHCP 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP,- TCP Connection Management - Flow Control – Congestion Control, Congestion Avoidance and Quality of Service: (QoS). MODULE V APPLICATION LAYER 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP,- TCP Connection Management - Flow Control – Congestion Control, Congestion Avoidance and Quality of Service: (QoS). MODULE V APPLICATION LAYER 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP – Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. FURTHER READING : SSH: Simple Socket Shell - Security Services - Firewalls. COURSE OUTCOMES: After completion of the course, Student will be able to CO1 Describe the basics of computer networks and protocols CO2 Apply the functions of different layers and in depth knowledge of data link layer CO3 Analyze the different protocol s and network layer components. CO4 Identify the basic functions of transport layer and congestion in networks. CO5 Explain the working of application layer REFERENCES: 1.BehrouzA.Forouzan, Data Communication and Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 2017 3.Larry L.Peterson and Bruce S.Davie, Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Educa							
Data Flow - Network Topologies- Protocols and standards-Categories of Networks -Network Models: The OSI Model - TCP/IP Protocol Suite - Addressing - Networking Devices. MODULE II PHYSICAL AND DATA LINK LAYER Physical Layer- Types of errors-Media Access Control: CSMA, CSMA/CD, CSMA/CA-Ethernet- Wireless LAN- Bluetooth - Flow Control-Error Control - Error Detection Techniques- HDLC and other Data Link Protocols MODULE III NETWORK LAYER 9 Internetworking - IPv4 - IPv6 - Network Layer: Delivery, Forwarding and Routing-Routing Protocols - IP Protocols: ARP and RARP, BOOTP, ICMP, DHCP 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP,- TCP Connection Management - Flow Control - Congestion Control, Congestion Avoidance and Quality of Service: (QoS). 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP - Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. 8 FURTHER READING : S 5 SSH: Simple Socket Shell - Security Services - Firewalls. 45 Hours COURSE OUTCOMES:	MODULE I	INTRODU	CTION			9	
Data Flow - Network Topologies- Protocols and standards-Categories of Networks -Network Models: The OSI Model - TCP/IP Protocol Suite - Addressing - Networking Devices. MODULE II PHYSICAL AND DATA LINK LAYER Physical Layer- Types of errors-Media Access Control: CSMA, CSMA/CD, CSMA/CA-Ethernet- Wireless LAN- Bluetooth - Flow Control-Error Control - Error Detection Techniques- HDLC and other Data Link Protocols MODULE III NETWORK LAYER 9 Internetworking - IPv4 - IPv6 - Network Layer: Delivery, Forwarding and Routing-Routing Protocols - IP Protocols: ARP and RARP, BOOTP, ICMP, DHCP 9 MODULE IV TRANSPORT LAYER 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP,- TCP Connection Management - Flow Control - Congestion Control, Congestion Avoidance and Quality of Service: (QoS). 8 MODULE V APPLICATION LAYER 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP - Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. 8 FURTHER READING : S S SSH: Simple Socket Shell - Security Services - Firewalls. COURSE OUTCOMES: COU Describe the basics of computer networks and protocols CO CO1 Describe the different Ingers and in depth knowledge of data link layer CO3 Analyze the different protocol s transport layer and congestion in networks.	Data Communi	cations – Netwo	rk Criteria - Components of Networks -Types of Co	onnection	- Di	rectio	on of
The OSI Model - TCP/IP Protocol Suite - Addressing - Networking Devices. MODULE II PHYSICAL AND DATA LINK LAYER 10 Physical Layer- Types of errors-Media Access Control: CSMA, CSMA/CD, CSMA/CA-Ethernet- Wireless LAN- Bluetooth - Flow Control-Error Control - Error Detection Techniques- HDLC and other Data Link Protocols 9 MODULE III NETWORK LAYER 9 Internetworking - IPv4 - IPv6 - Network Layer: Delivery, Forwarding and Routing-Routing Protocols - IP Protocols: ARP and RARP, BOOTP, ICMP, DHCP 9 MODULE IV TRANSPORT LAYER 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP,- TCP Connection Management - Flow Control - Congestion Control, Congestion Avoidance and Quality of Service: (QoS). 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP - Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. 8 FURTHER READING :			1 1				
MODULE II PHYSICAL AND DATA LINK LAYER 10 Physical Layer- Types of errors-Media Access Control: CSMA, CSMA/CD, CSMA/CA-Ethernet-Wireless LAN- Bluetooth - Flow Control-Error Control - Error Detection Techniques- HDLC and other Data Link Protocols 9 MODULE III NETWORK LAYER 9 Internetworking - IPv4 - IPv6 -Network Layer: Delivery, Forwarding and Routing-Routing Protocols - IP Protocols: ARP and RARP, BOOTP, ICMP, DHCP 9 MODULE IV TRANSPORT LAYER 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP,- TCP Connection Management - Flow Control - Congestion Control, Congestion Avoidance and Quality of Service: (QoS). 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP - Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. 8 SSH: Simple Socket Shell - Security Services - Firewalls. COURSE 45 Hours COU Describe the basics of computer networks and protocols 0 CO1 Describe the basics of computer networks and protocols 0 CO2 Apply the functions of transport layer and congestion in networks. 0 CO3 Analyze the different protocols and network layer components. 0 CO4 Identify the basic functions of transport layer and congestion in networks. 0 CO5 Explain the work							
Wireless LAN- Bluetooth - Flow Control-Error Control - Error Detection Techniques- HDLC and other Data Link Protocols Internetworking - IPv4 - IPv6 –Network Layer: Delivery, Forwarding and Routing-Routing Protocols - IP Protocols: ARP and RARP, BOOTP, ICMP, DHCP MODULE IV TRANSPORT LAYER 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP,– TCP Connection Management - Flow Control – Congestion Control, Congestion Avoidance and Quality of Service: (QoS). MODULE V APPLICATION LAYER 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP – Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. FURTHER READING : SSH: Simple Socket Shell - Security Services - Firewalls. COURSE OUTCOMES: After completion of the course, Student will be able to CO1 Describe the basics of computer networks and protocols CO2 Apply the functions of different layers and in depth knowledge of data link layer CO3 Analyze the different protocol sand network layer components. CO4 Identify the basic functions of transport layer and congestion in networks. CO5 Explain the working of application layer REFERENCES: I.BehrouzA.Forouzan, Data Communication and Networking; 5th Edition, Tata McGraw-Hill, 2013 2.James F.Kurose and Keith W.Ross, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2017 3.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2017 6.profameencse.weebly.com			v		-	10	
Wireless LAN- Bluetooth - Flow Control-Error Control - Error Detection Techniques- HDLC and other Data Link Protocols Internetworking - IPv4 - IPv6 –Network Layer: Delivery, Forwarding and Routing-Routing Protocols - IP Protocols: ARP and RARP, BOOTP, ICMP, DHCP MODULE IV TRANSPORT LAYER 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP,– TCP Connection Management - Flow Control – Congestion Control, Congestion Avoidance and Quality of Service: (QoS). MODULE V APPLICATION LAYER 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP – Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. FURTHER READING : SSH: Simple Socket Shell - Security Services - Firewalls. COURSE OUTCOMES: After completion of the course, Student will be able to CO1 Describe the basics of computer networks and protocols CO2 Apply the functions of different layers and in depth knowledge of data link layer CO3 Analyze the different protocol sand network layer components. CO4 Identify the basic functions of transport layer and congestion in networks. CO5 Explain the working of application layer REFERENCES: I.BehrouzA.Forouzan, Data Communication and Networking; 5th Edition, Tata McGraw-Hill, 2013 2.James F.Kurose and Keith W.Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 2017 3.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com	Physical Laver	- Types of er	rors-Media Access Control: CSMA, CSMA/CD	, CSMA	/CA-	Ether	rnet-
Data Link Protocols MODULE III NETWORK LAYER 9 Internetworking - IPv4 - IPv6 –Network Layer: Delivery, Forwarding and Routing-Routing Protocols - IP Protocols: ARP and RARP, BOOTP, ICMP, DHCP Protocols: ARP and RARP, BOOTP, ICMP, DHCP 9 MODULE IV TRANSPORT LAYER 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP,– TCP Connection Management - Flow Control – Congestion Control, Congestion Avoidance and Quality of Service: (QoS). MODULE V APPLICATION LAYER 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP – Email: SMTP, POP3 and IMAP - File Transfer Protocol -SNMP-Web Services. Total: 45 Hours FURTHER READING : SSH: Simple Socket Shell - Security Services - Firewalls. Total: 45 Hours COURSE OUTCOMES:	Wireless LAN-	Bluetooth - Flo	ow Control-Error Control - Error Detection Techni	iques- HI	DLC	and c	other
Internetworking - IPv4 - IPv6 –Network Layer: Delivery, Forwarding and Routing-Routing Protocols - IP Protocols: ARP and RARP, BOOTP, ICMP, DHCP MODULE IV TRANSPORT LAYER 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP, – TCP Connection Management - Flow Control – Congestion Control, Congestion Avoidance and Quality of Service: (QoS). MODULE V APPLICATION LAYER 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP – Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. Total: 45 Hours FURTHER READING : SSH: Simple Socket Shell - Security Services - Firewalls. COURSE OUTCOMES: After completion of the course, Student will be able to CO1 Describe the basics of computer networks and protocols CO2 Apply the functions of different layers and in depth knowledge of data link layer CO3 Analyze the different protocol sun network layer components. CO4 Identify the basic functions of transport layer and congestion in networks. CO5 Explain the working of application layer REFERENCES: 1.BehrouzA.Forouzan, Data Communication and Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 2017 3.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com				1			
Protocols: ARP and RARP, BOOTP, ICMP, DHCP MODULE IV TRANSPORT LAYER 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP,- TCP Connection Management - Flow Control - Congestion Control, Congestion Avoidance and Quality of Service: (QoS). MODULE V APPLICATION LAYER 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP - Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. Total: 45 Hours FURTHER READING :	MODULE III	NETWOR	K LAYER		9	9	
Protocols: ARP and RARP, BOOTP, ICMP, DHCP MODULE IV TRANSPORT LAYER 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP,- TCP Connection Management - Flow Control - Congestion Control, Congestion Avoidance and Quality of Service: (QoS). MODULE V APPLICATION LAYER 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP - Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. Total: 45 Hours FURTHER READING :	Internetworking	g - IPv4 - IPv6 -	Network Layer: Delivery, Forwarding and Routing	g-Routing	Prot	ocols	- IP
MODULE IV TRANSPORT LAYER 9 Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP,- TCP Connection Management - Flow Control - Congestion Control, Congestion Avoidance and Quality of Service: (QoS). MODULE V APPLICATION LAYER 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP - Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. Total: 45 Hours FURTHER READING :				,			
Overview of Transport layer, Reliable/Unreliable Transmission, TCP, UDP,- TCP Connection Management - Flow Control - Congestion Control, Congestion Avoidance and Quality of Service: (QoS). MODULE V APPLICATION LAYER 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP - Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. FURTHER READING : Total: 45 Hours SSH: Simple Socket Shell - Security Services - Firewalls. COURSE OUTCOMES: After completion of the course, Student will be able to CO1 CO2 Apply the functions of different layers and in depth knowledge of data link layer CO3 Analyze the different protocols and network layer components. CO4 Identify the basic functions of transport layer and congestion in networks. CO5 Explain the working of application layer REFERENCES: 1. 1.BehrouzA.Forouzan, Data Communication and Networking, 5th Edition, Tata McGraw-Hill, 2013 2.James F.Kurose and Keith W.Ross, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5. State S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5. Silliam Stallings, Data and Computer Communication, Pearson Education, 2007)	
Management - Flow Control – Congestion Control, Congestion Avoidance and Quality of Service: (QoS). MODULE V APPLICATION LAYER 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP – Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. Total: 45 Hours FURTHER READING : Statistical Security Services - Firewalls. Course outrom Security Services - Firewalls. Course outrom Security Services - Firewalls. COURSE OUTCOMES: After completion of the course, Student will be able to COI Describe the basics of computer networks and protocols CO2 Apply the functions of different layers and in depth knowledge of data link layer CO3 Analyze the different protocols and network layer components. Email: Sum Security Services - Security Services - Security Services and congestion in networks. CO4 Identify the basic functions of transport layer and congestion in networks. CO5 Explain the working of application layer REFERENCES: I.BehrouzA.Forouzan, Data Communication and Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 2017 J.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 S.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com				$\overline{P} - TC$	1	-	rtion
MODULE V APPLICATION LAYER 8 Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP – Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. Total: 45 Hours FURTHER READING :							
Domain Name System (DNS): Domain Name Space - DNS in the Internet - HTTP – Email: SMTP, POP3and IMAP - File Transfer Protocol -SNMP-Web Services. Total: 45 Hours FURTHER READING : SSH: Simple Socket Shell - Security Services - Firewalls. COURSE OUTCOMES: After completion of the course, Student will be able to CO1 Describe the basics of computer networks and protocols CO2 Apply the functions of different layers and in depth knowledge of data link layer CO3 Analyze the different protocols and network layer components. CO4 Identify the basic functions of transport layer and congestion in networks. CO5 Explain the working of application layer REFERENCES: 1.BehrouzA.Forouzan, Data Communication and Networking; 5th Edition, Tata McGraw-Hill, 2013 2.James F.Kurose and Keith W.Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 2017 3.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com	-						2).
POP3and IMAP - File Transfer Protocol -SNMP-Web Services. Total: 45 Hours FURTHER READING :				HTTP -	Emai	I SN	/TP
Total: 45 Hours FURTHER READING : SSH: Simple Socket Shell - Security Services - Firewalls. COURSE OUTCOMES: After completion of the course, Student will be able to CO1 Describe the basics of computer networks and protocols CO2 Apply the functions of different layers and in depth knowledge of data link layer CO3 Analyze the different protocols and network layer components. CO4 Identify the basic functions of transport layer and congestion in networks. CO5 Explain the working of application layer REFERENCES: 1.BehrouzA.Forouzan, Data Communication and Networking, 5th Edition, Tata McGraw-Hill, 2013 2.James F.Kurose and Keith W.Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 2017 3.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com					Binai		,
SSH: Simple Socket Shell - Security Services - Firewalls. COURSE OUTCOMES: After completion of the course, Student will be able to CO1 Describe the basics of computer networks and protocols CO2 Apply the functions of different layers and in depth knowledge of data link layer CO3 Analyze the different protocols and network layer components. CO4 Identify the basic functions of transport layer and congestion in networks. CO5 Explain the working of application layer REFERENCES: 1. 1.BehrouzA.Forouzan, Data Communication and Networking, 5th Edition, Tata McGraw-Hill, 2013 2.James F.Kurose and Keith W.Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 2017 3.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com	_			Total:		45 H	ours
COURSE OUTCOMES: After completion of the course, Student will be able to CO1 Describe the basics of computer networks and protocols CO2 Apply the functions of different layers and in depth knowledge of data link layer CO3 Analyze the different protocols and network layer components. CO4 Identify the basic functions of transport layer and congestion in networks. CO5 Explain the working of application layer REFERENCES: 1 1.BehrouzA.Forouzan, Data Communication and Networking, 5th Edition, Tata McGraw-Hill, 2013 2.James F.Kurose and Keith W.Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 2017 3.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com	FURTHER RE	EADING :					
COURSE OUTCOMES: After completion of the course, Student will be able to CO1 Describe the basics of computer networks and protocols CO2 Apply the functions of different layers and in depth knowledge of data link layer CO3 Analyze the different protocols and network layer components. CO4 Identify the basic functions of transport layer and congestion in networks. CO5 Explain the working of application layer REFERENCES: 1 1.BehrouzA.Forouzan, Data Communication and Networking, 5th Edition, Tata McGraw-Hill, 2013 2.James F.Kurose and Keith W.Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 2017 3.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com	SSH: Simple So	ocket Shell - Sec	urity Services - Firewalls.				
After completion of the course, Student will be able to CO1 Describe the basics of computer networks and protocols CO2 Apply the functions of different layers and in depth knowledge of data link layer CO3 Analyze the different protocols and network layer components. CO4 Identify the basic functions of transport layer and congestion in networks. CO5 Explain the working of application layer REFERENCES: 1 1.BehrouzA.Forouzan, Data Communication and Networking, 5th Edition, Tata McGraw-Hill, 2013 2.James F.Kurose and Keith W.Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 2017 3.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com	-						
CO1 Describe the basics of computer networks and protocols CO2 Apply the functions of different layers and in depth knowledge of data link layer CO3 Analyze the different protocols and network layer components. CO4 Identify the basic functions of transport layer and congestion in networks. CO5 Explain the working of application layer REFERENCES: 1.BehrouzA.Forouzan, Data Communication and Networking, 5th Edition, Tata McGraw-Hill, 2013 2.James F.Kurose and Keith W.Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 2017 3.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com			on of the course. Student will be able to				
CO2Apply the functions of different layers and in depth knowledge of data link layerCO3Analyze the different protocols and network layer components.CO4Identify the basic functions of transport layer and congestion in networks.CO5Explain the working of application layer REFERENCES: 1.BehrouzA.Forouzan, Data Communication and Networking, 5th Edition, Tata McGraw-Hill, 20132.James F.Kurose and Keith W.Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 20173.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 20094.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 20105.William Stallings, Data and Computer Communication, Pearson Education, 20076.profameencse.weebly.com	CO1						
CO3 Analyze the different protocols and network layer components. CO4 Identify the basic functions of transport layer and congestion in networks. CO5 Explain the working of application layer REFERENCES: 1.BehrouzA.Forouzan, Data Communication and Networking, 5th Edition, Tata McGraw-Hill, 2013 2.James F.Kurose and Keith W.Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 2017 3.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com			· · ·	lata link l	aver		
CO4Identify the basic functions of transport layer and congestion in networks.CO5Explain the working of application layer REFERENCES: Image: Communication and Networking, 5th Edition, Tata McGraw-Hill, 20132.James F.Kurose and Keith W.Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 20173.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 20094.Andrew S.Tarenbaum, Computer Networks, Pearson Education, 20105.William Stallings, Data and Computer Communication, Pearson Education, 20076.profameencse.weebly.com					5		
CO5 Explain the working of application layer REFERENCES: 1.BehrouzA.Forouzan, Data Communication and Networking, 5th Edition, Tata McGraw-Hill, 2013 2.James F.Kurose and Keith W.Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 2017 3.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com				works.			
REFERENCES: 1.BehrouzA.Forouzan, Data Communication and Networking, 5th Edition, Tata McGraw-Hill, 2013 2.James F.Kurose and Keith W.Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 2017 3.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com							
 1.BehrouzA.Forouzan, Data Communication and Networking, 5th Edition, Tata McGraw-Hill, 2013 2.James F.Kurose and Keith W.Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 2017 3.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com 		1					
 2.James F.Kurose and Keith W.Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Education, 2017 3.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com 			mmunication and Networking, 5th Edition, Tata Mc	Graw-Hi	11, 20	13	
Internet, Pearson Education, 2017 3.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com							
 3.Larry L.Peterson and Bruce S.Davie, Computer Networks, Elsevier, 2009 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com 					U		
 4.Andrew S.Tanenbaum, Computer Networks, Pearson Education, 2010 5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com 							
5.William Stallings, Data and Computer Communication, Pearson Education, 2007 6.profameencse.weebly.com			-				
7.http://nptel.ac.in/courses/106105081/1	6.profameencse	.weebly.com					
	7.http://nptel.ac	.in/courses/1061	05081/1				

1902CS404	DESIGN & ANALYSIS OF ALGORITHMS	L	Т	P	C
		3	0	0	3
PREREQUISIT	ES:				
COURSE OBJE	CTIVES.				
	ithm analysis techniques. ar with the different algorithm design techniques.				
	e limitations of Algorithm power				
	NTRODUCTION	utout Du		9 Hou	
	gorithm – Fundamentals of Algorithmic Problem Solving – Impo the Analysis of Algorithm Efficiency – Analysis Framework – Asym				
	ematical analysis for Recursive and Non-recursive algorithms.		otatio	iis aii	u ns
	DIVIDE-AND-CONQUER			9 Hou	110
	her methodology – Merge sort – Quick sort – Binary search – Strassen	's Matri			
	em - Finding Max & Min.	5 Iviau I	. wrui	upnea	uion
	DYNAMIC PROGRAMMING			9 Hou	irc
	nming -Warshall's and Floyd' algorithm – Optimal Binary Search	Trees			
	nory functions-Travelling Salesman Problem.	11005 -	- 0/1	кпар	Sack
	BACKTRACKING			9 Hou	irs
	n-Queens problem – Graph Coloring Problem-Hamiltonian Circuit	Problem			
Problem	Queens proclem Chapit Coloring Proclem Hammonian Chean	1001011		.0500	Juin
	BRANCH AND BOUND			9 Hou	irs
	und – Assignment problem – Knapsack Problem – Travelin	g Sales	man	Prob	lem-
	lgorithms for NP – Hard Problems.	0			
	TOT		45 HC	DIRS	
FURTHER REA	ADING / CONTENT BEYOND SYLLABUS / SEMINAR :	11.			
	s – Simplex Linear Problem, Stable Marriage Problem, Bipartite Problem	em Max	Flow	prob	lem
COURSE OUT	· · · · · · · · · · · · · · · · · · ·	0111, 1 01 0	11000	proo	lein
	ter completion of the course, Student will be able to				
	alyze the time and space complexity of algorithms				
	sign algorithms for various computing problems				
	tically analyze the different algorithm design techniques for a given p	roblem.			
	odify existing algorithms to improve efficiency.				
	entify the limitations of algorithms in problem solving.				
REFERENCES:					
	H.Cormen, Charles E.Leiserson, Ronald L. Rivest and Clifford	Stein. "	Introd	uction	n to
	ms", Third Edition, PHI Learning Private Limited, 2012.	,			
-	7. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures an	d Algor	thms'	', Pea	rson
	n, Reprint 2006.	0		-	
	E. Knuth, "The Art of Computer Programming", Volumes 1& 3 Pearso	n Educa	tion, 2	2009.	
	. Skiena, "The Algorithm Design Manual", Second Edition, Springer,				
5. http://npt	tel.ac.in/courses/106101060/				

COURSE OBJECTIVES: The objective of this course is to enable learners to understand the basic concepts of biology and its applications in engineering. 7 Hours Module 1 Biology Introduction and its Classification 7 Hours Introduction to Biology, fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird Phyn and aircraft. Exciting aspect of biology - need to study biology Discussion about biological observations of 18th Century - major discoveries. Examples from Brownian motion and the origin of thermodynamics - original observation of Robert Brown and Julius Mayor. Classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon ultization - Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uricotelice, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology Ecoli, Sccrevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Module II Genetics and Macromolecular analysis Genetics. Concept of alleel. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of life, mormary structure. Proteins as enzymes, transporters, receptors and structural elements. Ongenetics. Sugge gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins - structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural e	COURSE OBJECTIVES: Image: State of the second state second s	1901CS405	BIOLOGY FOR ENGINEERS	L	T I	P C
The objective of this course is to enable learners to understand the basic concepts of biology and its applications in engineering. Module 1 Biology Introduction and its Classification 7 Hours Introduction to Biology, fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Exciting aspect of biology - need to study biology. Discussion about biological observations of 18th Century - major discoveries. Examples from Brownian motion and the origin of thermodynamics - original observation of Robert Brown and Julius Mayor. Classification - morphological, biochemical or ecological. Hierarchy of life forms at phenomenological level. classification based on (a) cellularity. Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization - Autotrophs, heterotrophs, Scerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Module I Concets and Macromolecular analysis Genetics - Newton's laws to Physical Sciences ^{7*} . Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping. Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: Module II Biomolecules and Enzymes I 01 Hours Biological processes at the reductionistic level Proteins - structure and function - Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module I Biomolecules and Enzyme Konto and Sing and Acoromolecular analysis: Formation Transfer - The molecular basis of coding and deciding genetic information - universal Molecular basis of information transfer, DNA - genetic material. Hierarchy of DNA structure- from single strangene action +two examples. Enzyme kand kinetic parameters. RNA catalysis. In	The objective of this course is to enable learners to understand the basic concepts of biology and its applications in engineering. 7 Hours Introduction to Biology, fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Excing aspect of biology - need to study biology- Discussion about biological, biochemical or ecological. Hierarchy of life forms at phenomenological level, classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization-Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uricotelice, urecotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology- Ecoli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thalinan, M. musculus 10 Hours Genetics - Newton's laws to Physical Sciences ²⁺ . Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single end disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary terationy and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. 10 Hours Module III Bionolecules and Enzymes Enzyme (alugade and Proteins- structure and lipids. Biomolecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotide			3	0 () 3
applications in engineering. 7 Hours Module I Biology Introduction and its Classification 7 Hours Introduction to Biology, fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird Hying and aircraft. Exciting aspect of biology - need to study biology. Discoursion about biological observations of 18th Century - major discoveries. Examples from Brownian motion and the origin of thermodynamics - original observation of Robert Brown and Julius Mayor. Classification - morphological, biochemical or ecological. Hierarchy of life forms at phenomenological level. classification based on (a) cellularity. Unicellular to multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uirotcelice, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology- E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus 10 Hours Genetics - Newton's laws to Physical Sciences"- Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein surtucture Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. 10 Hours Biomolecules - Molecules	applications in engineering. 7 Hours Introduction to Biology Introduction and its Classification 7 Hours Introduction to Biology, fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Exciting aspect of biology – need to study biology. Discussion about biological observations of 18th Century – major discoveries. Examples from Brownian motion and the origin of thermodynamics - original observation of Robert Brown and Julius Mayor. Classification - morphological, biochemical or ecological. Hierarchy of life forms at phenomenological level. classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophs, Screevisiae, D. Melanogaster, C. elegand, A. Munaculus Module II Genetics and Macromolecular analysis 10 Hours Genetics - Newton's laws to Physical Sciences" - Mendel's laws, Concept of segregation and independent sasortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elevents. Module III Biomolecules and Enzymes 10 Hours Module III Biomolecules and Enzymes 10 Hours				_	
Module I Biology Introduction and its Classification 7 Hours Introduction to Biology, fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird Jying and aircraft. Exciting aspect of biology - need to study biology- Discussion about biological observations of 18th Century - major discoveries. Examples from Brownian motion and the origin of thermodynamics - original observation of Robert Brown and Julius Mayor. Classification - morphological, biochemical or ecological. Hierarchy of life forms at phenomenological level. classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon vultization - Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uricotelice, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology- P. E. coli, S. Cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Module II Genetics and Macromolecular analysis 10 Hours Genetics - Newton's laws to Physical Sciences". Mendel's laws, Concept of segregation and independent suscortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analyses of biological processes at the reductionistic level Proteins - structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as nezymes, transporters, receptors and structural elements. 10 Hours Module II Biomol	Module I Biology Introduction and its Classification [7 Hours] Introduction to Biology, fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Exciting aspect of biology - need to study biology- Discussion about biological observations of 18th Century - major discoveries. Examples from Brownian motion and the origin of thermodynamics - original observation of Robert Brown and Julius Mayor. Classification - morphological, biochemical or ecological. Hierarchy of life forms at phenomenological level. classification based on (a) cellularity- Unicellular or multicellular ob ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion - aminotelic, uricotelice, ureotelic (e) Habitata -acquatic or terrestrial (e) Molecular taxonomy- three major Kingdoms of life. Model organisms for the study of biology- E.coli, Scerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Module II Genetics and Macromolecular analysis Genetics. New to Physical Sciences ⁷⁻ . Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure alternest. Module II Module III Biomolecules and Enzymes 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars			of bi	ology a	and its
Introduction to Biology, fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Exciting aspect of biology - need to study biology Discussion about biological observations of 18th Century - major discoveries. Examples from Brownian motion and the origin of thermodynamics - original observation of Robert Brown and Julius Mayor. Classification - morphological, biochemical or ecological. Hierarchy of life forms at phenomenological level. classification based on (a) cellularity - Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophs, letterotrophs, beterotrophs, beterotrophs, beterotrophs, beterotrophs, beterotrophs, beterotrophs, beterotrophs, cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Moduel II Genetics and Macromolecular analysis 10 Hours Genetics - Newton's laws to Physical Sciences"- Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis, Meiosis and Witosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Moduel III Biomolecules and Enzymes 10 Hours Biomolecules and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzyme catalyzet cactions. Enzyme catalysis. Information Transfer - T	Introduction to Biology, fundamental differences between science and engineering by draving a comparison between eye and camera, Bird flying and aircraft. Exciting aspect of biology - need to study biology: Discussion about biological observations of 18th Century - major discoveries. Examples from Brownian motion and the origin of thermodynamics - original observation of Robert Brown and Julius Mayor. Classification - morphological, biochemical or ecological. Hierarchy of life forms at phenomenological level. classification hased on (a) cellularity- Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uricotelice, ureotelic (e) Habitata- acquatic or terrestrial (c) Molecular taxonomy: three major kingdoms of life. Model organisms for the study of biology- Ecoli, Scerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Module II Genetics and Macromolecular analysis I0 Hours Genetics - Newton's laws to Physical Sciences ⁷⁻ . Mendel's laws, Concept of segregation and independent assortment. Concept of necessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structure and function. Hierarch in protein structure. Primary secondary, tertiary and dynaterians. Microscopy. Enzyme and aclellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzyme and aclellulose. Amino acid	**				_
comparison between eye and camera, Bird flying and aircraft. Exciting aspect of biology - need to study biology - Discussion about biological observations of 18th Century - major discoveries. Examples from Brownian motion and the origin of thermodynamics - original observation of Robert Brown and Julius Mayor. Classification - morphological, biochemical or ecological. Hierarchy of life forms at phenomenological level. classification based on (a) cellularity - Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization - Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uricotelice, ureotelic (e) Habitata - acquatic or terrestrial (e) Molecular taxonomy - three major kingdoms of life. Model organisms for the study of biology- E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Modul I Genetics and Macromolecular analysis 10 Hours Genetics - Newton's laws to Physical Sciences''- Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans, Complementation using human genetics. Macromolecular analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch and rellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes i monitor enzyme catalyzed reactions. Enzyme catalyzereactions, Enzyme catalyzereactions, Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of coding and decoding genetic information - universal Molecular basis of coding and decoding genetic information - universal Molecular basis of complementation. Scinety viel fuely of	comparison between eye and camera, Bird flying and aircraft, Exciting aspect of biology - need to study biology- Discussion about biological observations of 18th Century - major discoveries. Examples from Brownian motion and the origin of thermodynamics - original observation of Robert Brown and Julius Mayor. Classification - morphological, biochemical or ecological. Hierarchy of life forms at phenomenological level, classification - aminotelic, uricotelice, ureotelic (e) Habitata - acquatic or terrestrial (e) Molecular taxonomy- three major Kingdoms of life. Model organisms for the study of biology- Ecoli, Scerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Module II Genetics and Macromolecular analysis 10 Hours Genetics. Newton's laws to Physical Sciences ²⁺ . Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes 10 Hours Biomolecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzyme - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechabism of enzyme action two examples. Enzyme kinetics an					
biology- Discussion about biological observations of 18th Century - major discoveries. Examples from Brownian motion and the origin of thermodynamics - original observation of Robert Brown and Julius Mayor. Classification - morphological, biochemical or ecological. Hierarchy of life forms at phenomenological level. classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization - Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion - aminotelic, uricotelice, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology- E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Module II Genetics and Macromolecular analysis Genetics - Newton's laws to Physical Sciences''- Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis, Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins - structure and function. Hierarch in protein structure. Primary secondary, tertary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Bionolecules and Enzymes Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme actino two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information and recombination. Module IV Metabolism and Microbiology stranded to double helix to nucleosomes. Concept of genetic code. Universality and	biology- Discussion about biological observations of 18th Century - major discoveries. Examples from Brownian motion and the origin of thermodynamics - original observation of Robert Brown and Julius Mayor. Classification - morphological, biochemical or ecological. Hierarchy of life forms at phenomenological level. classification based on (a) cellularity- Unicellular or multicellular (b) Ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization - Autorophs, heterotrophs, lithotropes (d) Ammonia excretion - aminotelic, uricotelice, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology- Ecoli, Scerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Module II Genetics and Macromolecular analysis 10 Hours Genetics - Newton's laws to Physical Sciences''. Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA s					
Brownian motion and the origin of thermodynamics - original observation of Robert Brown and Julius Mayor. Classification - morphological, biochemical or ecological. Hierarchy of life forms at phenomenological level. classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization - Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uricotelice, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major Kingdoms of life. Model organisms for the study of biology- E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus I of Hours Genetics - Newton's laws to Physical Sciences''. Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as garzymes, transporters, receptors and structural elements. Module II Biomolecules and Enzymes 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzyme catalyzed reactions. Enzyme catalyzeraetions. Enzyme catalyzeraetions. Enzyme catalyzeraetic son. Finzyme catalyses in formation ransfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombinitu. Module IV Metabolism and Microbiology 8 Hours Molecular basis of information ransfer. DNA - genet	Brownian motion and the origin of thermodynamics - original observation of Robert Brown and Julius Mayor. Classification - morphological, biochemical or ecological. Hierarchy of life forms at phenomenological level. classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization -Autorophs, heterotrophs, ithotropes (d) Ammonia excretion - aminotelic, uirotelic, (c) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology- E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Module II Genetics and Macromolecular analysis 10 Hours Genetics - Newton's laws to Physical Sciences''- Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genees. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Bionolecules and DRA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme classification. Mechanism of enzyme action-two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of cofmus and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal					
Mayor. Classification - morphological, biochemical or ecological. Hierarchy of life forms at phenomenological level. classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization -Autorophs, heterotrophs, lithotopes (d) Ammonia excretion - anninotelic, uricotelice, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology- E.coli, S.ccrevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Module II Genetics and Macromolecular analysis 10 Hours Genetics - Newton's laws to Physical Sciences''. Mendel's laws, Concept of segregation and independent assortment. Concept of allele, Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins at callaytereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme s romonitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme catalyzereac	Mayor. Classification - morphological, biochemical or ecological, Hierarchy of life, forms, at phenomenological level, classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon ultilization -Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion – aminotelic, uricotelice, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology- E.coli, S.cretvisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Module II Genetics and Macromolecular analysis ID Hours Genetics - Newton's laws to Physical Sciences''. Mendel's laws, Concept of segregation and independent assortment. Concept of allele, Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and DNA/RNA. Two carbon units and lipids. Enzyme action two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information ransfer - The molecular basis of coding and decoding genetic information universal Molecular basis of information and recombination. Module IV Metabolism and Microbiology 8 Hours <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
phenomenological level. classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization - Autotrophs, heterotrophs, loterotrophs, loterotrophs, beterotrophs, beterotrophs, beterotrophs, loterotrised (d) Ammonia excretion – aminotelic, uricotelice (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology- E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology- E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus (e) Horis (f) Genetics and Macromolecular analysis (f)	phenomenological level. classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophs, lichotropes (d) Ammonia excretion – aminotelic, uricotelicc, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology- E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Moduel II Genetics and Macromolecular analysis I0 Hours Genetics - Newton's laws to Physical Sciences"- Mendel's laws, Concept of segregation and independent assortment. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genee. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Module III Module and Microbiology 8 Hours Moducata basis of information transfer. DNA - genetic material. Hierarchy of DNA structure. From single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of comp					
ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophs, lithotopes (d) Ammonia excretion – aminotelic, uricoteliec, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major Kingdoms of life. Model organisms for the study of biology- E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Module II Genetics and Macromolecular analysis I 10 Hours Genetics - Newton's laws to Physical Sciences''- Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes I 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Moleular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single strande to obuble helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology Metabolism: principles of energy transactions. Concept of Keq and its relation to standard free energy. Sponta	ultrastructure- prokaryotes or eucaryotes. (c) energy and Carbon 'ultization -Autotrophs, heterotrophs, lithotopes (d) Ammonia excretion – aminotelic, uricotelice, ureotelic (e) Habitata-acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology- E.coli, Scerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus ID Hours Genetics - Newton's laws to Physical Sciences'- Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzyme single structure are information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Glivoeysis and Krebs yeelow in formation transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of sequent of single celled organisms. Concept or leacy for complementation and recombination. Module IV Metabolism and Microbiology Metabolism: and energy consuming reactions. Concept of Keq and its relation to standard free e					
lithoropes (d) Ammonia excretion – aminotelic, uricotelic, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology- E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Module II Genetics and Macromolecular analysis I0 Hours Genetics - Newton's laws to Physical Sciences''- Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein surtcure reimary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes I0 Hours Biomolecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzyme classification. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information ntransfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Module V Metabolism a	lithotropes (d) Ammonia excretion – aminotelic, uricotelic, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology- E.coli, Scerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Module II Genetics and Macromolecular analysis 10 Hours Genetics - Newton's laws to Physical Sciences"- Mendel's laws, Concept of segregation and independent assortment. Concept of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes 10 Hours Biomolecules - Molecules and Enzymes 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA, Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information ransfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Universality and degeneracy of genetic code. Universality and Microbiology Sequences					
(e) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology- E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus Module II Genetics and Macromolecular analysis 10 Hours Genetics - Newton's laws to Physical Sciences''- Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. 10 Hours Biomolecules - Molecules and Enzymes 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzyme calayster acidon - two eaxamples. Enzyme catalyzereractions. Enzyme classification. Mechanism of enzyme action - two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. 8 Hours Modue IU Metabolism and Microbiology 8	(c) Molecular taxonomy- three major kingdoms of life. Model organisms for the study of biology- E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliaa, M. musculus Module II Genetics and Macromolecular analysis 10 Hours Genetics - Newton's laws to Physical Sciences''- Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins - structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes 10 Hours Biomolecules - Molecules of life, moomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme kinetics and kinetic parameters, RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure-from single strandet to double helits to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metaubolism: principles of energy transactions. Thermodynamics to bio					
S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus IO Hours Module II Genetics and Macromolecular analysis IO Hours Genetics - Newton's laws to Physical Sciences''- Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure aremany terrimary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes IO Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzyme - amonitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action - two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer. The molecular basis of coding and decoding genetic information + niversal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Module IV Metabolism concept of energy transactions.	Scerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus 10 Hours Module II Genetics and Macromolecular analysis 10 Hours Genetics - Newton's laws to Physical Sciences''- Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins - structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. 10 Hours Module III Biomolecules and Enzymes 10 Hours. Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mcchanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information ransfer. DNA - genetic material. Hierarchy of DNA structure-from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Modu					
Module II Genetics and Macromolecular analysis 10 Hours Genetics - Newton's laws to Physical Sciences''- Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. 10 Hours Module III Biomolecules and Enzymes 10 Hours Biomolecules - Molecules on Iff. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzyme < lassification.	Module II Genetics and Macromolecular analysis 10 Hours Genetics - Newton's laws to Physical Sciences"- Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure-from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Module IV Metabolism and Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. E			y of blo	ology-	E.con,
Genetics - Newton's laws to Physical Sciences"- Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzyme (assification). Enzymes - monitor enzyme actalyzed reactions. Enzyme kinetic parameters. RNA catalysis. Information ransfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Universality and structure and free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and media compositions. Growth kinetics.	Genetics - Newton's laws to Physical Sciences" - Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concept of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action - two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. 8 Hours Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Concept of Sugars. Concept of single celled organisms. Concept of single celled organisms. Concept of single celled organisms. Sterilization and deciding Concept of single celled organisms. Concept ores visup consuming reactions. Concept of Energy charg				10	TT
assortment. Concept of allele. Gene mapping, Gene interaction, Epistašis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes IO Hours Biomolecules and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and freeombination. Module IV Metabolism and Microbiolog 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergion reactions. Goncept of single celled organisms. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of single celled organisms. Sterilization and necisition of microorganisms. Microscopy. Ecological aspects of species and straits. Identification and nedia compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic diagnostics (Sensum digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing con-crete. Voon completion of this course, stude	assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis - part of genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action - two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. 8 Hours Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of single celled organisms. Concept of species and strains. Identification and nediasification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. </td <td></td> <td>•</td> <td></td> <td></td> <td></td>		•			
genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Io Hours Biomolecules - Molecules and Enzymes Io Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Self-healing concrete. Total: 45 Hours	genetics. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Single gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Groneyt of Keq and its relation to standard free energy. Spontaneity. ATP - energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and media compositions. Growth kinetics. Module IV Bio-inspired Legineering 10 Hours Intr					
gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action - two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. 8 Hours Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Goncept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module IV Bio-inspired Engineering 10 Hours Introduction to biologically-inspired	gene disorders in humans. Complementation using human genetics. Macromolecular analysis: analyses of biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. 8 Hours Moduel IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Goncept of single celled organisms. Concept of species and strains. Identification and nedia compositions. Growth kinetics. Moduel U Metabolism: sterilization and needia compositions. Growth kinetics. Modue Second					
biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes I0 Hours Biomolecules - Molecules and Enzymes I0 Hours Biomolecules - Molecules and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical	biological processes at the reductionistic level Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and hipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of single celled organisms. Concept of single celled organisms. Sterilization and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-orga					
structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Module III Biomolecules and Enzymes 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of single celled organisms. Sterilization and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sens	structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. 10 Hours Module III Biomolecules and Enzymes 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of single celled organisms. Concept of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to					
and structural elements. 10 Hours Module III Biomolecules and Enzymes 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. 8 Hours Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction t	and structural elements. 10 Hours Module III Biomolecules and Enzymes 10 Hours Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure - from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Sterilization and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Modue V Bio-npired Engin					
Module IIIBiomolecules and Enzymes10 HoursBiomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination.8 HoursModule IVMetabolism and Microbiology8 HoursMetabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.Module VBio-inspired Engineering10 HoursIntroduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Aliganostics (Sensium digital plaster); environmenta	Module IIIBiomolecules and Enzymes10 HoursBiomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme actalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination.8 HoursModule IVMetabolism and Microbiology8 HoursMetabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.Module VBio-inspired Engineering10 HoursIntroduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Aligorithms; Artificial neural networks; Swarm intel			ansport	ters, ree	ceptors
Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action - two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Hu	Biomolecules - Molecules of life. monomeric units and polymeric structures. Sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action - two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Deliv					
Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and nedia compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in m	Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon units and lipids. Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algori					
Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. 10 Hours Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostic	Enzymes - monitor enzyme catalyzed reactions. Enzyme catalyzereactions. Enzyme classification. Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics			starch a	and cel	lulose.
Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-m-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours	Mechanism of enzyme action -two examples. Enzyme kinetics and kinetic parameters. RNA catalysis. Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCO				1	
Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to 10 Hours 10 Hours	Information Transfer - The molecular basis of coding and decoding genetic information - universal Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours CO1 Describe how biological observations of 18th Century that lead to major discoveries. CO2 Classify biology based on morphological, biochemical and e					
Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. 10 Hours Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensum digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours Upon completion of this course, students will be able to Upon completion of this course, students will be able to Mote able to	Molecular basis of information transfer. DNA - genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of single celled organisms. Sterilization and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications); Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to CO1 Describe how biological observations of 18th Century that lead to major discoveries. CO2 Classify biolog					
stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Identification and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensum digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours	stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and nedia compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to CO1 Describe how biological observations of 18th Century that lead to major discoveries. CO2 Classify biology based on morphological, biochemical and ecological matters CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring					
code. Gene in terms of complementation and recombination. Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. 10 Hours Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to Integen to this course, students will be able to	code. Gene in terms of complementation and recombination. 8 Hours Module IV Metabolism and Microbiology 8 Hours Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. 10 Hours Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: CO1 Describe how biological observations of 18th Century that lead to major discoveries. CO2 CO2 Classify biology based on morphological, biochemical and ecological matters CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent t					
Module IVMetabolism and Microbiology8 HoursMetabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.10 HoursModule VBio-inspired Engineering10 HoursIntroduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Bio-enotex; 3D Bio-printing; Self-healing concrete.Total:45 HoursCOURSE OUTCOMES: Upon completion of this course, students will be able toUpon completion of this course, students will be able toUpon completion of this course, students will be able to	Module IVMetabolism and Microbiology8 HoursMetabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.10 HoursModule VBio-inspired Engineering10 HoursIntroduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete.Total:45 HoursCOURSE OUTCOMES: Upon completion of this course, students will be able toCO1Describe how biological observations of 18th Century that lead to major discoveries.CO2Classify biology based on morphological, biochemical and ecological mattersCO3CO3Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring			egenera	acy of g	genetic
Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.10 HoursModule VBio-inspired Engineering10 HoursIntroduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete.Total:45 HoursCOURSE OUTCOMES: Upon completion of this course, students will be able toUpon completion of this course, students will be able toUpon completion of this course, students will be able to	Metabolism: principles of energy transactions. Thermodynamics to biological systems. Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to CO2 CO2 Classify biology based on morphological, biochemical and ecological matters CO3 CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring				91	Louna
endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. <u>Module V</u> <u>Bio-inspired Engineering</u> <u>10 Hours</u> Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. <u>Total:</u> <u>45 Hours</u> <u>Upon completion of this course, students will be able to</u>	endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Vopon completion of this course, students will be able to CO1 Describe how biological observations of 18th Century that lead to major discoveries. CO2 Classify biology based on morphological, biochemical and ecological matters CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring			ma Er		
energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours Upon completion of this course, students will be able to	energy. Spontaneity. ATP - energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Vopon completion of this course, students will be able to CO1 Describe how biological observations of 18th Century that lead to major discoveries. CO2 Classify biology based on morphological, biochemical and ecological matters CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring	-				
cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours Upon completion of this course, students will be able to	cycle) - synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to CO1 Describe how biological observations of 18th Century that lead to major discoveries. CO2 CO2 Classify biology based on morphological, biochemical and ecological matters CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring					
reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to Upon completion of this course, students will be able to	reactions. Concept of Energy charge - Microbiology Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to CO2 Classify biology based on morphological, biochemical and ecological matters CO3 CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring					
species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. 10 Hours Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours Upon completion of this course, students will be able to	species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics. 10 Hours Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to CO1 Describe how biological observations of 18th Century that lead to major discoveries. CO2 Classify biology based on morphological, biochemical and ecological matters CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring					
single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to	single celled organisms. Sterilization and media compositions. Growth kinetics. Module V Bio-inspired Engineering 10 Hours Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to CO1 Describe how biological observations of 18th Century that lead to major discoveries. CO2 Classify biology based on morphological, biochemical and ecological matters CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring					
Module VBio-inspired Engineering10 HoursIntroduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete.Total:45 HoursCOURSE OUTCOMES: Upon completion of this course, students will be able to	Module VBio-inspired Engineering10 HoursIntroduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete.Total:45 HoursCOURSE OUTCOMES: Upon completion of this course, students will be able toCO1Describe how biological observations of 18th Century that lead to major discoveries.CO2Classify biology based on morphological, biochemical and ecological mattersCO3Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring			201051	icai asp	
Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to	Introduction to biologically-inspired designs (BID for Biomedical and Non-biomedical applications): Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to CO1 Describe how biological observations of 18th Century that lead to major discoveries. CO2 Classify biology based on morphological, biochemical and ecological matters CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring				10	Hours
Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Image: Self-healing concrete. <t< td=""><td>Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to CO2 Classify biology based on morphological, biochemical and ecological matters CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring</td><td></td><td></td><td>edical</td><td></td><td></td></t<>	Human-organs-on-chips; Muscular Biopolymers; Bio-optics; Nanostructures for Drug Delivery; Genetic Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to CO2 Classify biology based on morphological, biochemical and ecological matters CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring			edical		
Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to	Algorithms; Artificial neural networks; Swarm intelligence algorithms; Biosensors: role in medical diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to CO1 Describe how biological observations of 18th Century that lead to major discoveries. CO2 Classify biology based on morphological, biochemical and ecological matters CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring					
diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to	diagnostics (Sensium digital plaster); environmental monitoring; Bio-filters; Bio-robotics; 3D Bio-printing; Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to CO1 Describe how biological observations of 18th Century that lead to major discoveries. CO2 Classify biology based on morphological, biochemical and ecological matters CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring					
Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to	Self-healing concrete. Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to CO1 Describe how biological observations of 18th Century that lead to major discoveries. CO2 Classify biology based on morphological, biochemical and ecological matters CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring	•				
Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to	Total: 45 Hours COURSE OUTCOMES: Upon completion of this course, students will be able to CO1 Describe how biological observations of 18th Century that lead to major discoveries. CO2 Classify biology based on morphological, biochemical and ecological matters CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring	-		, 02	210 pi	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Upon completion of this course, students will be able to	Upon completion of this course, students will be able to CO1 Describe how biological observations of 18th Century that lead to major discoveries. CO2 Classify biology based on morphological, biochemical and ecological matters CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring			l: 4	5 Hou	rs
	CO1 Describe how biological observations of 18th Century that lead to major discoveries. CO2 Classify biology based on morphological, biochemical and ecological matters CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring	COURSE OUT	COMES:			
CO1 Describe how biological observations of 18th Century that lead to major discoveries.	CO2 Classify biology based on morphological, biochemical and ecological matters CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring	Upon co	ompletion of this course, students will be able to			
	CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring	CO1 Descri	be how biological observations of 18th Century that lead to major disco	overies	•	
CO2 Classify biology based on morphological, biochemical and ecological matters	CO3 Describe the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring	CO2 Classif	y biology based on morphological, biochemical and ecological matters			
	from parent to offspring				netic n	naterial
				2		
	CO4 Analyze biological processes at the reductionistic level	CO4 Analyz	e biological processes at the reductionistic level			

CO5	Describe at	bout all forms of life have the same building blocks and yet the manifestations are as						
		one can imagine						
CO6	Classify en	zymes and distinguish between different mechanisms of enzyme action.						
CO7	Describe D	NA as a genetic material in the molecular basis of information transfer.						
CO8	Apply therr	nodynamic principles to biological systems.						
CO9	Classify mi	croorganisms.						
CO10	Describe ab	oout bio-inspired engineering.						
REFER	ENCES:							
1. Biol	1. Biology for Engineers, Rajiv Singal, CBS Publishers and Distributors Pvt Ltd; First Edition edition (4							
June	e 2019).							

- 2. Biology for Engineers, Wiley Editorial, Wiley (2018).
- 3. Principles of Soft Computing, S. N. Sivanandam, S. N. Deepa, Wiley; Third edition (2018).
- 4. Computational Medicine: Tools and Challenges, Zlatko Trajanoski, Springer; 2012 edition (19 September 2012).
- 5. Health Informatics E-Book: An Interprofessional Approach, Ramona Nelson, Nancy Staggers, Elsevier; 2 edition (December 8, 2016).
- 6. Biology for Engineers, G.K..Suraishkumar, Oxford University Press
- 7. Biology for Engineers, Arthur T. Johnson, CRC Press

1902CS406	DATABASE MANAGEMENT SYSTEMS	L 2	T	P	<u>C</u>
PREREQUI	ISITES:	3	0	0	3
	rogramming Languages				
COURSE O	BJECTIVES:				
1.To underst	and the fundamentals of data models and conceptualize and depict a databa	nse sy	stem	using	ER
diagram					
	study of SQL and relational database design				
	knowledge in transaction processing, concurrency control techniques and reco	overy	proce	dures	•
	bout data storage techniques a query processing.				
	rize the students with the different types of databases.) TT .	
Module I	INTRODUCTION to file system - Introduction to database system - Data Base Architecture -	Data		9 Hou	
	a - Instance and Schema– Data Models- Types of Data Models – Database				
	inistrator-Entity relationship model - Mapping Cardinalities-Keys, E-R diagra		uages	- Data	ibasi
Module II	QUERY LANGUAGE & OPTIMIZATION	ums.	(9 Hou	rc
	DML-DCL-TCL-Embedded SQL-Static Vs Dynamic SQL - Views – Constr	aints			
	and authorization-Query processing and optimization - Functional Dependent				
Module III	TRANSACTION PROCESSING) Hou	
Transaction	Concepts - ACID Properties-Need for Concurrency Control -Schedules- Se	erializ	ability	y: Co	nflic
and View - C	Concurrency Control - Locking Mechanisms – Two phase locking- Time Star	ip bas	sed Co	oncuri	enc
Control –Dea	adlock-Recovery Techniques-Immediate update- Deferred update- shadow page	ging.			
Module IV	FILES AND INDEXING			9 Hou	
	f Physical Storage Media-RAID -File Organization-File operations - Ha	ashing	g Tec	hniqu	es -
	ngle level and Multi-level Indexes-B+ tree Index Files-B tree Index Files.				
Module V					
	ADVANCED TOPICS			9 Hou	
Data wareho	using-Data mining and knowledge discovery-OODBMS- Object Relational D		ises –	XML	Data
Data wareho Base - Clou	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tu		ises –	XML	Data
Data wareho Base - Clou	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project.	ning	ises –] -Case	XML Stud	Data y fo
Data wareho Base - Clou Design and M	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL	ning	ises –] -Case	XML	Data y fo
Data wareho Base - Clou Design and M	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR :	ning	ises –] -Case	XML Stud	Data y fo
Data wareho Base - Clou Design and M FURTHER 1. Adv	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology	ning	ises –] -Case	XML Stud	Data y fo
Data wareho Base - Clou Design and M FURTHER 1. Adv 2. Data	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics	ning	ises –] -Case	XML Stud	Data y fo
Data wareho Base - Clou Design and M FURTHER 1. Adv 2. Data COURSE O	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES:	ning	ises –] -Case	XML Stud	Data y fo
Data wareho Base - Clou Design and M FURTHER 1. Adv 2. Data COURSE O After compl	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to	ning	ises –] -Case	XML Stud	Data y fo
Data wareho Base - Clou Design and M FURTHER 1. Adv 2. Data COURSE O After compl CO1 U	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to Inderstand the basic concepts of the database and data models	ning -	ises – -Case 15 HC	XML Stud	Data y fo
Data wareho Base - Clou Design and M FURTHER 1. Adv 2. Data COURSE O After compl CO1 U CO2 I	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to Inderstand the basic concepts of the database and data models lustrate a database using ER diagrams and map ER into Relations and normali	ning · · · · · · · · · · · · · · · · · · ·	e Rela	XML Stud	Data y fo
Data wareho Base - Clou Design and M FURTHER 1. Adv 2. Data COURSE O After compl CO1 U CO2 II CO3 A	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to Inderstand the basic concepts of the database and data models lustrate a database using ER diagrams and map ER into Relations and normalic cquire the knowledge of query evaluation to monitor the performance of the I	ize th	e Rela	XML Stud	Data y fo
Data wareho Base - Clou Design and M FURTHER 1. Adv 2. Data COURSE O After compl CO1 U CO2 II CO3 A CO4 A	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to Inderstand the basic concepts of the database and data models lustrate a database using ER diagrams and map ER into Relations and normali	ize th	e Rela	XML Stud	Data y fo
Data wareho Base - Clou Design and M FURTHER 1. Adv 2. Data COURSE O After compl CO2 II CO3 A CO4	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to Inderstand the basic concepts of the database and data models lustrate a database using ER diagrams and map ER into Relations and normalic cquire the knowledge of query evaluation to monitor the performance of the I scquire the knowledge about different storage techniques and Query Processin xplain the basic concepts of various types of Databases	ize th	e Rela	XML Stud	Data y fo
Data wareho Base - Clou Design and M FURTHER 1. Adv 2. Data COURSE O After compl CO1 U CO2 II CO3 A CO4 A CO5 E REFERENC	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to Inderstand the basic concepts of the database and data models lustrate a database using ER diagrams and map ER into Relations and normalic cquire the knowledge of query evaluation to monitor the performance of the I scquire the knowledge about different storage techniques and Query Processin xplain the basic concepts of various types of Databases	ize th DBMS	ises – -Case I5 HC e Rela	XML Stud	Data
Data warehoBase - ClouDesign and MFURTHER1. Adv2. DataCOURSE OAfter complCO1CO2IICO3CO4ACO5EREFERENC1.AbrahamMcGraw Hil	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to Inderstand the basic concepts of the database and data models lustrate a database using ER diagrams and map ER into Relations and normalic cquire the knowledge of query evaluation to monitor the performance of the I cquire the knowledge about different storage techniques and Query Processin xplain the basic concepts of various types of Databases CES: Silberschatz, Henry F.Korth and S.Sundarshan "Database System Conce 1, 2017.	ning ize th DBMS g epts",	e Rela Sixt	XML Stud DURS	Data y fo
Data warehoBase - ClouDesign and MFURTHER1. Adv2. DataCOURSE OAfter complCO1UCO2IICO3ACO4ACO5EREFERENC1.AbrahamMcGraw Hil2. RamezEli	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to Inderstand the basic concepts of the database and data models lustrate a database using ER diagrams and map ER into Relations and normalic cquire the knowledge of query evaluation to monitor the performance of the I cquire the knowledge about different storage techniques and Query Processin xplain the basic concepts of various types of Databases CES: Silberschatz, Henry F.Korth and S.Sundarshan "Database Systems Conce I, 2017. masri and Shamkant B. Navathe, "Fundamentals of Database Systems", F	ning ize th DBMS g epts",	e Rela Sixt	XML Stud DURS	Data y fo
Data wareho Base - Clou Design and M FURTHER 1. Adv 2. Data COURSE O After compl CO1 U CO2 II CO3 A CO4 A CO5 E REFERENC 1.Abraham McGraw Hil 2. RamezEh Education, 2	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to Inderstand the basic concepts of the database and data models lustrate a database using ER diagrams and map ER into Relations and normalic cquire the knowledge of query evaluation to monitor the performance of the I cquire the knowledge about different storage techniques and Query Processin xplain the basic concepts of various types of Databases CES: Silberschatz, Henry F.Korth and S.Sundarshan "Database System Conce 1, 2017. masri and Shamkant B. Navathe, "Fundamentals of Database Systems", F 013.	ning ize th DBM3 g epts",	e Rela	XML Stud	Data y fo
Data wareho Base - Clou Design and M FURTHER 1. Adv 2. Data COURSE O After compl CO1 U CO2 II CO3 A CO4 A CO5 E REFERENC 1.Abraham McGraw Hil 2. RamezEln Education, 2 3.Thomas M	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to Inderstand the basic concepts of the database and data models lustrate a database using ER diagrams and map ER into Relations and normalic equire the knowledge of query evaluation to monitor the performance of the I equire the knowledge about different storage techniques and Query Processin xplain the basic concepts of various types of Databases CES: Silberschatz, Henry F.Korth and S.Sundarshan "Database System Conce 1, 2017. masri and Shamkant B. Navathe, "Fundamentals of Database Systems", F 013. I. Connolly and Carolyn E. Begg, —Database Systems - A Practical A	ning ize th DBM3 g epts",	e Rela	XML Stud	Data y fo
Data wareho Base - Clou Design and M FURTHER 1. Adv 2. Data COURSE O After compl CO1 U CO2 II CO3 A CO4 A CO5 E REFERENC 1.Abraham McGraw Hil 2. RamezEli Education, 2 3.Thomas M	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to Inderstand the basic concepts of the database and data models lustrate a database using ER diagrams and map ER into Relations and normalic cquire the knowledge of query evaluation to monitor the performance of the I cquire the knowledge about different storage techniques and Query Processin xplain the basic concepts of various types of Databases ZES: Silberschatz, Henry F.Korth and S.Sundarshan "Database System Conce 1, 2017. masri and Shamkant B. Navathe, "Fundamentals of Database Systems", F 013. 1. Connolly and Carolyn E. Begg, —Database Systems - A Practical A ion, and Managementl, fifth edition, Pearson Education, 2011	ize th DBMS g epts", ifth I	e Rela Sixt	XML Stud DURS DURS ations h Ed n, Pea	Data y fo
Data wareho Base - Clou Design and M FURTHER 1. Adv 2. Data COURSE O After compl CO1 U CO2 II CO3 A CO4 A CO5 E REFERENO 1.Abraham McGraw Hil 2. RamezEln Education, 2 3.Thomas M Implementat 4.C.J.Date, A	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to Inderstand the basic concepts of the database and data models lustrate a database using ER diagrams and map ER into Relations and normalic equire the knowledge of query evaluation to monitor the performance of the I cquire the knowledge about different storage techniques and Query Processin xplain the basic concepts of various types of Databases CES: Silberschatz, Henry F.Korth and S.Sundarshan "Database System Conce 1, 2017. masri and Shamkant B. Navathe, "Fundamentals of Database Systems", F 013. I. Connolly and Carolyn E. Begg, —Database Systems - A Practical A ion, and Managementl, fifth edition, Pearson Education, 2011 A.Kannan and S.Swamynathan, —An Introduction to Database Systems], Eig	ize th DBMS g epts", ifth I	e Rela Sixt	XML Stud DURS DURS ations h Ed n, Pea	Data y fo
Data warehoBase - ClouDesign and MT. Adv2. DataCOURSE OAfter complCO1CO2IICO3CO4ACO5EREFERENC1.AbrahamMcGraw Hil2. RamezEliEducation, 23.Thomas MImplementat4.C.J.Date, AEducation, 2	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to Inderstand the basic concepts of the database and data models lustrate a database using ER diagrams and map ER into Relations and normalic cquire the knowledge of query evaluation to monitor the performance of the I cquire the knowledge about different storage techniques and Query Processin xplain the basic concepts of various types of Databases CES: Silberschatz, Henry F.Korth and S.Sundarshan "Database System Conce 1, 2017. masri and Shamkant B. Navathe, "Fundamentals of Database Systems", F 013. I. Connolly and Carolyn E. Begg, —Database Systems - A Practical A ion, and Managementl, fifth edition, Pearson Education, 2011 A.Kannan and S.Swamynathan, —An Introduction to Database Systems", Eig 012.	ize th DBM: g epts", ifth I Appro	e Rela Sixt Edition	XML Stud DURS DURS h Ed n, Pea to De	Data y fo
Data wareho Base - Clou Design and M FURTHER 1. Adv 2. Data COURSE O After compl CO1 U CO2 II CO3 A CO4 A CO5 E REFERENO 1.Abraham McGraw Hil 2. RamezEli Education, 2 3.Thomas M Implementat 4.C.J.Date, <i>A</i> Education, 2 5.Raghu Ra	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to Inderstand the basic concepts of the database and data models lustrate a database using ER diagrams and map ER into Relations and normalic cquire the knowledge of query evaluation to monitor the performance of the I cquire the knowledge about different storage techniques and Query Processin xplain the basic concepts of various types of Databases DES: Silberschatz, Henry F.Korth and S.Sundarshan "Database Systems", F 013. 1. Connolly and Carolyn E. Begg, —Database Systems - A Practical A ion, and Managementl, fifth edition, Pearson Education, 2011 A.Kannan and S.Swamynathan, —An Introduction to Database Systemsl, Eig 012. amakrishnan, —Database Management Systemsl, Fourth Edition, M	ize th DBM: g epts", ifth I Appro	e Rela Sixt Edition	XML Stud DURS DURS h Ed n, Pea to De	Data y fo
Data wareho Base - Clou Design and M FURTHER 1. Adv 2. Data COURSE O After compl CO1 U CO2 II CO3 A CO4 A CO5 E REFERENO 1.Abraham McGraw Hil 2. RamezEli Education, 2 3.Thomas M Implementat 4.C.J.Date, A Education, 2 5.Raghu Ra Publications,	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to Inderstand the basic concepts of the database and data models lustrate a database using ER diagrams and map ER into Relations and normalic cquire the knowledge of query evaluation to monitor the performance of the I cquire the knowledge about different storage techniques and Query Processin xplain the basic concepts of various types of Databases DES: Silberschatz, Henry F.Korth and S.Sundarshan "Database Systems", F 013. 1. Connolly and Carolyn E. Begg, —Database Systems - A Practical A ion, and Managementl, fifth edition, Pearson Education, 2011 A.Kannan and S.Swamynathan, —An Introduction to Database Systemsl, Eig 012. amakrishnan, —Database Management Systemsl, Fourth Edition, M 2015.	ize th DBMS g epts", ifth H Appro ghth I	e Rela Sixt Edition	XML Stud DURS DURS h Ed n, Pea to De	Dat y fo
Data warehoBase - ClouDesign and MI. Adv2. DataCOURSE OAfter complCO1CO2IICO3ACO4ACO5EREFERENO1.AbrahamMcGraw Hil2. RamezEliEducation, 23.Thomas MImplementat4.C.J.Date, AEducation, 25.RaghuRaPublications,6.Frank. P. C	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to Inderstand the basic concepts of the database and data models lustrate a database using ER diagrams and map ER into Relations and normalicquire the knowledge of query evaluation to monitor the performance of the I cquire the knowledge about different storage techniques and Query Processin xplain the basic concepts of various types of Databases CES: Silberschatz, Henry F.Korth and S.Sundarshan "Database Systems", F 013. I. Connolly and Carolyn E. Begg, —Database Systems - A Practical A ion, and Managementl, fifth edition, Pearson Education, 2011 A.Kannan and S.Swamynathan, —An Introduction to Database Systemsl, Eig 012. amakrishnan, —Database Management Systemsl, Fourth Edition, M 2015. Coyle, "XML, Web Services And The Data Revolution", Pearson Education, 2	ize th DBMS g epts", ifth H Appro ghth I	e Rela Sixt Edition	XML Stud DURS DURS h Ed n, Pea to De	Dat y fo
Data wareho Base - Clou Design and M FURTHER 1. Adv 2. Data COURSE O After compl CO1 U CO2 II CO3 A CO4 A CO5 E REFERENO 1.Abraham McGraw Hil 2. RamezEli Education, 2 3.Thomas M Implementat 4.C.J.Date, A Education, 2 5.Raghu Ra Publications,	using-Data mining and knowledge discovery-OODBMS- Object Relational D d based systems – NOSQL introduction -Hbase data model -Database Tur Manage the Database for any Project. TOTAL READING / SEMINAR : anced Database Technology a mining and Data warehousing, Data Analytics UTCOMES: etion of the course, Student will be able to Inderstand the basic concepts of the database and data models lustrate a database using ER diagrams and map ER into Relations and normalicquire the knowledge of query evaluation to monitor the performance of the I cquire the knowledge about different storage techniques and Query Processin xplain the basic concepts of various types of Databases TES: Silberschatz, Henry F.Korth and S.Sundarshan "Database Systems", F 013. I. Connolly and Carolyn E. Begg, —Database Systems - A Practical A ion, and Managementl, fifth edition, Pearson Education, 2011 A.Kannan and S.Swamynathan, —An Introduction to Database Systems!, Eig 012. amakrishnan, —Database Management Systems!, Fourth Edition, M 2015. Coyle, "XML, Web Services And The Data Revolution", Pearson Education, 2 l.ac.in/	ize th DBMS g epts", ifth H Appro ghth I	e Rela Sixt Edition	XML Stud DURS DURS h Ed n, Pea to De	Dat y fo

1901MCX01	ENVIRONMENTAL SCIENCE	L	T	P	C
PREREQUISI	(Common to all Branches of B.E/ B.Tech)	3	0	0	0
	dge about the valuable environment				
	dge to conserve this precious environment				
	•				
COURSE OBJ	terdisciplinary and holistic nature of the environment.				
	ow natural resources and environment affect the quality of life and stin	mula	to the		t for
sustainable deve	· · ·	muia	le lle	que	51 101
	socio-economic, political and ethical issues in environmental science.				
		<u> </u>	10	11	
	ECOSYSTEMS AND BIODIVERSITY			Hour	
	cosystem – structure and function of anecosystem – producers, consume				
	nd Nitrogen cycle – energy flow in the ecosystem – ecological success, characteristic features, structure and function of the (a) forest ecos				
• •	esert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers,	•		•	
	biodiversity definition: genetic, species and ecosystem diversity $- vz$				
	e, productive use, social, ethical, aesthetic and option values – hot-spo				
	versity: habitat loss, poaching of wildlife, man-wildlife conflicts – enda				
	- conservation of biodiversity: In-situ and ex-situ conservation of biodive			a ene	enne
	of the medicinal plants in your native place		-		
	NATURAL RESOURCES		10	Hour	'S
	: Use and over-exploitation, deforestation, case studies- timber extraction	n. mi			
salinity, case stuues of alternate digestion; case services for sus Documentation $\overline{\mathbf{MODULE III}}$ Definition – So Control of partic CO ₂ (metallo or soil waste manage) (e) Noise polluti	nd overgrazing, effects of modern agriculture, fertilizer-pesticide probl dies – Energy resources: Growing energy needs, renewable and nonrenew energy sources. Energy Conversion processes – Biogas – production studies – Land resources: Land as a resource, land degradation, man ind ertification – role of an individual in conservation of natural resources stainable lifestyles. of the effect of modern Agriculture in your nearby Village ENVIRONMENTAL POLLUTION urce, causes, effects and control measures of: (a) Air pollution - Mi culate and gaseous emission, Control of SO _X , NO _x , CO and HC) -Techn ganic frame works)(b) Water pollution – Waste water treatment processes gement: causes, effects and control measures of municipal solid wastes – on (f) Thermal pollution (g) Nuclear hazards–role of an individual in pre- studies. Documentation study of local polluted site – Urban / Rural / Indu	wable and uced s – E tigati nolog s. (c) (d) N event	eener uses, land quita quita on p y for Soil Marine ion o	gysou anae slides ble u Iours roced capt pollut e poll	urces, robic , soil se of ures- uring tion - ution ution
MODULE IV	Social issues and the environment	istilia		lours	
From unsustaina water harvesting of green chemis Wildlife protection 1998 and amend pollution contro- taken by govern MODULE V	ble to sustainable development – urban problems related to energy – wat a, watershed management -environmental ethics: Issues and possible solu try – consumerism and waste products – environment protection act – A on act – Forest conservation act – The Biomedical Waste (Management a lments- scheme of labeling of environmentally friendly products (Ecoma l boards- disaster management: floods, earthquake- Public awareness.Ana ment of India to prevent pollution (Green India and Clean India) HUMAN POPULATION AND THE ENVIRONMENT wth, variation among nations – population explosion – family we	tions Air ac and H ark) c alyze	nserv – 12 et – V landli entra the re	ation Princ /ater ng) R l and ecent	, rain ciples act – tules; state steps
environment and Environmental i and human heal	I human health – human rights – value education – $HIV / AIDS$ – womer mpact analysis (EIA) -GIS-remote sensing-role of information technol th – Case studies. Documentation study of the Human health and the en	n and ogy	child in en	welf viron	are – ment
	(O) FOROT				
Hospital (Statist		ГАТ	: 45 I	IOU	DE

COURSE OU	UTCOMES:
	On the Successful completion of the course, Students will be able to
CO1:	Describe the importance of ecosystem and its conservation.
CO2:	Differentiate various natural resources and the urgent need to conserve the natural resources.
CO3:	Explain the different types of pollution and its effects.
CO4:	Describe the various environmental protection acts.
CO5:	Explain the major diseases, women, child development and the impacts of population explosion.
FURTHER R	EADING / CONTENT BEYOND SYLABUS / SEMINAR :
Human rights	violation
E - waste and l	piomedical waste -Identification of adulterants in food materials
REFERENCE	ES:
	K., "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards", Vol. I iro Media, 3rd edition, BPB publications, 2010.
2.Cunningham 2001.	, W.P. Cooper, T.H. Gorhani, "Environmental Encyclopedia", Jaico Publ., House, Mumbai,
3. Dharmendra	S. Sengar, "Environmental law", Prentice hall of India PVT LTD, New Delhi, 2007.
4. Rajagopalar	n, R, "Environmental Studies-From Crisis to Cure", Oxford University Press, 2005.
5.Benny Josep	h, "Environmental Science and Engineering", Tata McGraw-Hill, New Delhi, 2006
6. Ravikrishna	n"Environmental Science and Engineering" Sri Krishna Hi-tech Publishing Company Pvt .
7.https://en.wil	kipedia.org/wiki/Carbon_capture_and_storage

1902CS451	NETWORKS LABORATORY	L 0	Т 0	P 2	C 1
PREREQUISITES:		U	U	4	
1.Computer Organizati	on and Architecture				
2. Computer Programmi					
COURSE OBJECTIV					
1. To configure netw					
	th different protocols and network components using simulators e about the working of routing algorithms.				
	e about the working of fouting argorithms.				
List of Experiments:	ing I al Di45 And Da Tha Dallaning Cabling Washer Is A Nate				
	ling Jack Rj45 And Do The Following Cabling Works In A Netw	VOrk			
A. Cable Crimping					
B. Standard Cabling					
C. Cross Cabling And					
	onnection Using Three Systems Using Any Topology with kit.				
1	Stop And Wait Protocol And Sliding Window Protocol.				
3.Implementation Of S	Simulation Of ARP And RARP				
4.Implementation Of I	Ping Command .				
5.Implementation OfTr	raceroute Command .				
6.Implementation Of H	Ittp Socket For Web Page Upload And Download .				
7.ImplementingSubnet	ting.				
9.Implementation Of I	mplementation Of TCP Chat				
10.Implementation Of	File Transfer UsingTcp And Echo Program				
11.Simulation Of Dom	ain Name System And Simulation Of SNMP .				
12. Implementation Of	RPC.				
		otal:	45	Hou	rs
Additional Experiment	nts:				
Socket programming					
	working concepts in Linux				
COURSE OUTCOM					
	After completion of the course, Student will be able to				
	dentify the different types of cables in networks.				
	Configure networking in a system.				
	mplement and simulate protocols. Compare the performance of different routing algorithms using s	imula	tion t	0010	
REFERENCES:		iiiiuia		0015.	
	Data Communication and Networking, 5th Edition, Tata McGra	w-Hi	11. 20	13	
	I Keith W.Ross, Computer Networking: A Top-Down App				the
Internet, Pearson Education				C	
	d Bruce S.Davie, Computer Networks, Elsevier, 2009				
	m, Computer Networks, Pearson Education, 2010				
	ata and Computer Communication, Pearson Education, 2007				
	nd M.S.Narayanan, Computer Networks and Internets, Pearson E	ducat	10n, 2	2008.	
7. <u>http://nptel.ac.in</u>	V com				
8. profameencse.weebl	y.com				

1902CS452	OPERATING SYSTEMS LABORATORY	L	Т	P	С
		0	0	2	1
PREREQUIS	uter knowledge.				
2.C Programm	-				
COURSE OB					
	a complete knowledge about UNIX commands.	C	•		
	in an overview of distributed operating systems and the related topi				
	ication models (message passing, remote procedure call, distributed object co	omputir	ıg, 2	ina sn	ared
2 To know					
	the concepts of process management and synchronization				
	the concept of memory management such as best fit, worst fit and so on				
List of Experi 1. Study	of basic Commands in Unix Operating System				
	programs using the following system calls (fork, exec, getpid, exit, wait, closed)	a stat			
	ir, readdir).	se, stat,			
	programs using the I/O system calls (open, read, write, etc).				
	ation of Unix commands.				
5. Imple	mentation of CPU Scheduling Algorithms(FCFS, SJF, RR, Priorty).				
	mentation of Page Replacement Algorithms (LRU, OPT, FIFO).				
	mentation of memory allocation algorithms (First Fit, Best Fit, Worst Fit)				
8. Imple	ment the Producer – Consumer problem using semaphores.				
	ation of Shared Memory Concept.				
	mentation of bankers Algorithm.				
11. Imple	ment Paging Technique of memory management.				
	mentation Disk Scheduling Algorithms				
13. Study	of Linux OS, Android OS.				
		Total	. 4	45 Ho	urs
ADDITIONA	L EXPERIMENTS:				
1. Implement	t some memory management schemes				
	n Oriented Experiments				
3. Mini Proje	ect				
	TCOMES: After completion of the course, Student will be able to				
	iar with the language and terms of the UNIX/LINUX operating system				
	the commands and procedures needed to carry out basic operations or	n the U	JNI	X/LIN	JUX
operating syste					
•	develop and implement a software solution to a given problemwhich emplo	ys oper	atin	ig syst	ems
tools					
REFERENCI					
	www.ee.surrey.ac.uk/Teaching/Unix/unixintro.html				
•	//kb.iu.edu/d/afsk				
	www.ch.embnet.org/CoursEMBnet/Pages05/slides/Unix05.pdf				
	www.ee.surrey.ac.uk/Teaching/Unix/				
	www.comptechdoc.org/os/linux/usersguide/linux_ugshellpro.html				
6. http://	www.cs.jhu.edu/~yairamir/cs418/os4/sld025.html				

1902CS453	DATABASE MANAGEMENT SYSTEMS LABORATORY	L T P C 0 0 2 1
PREREQUIS	ITES::	
_	gramming Languages	
COURSE OB	IECTIVES:	
1. Learn to crea	ate and use a database	
	zed with a query language	
	on experience on DDL Commands	
	understanding of DML Commands and DCL commands	
	idvanced SQL queries.	
	o different applications	
LIST OF EXP		
	and DML commands	
	action control commands and Aggregate Functions	
	and Nested Queries	
	aints and Views	
	evel programming language extensions Control structures	
6 Curso		
7 Trigge		
	dures, Functions and Report	
	ase Design and implementation with any one front end tool (Mini Project)	
	le list of Projects	
	pital management	
	way ticket reservation	
	lent Mark list processing	
	ployee pay roll processing entory control	
	onal Information System	
	etable Management System	
	A Management System	
	ne Course Registration System	
	rary Management System	
	TOTAI	L: 45 HOURS
REQUIREME	ENTS:	
	andalone desktops 30 Nos. (or) Server supporting 30 terminals or more.	
Software: Fro	nt end: Visual Studio/Java/Equivalent Back end: Oracle/MySQL/Sql Serv	ver DB2 or Equivalent.
FURTHER R	EADING / CONTENT BEYOND SYLLABUS / SEMINAR :	
	vith Oracle Academy, a programme Oracle Workforce Development Pr	
	his programme extensive hands-on training on SQL and PL/SQL will be given by the second s	iven to students during
the Lab session		
	g SQL queries for Hierarchical retrieval of data (tree structured data)	
	ng Data Dictionary static Views	
Ŭ	stored procedures and Functions for implementing object level data securit	ty
COURSE OU		
	After completion of the course, Student will be able to	
	Design and implement a database schema for a given problem-domain	
	Create and maintain tables using various PL/SQL statements	
	Apply Triggers, Views and constraints commands to solve real time problem	ms
	Create reports using functions and procedures	
	Apply front end and back end tools for real time projects	
REFERENCE		
1. http://ilearni		
2. http://course 3. http://nptel.a		
5. http://nptel.a	0.111/	

100 <i>4</i> CE <i>45</i> 1	LIFE SKILLS : VERBAL ABILITY L	T P	С
1904GE451	0	0 2	1
COURSE OBJECTIV	/ES:		
	s comprehend and use vocabulary words in their day to day communication		
11 2 11 1	priate reading strategies for interpreting technical and non-technical docu	ments u	sed in
job-related setting			
	nts will be able to use targeted grammatical structures meaningfully and a	ppropria	tely in
oral and written			1.1
	students to arrange the sentences in meaningful unit and to deter	mine w	hether
	ly on active or passive voice		
	rinciples of effective business writing to hone communication skills		
	CABULARY USAGE	<u>6 ho</u>	
	yms and Antonyms based on Technical terms – Single word Substitution	- News	paper,
Audio and video lister MODULE II CO	MPREHENSION ABILITY	Cha	
		6 ho	
	ing – Social Science passages – Business and Economics passages – lates	st pontie	ai and
	assages – Theme detection – Deriving conclusion from passages. ASIC GRAMMAR AND ERROR DETECTION	6 ho	
	idancy – Ambiguity – Concord - Common Errors – Spotting Error		
		s - se	ntence
	Detection FAQ in Competitive exams. EARRANGEMENT AND GENERAL USAGE	6 ho	
	loze Test - Idioms and Phrases – Active and passive voice – Spelling test.	0 110	urs
	PPLICATION OF VERBAL ABILITY	6 ho	1116
	Business Vocabulary - Delivering Good / Bad News - Media Communic		
	iting - Proposal writing – Essay writing – Indexing – Market surveying.	auon -	Linan
Luquette Report WI	TOTAL	· 30 H	OURS
COURSE OUTCOM		. 50 11	JUND
	ew words in their day to day communication.		
	nformation swiftly while reading passages.		
	eir oral and written communication.		
	e sentences and able to identify the voice of the sentence.		
	their knowledge of the best practices to craft effective business documents	5	
	the etiquette in business.	-	
REFERENCES:	······································		
	Aeenakshi Upadhyav, How to Prepare for Verbal Ability and Reading Com	prehensi	on for
1. Arun Sharma and M		r	
	blication, Seventh Edition 2017		
CAT, McGrawHill Pu	blication, Seventh Edition 2017 Vikas Aggarwal, Quick Learning Objective General English, S.Chand Pub	lishing I	House.
CAT, McGrawHill Pu	ublication, Seventh Edition 2017 Vikas Aggarwal, Quick Learning Objective General English, S.Chand Pub	lishing I	House,
CAT, McGrawHill Pu 2. R S Aggarwal and V 2017	Vikas Aggarwal, Quick Learning Objective General English, S.Chand Pub	lishing I	House,
CAT, McGrawHill Pu 2. R S Aggarwal and 2017 3. Dr.K.Alex , Soft Sk			