E.G.S. PILLAY ENGINEERING COLLEGE, (Autonomous)

Approved by AICTE, New Delhi

Affiliated to Anna University, Chennai | Accredited by NAAC with 'A++ 'Grade

Accredited by NBA (B.Tech-IT, B.E-CSE and ECE)(Tier-1)

NAGAPATTINAM - 611002

B.TECH – Artificial Intelligence & Data Science

R 2019

Full Time Curriculum and Syllabus

SEMESTER-3

S. No.	Course Code	Course Title	L	Т	P	С
1	1901MA304	Engineering Mathematics – III	3	2	0	4
2	1902AS301	Programming using Python	3	0	2	4
3	1902AS302	Data Structures and Algorithms	2	0	2	3
4	1902AS303	Database Management Systems	2	0	2	3
5	1902AS304	Computer Organization and Design	2	0	0	2
6	1902AS305	Big Data Systems	3	0	0	3
7	1902AS306	Digital Principles and Design	2	0	2	3
8	1902MCX02	Constitution of India	2^	0	0	0
9	1904GE351	Life Skills: Verbal Ability	0	0	2	1
		Total Credits				23

100114 004		ENGINEERING MATHEMATICS - III (For AIDS)							L	Т	P	С				
1901MA304								3	1	0	4					
DDEDEO	петт	T.												<u> </u>	I	
rkekeyuisiie:																
2 Ontimization																
2. Optimization.																
			19:	a a m t a a f		1.11.4	ter and				~					
	introat			icepts of	prop		ly and	randon	n var	ladies	s.			~		
$\begin{array}{c} 2. & 103 \\ 2 & 75 \end{array}$	2. To apply mathematical linear programming techniques to solve constrained problems.															
5. 10 a	3. To appreciate the use of simulation techniques.															
4. 101	4. To impart knowledge of handling random vectors which represent random variables in multi-															
dim	ension	al.	7													
COURSE	OUT	COMES	5:	1: f 1	1		- (1		1	1.1.4.						
	the su		comple	tion of t	ne cou	irse,	studer	Its Will	be a	ble to) Eatam dana	1 1:04		tione -	- la i a la	
COI: Use	the ful	life pho	tal conce	epts of p	robabi	inty	and na	ve kno	wied	ige of	standard	i aisti	.1DU	tions v	vnicn	
can describ	be real	he phe		n. f one on	d two	dim	oncion	al ranc	lom	unrink	los in on	ainaa		a annli	ontion	20
CO2 : App	ny the	Dasic CC	olution	in the re	u two	onti	imizin	a_1 rance	otion		mes in en	ginee	ring ma	g appn	cation	18.
conditions	and re	source (constrair	ni die re	ai me	opu	uniziii	s/ anoci	auoil	/ assig	,innent pl	oblei	115 1		ng	
CO4. Sim	ulate a	nnronri	ate annli	cation/d	istrihu	tion	nrohle	ms								
CO5 : Dev	elon e	xposure	to the n	rincipal	compo	men	t analy	sis of 1	rando	om ve	ctors and	l mat	rice	s		
			<u>.</u>	menpur	compe		e unury	515 01 1	unuc	, iii , c	ctors and	. IIIuu		5.		
COS VS P	US MA	APPINC	J:													
		DO1	DO 2	DO4		-		DO7		000	DOO			DO11	DC	10
	PUI	PO2	P03	PO4	PO:	5	PU0	PU/	ľ	108	P09	PUI	U	POII	PU	14
	3	2	1						_				\rightarrow			
	3	$\frac{2}{2}$	1						_				\rightarrow			
C02	3	2	1						_				\rightarrow			
	2	2	1						_				\rightarrow			
C04	3	2							_				\rightarrow			
	3															
COs Vs Ps	SUS M	IAPPIN	G													
					۲ V	DCO			503							
						130			303	'						
					/5 101	1				_						
					102	1				_						
					102 103	1				_						
					'04	1				_						
					'05	1				_						
COURSE	CON	TENTS	•		.05	1										
MODULE		PROR	ARII IT		ΡΛΝΓ		IVAR	IARII	75					() Hou	rs
Avions of	nroha	hility	Conditio	nal prol	abilit		Total r	robah	ility	Bat	ves' theor	em I	2 an	dom v	ariabl	<u></u>
Distributio	proba	tion r	roportio	Droh	ability	y -	rotar p	otion	Drol	– Day bobili	ty donait	v fun	otic	uom v	omon	to –
Distributio	i staiby	tiona Di	nopertie	$\mathbf{S} = \mathbf{F} \mathbf{I} 0 0$	aunity	/ ma	1 diatail	ution		Jaoini	ty densit	y luli	cuo	m - m	omen	18 -
			monnal,							MDF4) Uan	
Loint 11	2 II]				KANL		IVAK		LSAI	NDE			f	<u> </u>	<u>, non</u>	1.2
Joint distr		$\frac{1S}{1S} - M$	arginal	and cor	$\frac{1011101}{2}$			itions	- EX	xpecto	ed value	S OI	Tur	ictions	of t	wo
variables-0	Correla	ation an	dregress	ion(ford	iscrete	e dat	aonly)	- Centi	ral lii	mitthe	eorem– S	tatem	ient	-		
MODULE	EIII	LINEA	RPROG	RAMM	ING				-			-			9 Ho	urs
Thephases	of	ORstud	y–forma	tionofar	n L	L.P	mo	del-gra	aphic	alsolu	ution-sin	nplex	algo	orithm	–artifi	icial
variableste	chniqu	ie -BigN	A metho	d.				-	-			-	-			
L																

MODULE IV SIMULATION	9 Hours					
Definition and steps of simulation, random number, random number generator, Discrete Event System						
Simulation-clock, event list, Application in Scheduling, Queuing systems and Inventory systems.						
MODULE V MULTIVARIATEANALYSIS	9 Hours					
Random vectors and matrices – Mean vectors and covariance matrices –Principal components –						
Populationprincipal components-Principal components from standardized variables.						
TOTAL:45 + 15 =	= 60 HOURS					
REFERENCES:						
 Jay L. Devore, "Probability and Statistics for Engineering and the Sciences", Cengag Edition, Boston, 2016. 	ge Learning, 9th					
2. Johnson, R.A., and Wichern, D.W., "Applied Multivariate Statistical Analysis", Pea	rson Education,					

- Sixth Edition, New Delhi, 2013.
- Operations Research and Management Science, Hand Book: Edited By A. Ravi Ravindran. 3.

Taha H.A.,, "Operations Research: An Introduction", Prentice Hall of India Pvt. Ltd. 10 Edition, New 4. Delhi, 2017.

Winston, W.L., "Operations Research", Thomson – Brooks/Cole, Fourth Edition, Belmont, 2003. https://onlinecourses.nptel.ac.in/noc23_ma24/preview(Link for NPTEL/SWAYAM/MOOC Courses) 5.

6.

1902AS301	Programming using Python	L	T	Р	C				
DEDEOLUSI		3	0	2	4				
The course assumes no prior skill or background in design, art or engineering. It is open to all undergraduates									
and graduate students with an interest in learning a programming language. Python is a dynamic, interpreted									
(bytecode-compiled) language. There are no type declarations of variables, parameters, functions, or methods									
in source code. This makes the code short and flexible, and you lose the compile-time type checking of the									
source code.									
COURSE OBJ	ECTIVES:								
1. Cult	tivate the mindset and skills of successful entrepreneurs								
2. Lea	d innovative teams	ata							
3. Dev 4 Gro	w your customer base through inbound and outbound marketing	ets							
Module I	Introduction to Python Programming			6 H	ours				
Program, Debug	ging, Syntax Errors, Runtime Errors, Semantic Errors, Experimenta	1 Debi	igging	p. Foi	mal and				
Natural Languag	ges, The First Program		-000	[,]					
Variables, Exp	ressions & Statements - Values and Types, Variables, Variable	Nam	es ar	nd Ko	eywords,				
Operators and C	perands, Expressions and Statements, Interactive Mode and Script M	ode, C	rder o	of Op	erations,				
String Operation	ns, Comments								
Module II	Functions & Strings	•.		<u>9 Ho</u>	ours				
Functions - Function Calls, Type Conversion Functions, Math Functions, Composition, Adding New Functions. Definitions and Uses, Flow of Execution, Parameters and Arguments, Variables and Parameters Are Local, Stack Diagrams, Fruitful Functions and Void Functions, Why Functions, Importing with from Interface Design - TurtleWorld, Simple Repetition, Exercises, Encapsulation, Generalization, Interface, Design, Refactoring, A Development Plan, Docstring Strings - A String Is a Sequence, len, Traversal with a for Loop, String Slices, Strings Are Immutable, Searching, Looping and Counting, String Methods, The in Operator, String Comparison, Case Study : Reading									
Word Lists, Exe	rcises, Search, Looping with Indices			<u>6 U</u>					
Conditionals &	Pacursion Modulus Operator Realean Expressions Logica	1 One	rotora	0 H	ours nditional				
Conditionals & Recursion - Modulus Operator, Boolean Expressions, Logical Operators, Conditional Execution, Alternative Execution, Chained Conditionals, Nested Conditionals, Recursion, Stack Diagrams for Recursive Functions, Infinite Recursion, Keyboard Input Fruitful Functions - Return Values, Incremental Development, Composition, Boolean Functions, More Recursion, Leap of Faith, Example, Checking Types, Debugging									
Iteration - Mult	Iple Assignment, Updating Variables, The while Statement, break, Sq	uare R	loots,	Algo	rithms				
Lists A List Is	LISIS, DICUONATIES & FILES	et Slice	ac Li	9 H et Mo	Jurs thods				
Lists - A List Is a Sequence, Lists Are Mutable, Traversing a List, List Operations, List Slices, List Methods Map, Filter, and Reduce, Deleting Elements, Lists and Strings, Objects and Values, Aliasing, List Arguments, Dictionaries - Dictionary as a Set of Counters, Looping and Dictionaries, Reverse Lookup, Dictionaries and, Lists, Memos, Global Variables, Long Integers Files – Persistence, Reading and Writing, Format Operator, Filenames and Paths, Catching Exceptions, Databases, Pickling, Pipes, Writing Modules Tuples - Tuples Are Immutable, Tuple Assignment, Tuples as Return Values, Variable-Length Argument Tuples, Lists and Tuples, Dictionaries and Tuples, Comparing Tuples, Sequences of Sequences Case Study : Data Structure Selection - Word Frequency Analysis, Random Numbers, Word Histogram, Most Common Words, Optional Parameters, Dictionary Subtraction, Random Words, Markov Analysis, Data									
Structures	-, -, -, -, -, -, -, -, -, -, -, -, -, -				, _ 				

Module VObject Oriented Programming Concepts15	Hours						
Classes & Objects - User-Defined Types, Attributes, Rectangles, Instances as Return Values, Ob	bjects Are						
Mutable, Copying, Functions – Time, Pure Functions, Modifiers, Prototyping Versus Planning, Methods -							
Object-Oriented Features, Printing Objects, A More Complicated Example, The init Method, Th	nestr						
Method, Operator Overloading, Type-Based Dispatch, Polymorphism, Debugging, Inter-	tace and						
Implementation, Interitance - Card Objects, Class Attributes, Comparing Cards, Decks, Printing	the Deck,						
GUI Buttons and Callbacks, Canvas Widgets, Coordinate Sequences, More Widgets, Packing Widget	ets Menus						
and Callables. Binding	cts, menus						
Total E	Hours: 45						
Mode of Assessment:CAT/Assignment/Quiz/Seminar/Presentation/ESE							
Course Outcomes:							
1. Apply the fundamentals of writing Python scripts							
2. Discover how to work with lists and sequence data							
3. Write Python functions to facilitate code reuse							
4. Use Python to read and write files							
5. Work with the Fython standard horary 6. Explore Python's object-oriented features							
7. Search text using regular expressions							
FURTHER READING:							
1. Real Python Course, Part 1, Real Python Team (Real Python, 2017)							
2. Python Tricks: A Buffet of Awesome Python Features, Dan Bader (dbader.org, 2017)							
3. Fluent Python: Clear, Concise, and Effective Programming, Luciano Ramalho (O'Reilly, 201	14)						
REFERENCES:							
1.Python Crash Course, Eric Matthes (No Starch Press, 2016)							
2.Head-First Python, 2nd edition, Paul Barry (O'Reilly, 2016)							
3. Invent Your Own Computer Games with Python, 4th edition, Al Sweigart (No Starch, 2017)							
4. Think Python: How to Think Like a Computer Scientist, 2nd edition, Allen B. Downey (O'Reilly, 2	2015)						
5. Learn Python 3 the Hard Way, Zed A. Shaw (Addison-Wesley, 2016)							
6. Rework Book by David Heinemeier Hansson and Jason Fried, 2010							
7. https://onlinecourses.nptel.ac.in/noc22_cs31/preview, The Joy of Computing using Python, NPTEI	L						
LIST OF EXPERIMENTS [SUGGESSTED]							
1. Programs on Variable & Expressions							
2. Programs on Functions & Recursion							
3. Programs on String Operations							
4. Programs on Control Statements & Iterations							
5. Programs on Lists, Dictionaries, Tuples & Files							
6. Programs on Regular Expressions							
7. Programs on Object Oriented Programming Concepts							
8. Working with NumPy							
9. Practical introduction to Python packages for Working with Data							
10. Capstone Project on solving a real world problem using a framework							
Total	Hours:30						
Mode of Assessment: PAT/Project Presentation							

1902AS302	Data Structures and Algorithms	L 2	T	P 2	<u>C</u>			
PREREOUISI	TE:	4	U	4	5			
To	introduce the fundamental concept of data structures and to empl	nasize	the i	impor	rtance of			
choice of correct data structures in developing and implementing efficient algorithms and to introduce simple								
data structure and algorithms which are the building blocks for more complex data structures used in problem								
solving using	solving using programming. Further the students should be able to decompose bigger problems using							
abstractions suc	h as object oriented designs and programming and develop effectiv	ve tech	nique	es of	software			
engineering suc	h as decomposition, procedural abstraction, and software reuse							
COURSE OBJ	ECTIVES:							
To intro	duce the fundamental concept of data structures and to emphasize the	impor	tance	of ch	noice of			
correct	data structures in developing and implementing efficient algorithms an	nd to						
 introduce 	ce simple data structure and algorithms which are the building blocks	for mo	re co	mplex	x data			
structur	es used in problem solving using programming.							
 program 	nming and develop effective techniques of software engineering such a	as deco	ompo	sition	l,			
procedu	ral abstraction, and software reuse							
Module I L	INEAR DATA STRUCTURES – LIST			5 H	ours			
Abstract Data T	Yypes (ADTs) – List ADT – array-based implementation – linked list	impler	nenta	tion -	— singly			
linked lists- cire	cularly linked lists- doubly-linked lists - applications of lists -Polyne	omial	Mani	pulati	ion – All			
operations (Inse	rtion, Deletion, Merge, Traversal).							
Module II L	INEAR DATA STRUCTURES – STACKS, QUEUES			6H0	ours			
Stack ADT – C	Operations - Applications - Evaluating arithmetic expressions- Conv	ersion	of Ir	nfix t	o postfix			
expression - Qu	eue ADT – Operations - Circular Queue – Priority Queue – de Queue	– appl	icatic	ons of	queues.			
Module N	ON LINEAR DATA STRUCTURES – TREES			6 H	ours			
III								
Tree ADT – tre	e traversals - Binary Tree ADT – expression trees – applications of	trees -	- bina	ary se	arch tree			
ADT – Threaded	Binary Trees- AVL Trees – B-Tree - B+ Tree - Heap – Applications	of hea	p.					
Module IV N	ON LINEAR DATA STRUCTURES - GRAPHS	P	1.0	6 H	ours			
Definition - Re	epresentation of Graph – Types of graph - Breadth-first traversal	- Dep	th-11	st tra	aversal –			
Topological Soi	t - Bi-connectivity – Cut vertex – Euler circuits – Applications of gra	phs.		7 11				
Module V F	ILES & TERMINOLOGIES	T	1	$\frac{7 \text{ H}}{1 \text{ G}}$	ours			
Definition-File	Organization-Sequential file Organization- Direct file Organizati	on- Ir	idexe	d Se	quential-			
Hashed and acc	essing schemes-Algorithm specification- Recursion-Performance anal	ysis-A	symp	totic	Notation			
			10	tal H	ours: 30			
Mode of Assess	sment: CA1/Assignment/Quiz/Seminar/Presentation/ESE							
Course Outcon	nes: a choice of data structures and cleanithm design methods immosts the	• outou		f. m	***			
• Assess now the	e choice of data structures and algorithm design method for a specified of	periori	ion	e or p	rograms.			
• Unoose the ap	propriate data structure and algorithm design method for a specified ap	pheat	1011.					
• White program	is using object-oriented design principles.	hinara	troo	, hea	100			
tournament tree	s binary search trees, and graphs and writing programs for these solutions,	ions		s, nea	ps,			
Solve problem	s, using algorithm design methods such as the greedy method, divide a	ions.	nauer	dyn	amic			
programming h	acktracking, and branch and bound and writing programs for these sol	utions	iquei	, uyna	anne			
FURTHER READING.								
1 T H Cormer	C F Leiserson R L Rivect and C Stein "Introduction to Algorithm	s" 3rd	Editi	on M	11T			
nress 2009	, C. L. Leiserson, K L Kivest and C Stein, Introduction to Algorithm	5 JIU	Duni	011, IV	111			
2. R.S. Salaria	"Data Structures", Khanna Publishing House, 2021							
3. Seymour Lin	schutz, "Data Structures", McGraw Hill Education: 1st edition. 2014.							
5. Seymour Lip	senarz, Dam Structures, meetraw fill Education, 1st edition, 2014.							

REFERENCES:

1.R.B. Patel, "Expert Data Structures with C", Khanna Book Publishing Company, 2020.

2. M. A. Weiss, Data Structures and Problem Solving Using Java, Addison-Wesley, 1997.

3. M. Tannenbaum, Y Langsam and M J Augenstein, Data Structures Using C++, Prentice Hall India, 1996. 4.

A. H. Aho, J. E. Hopcroft and J. Ullman, Data Structures and Algorithms, Addison-Wesley, 1987

https://onlinecourses.nptel.ac.in/noc22_cs31/preview, Data structure, NPTEL

LIST OF EXPERIMENTS [SUGGESSTED]

1. Array implementation of Stack and Queue ADTs

- 2. Array implementation of List ADT
- 3. Linked list implementation of List, Stack and Queue ADTs
- 4. Applications of List, Stack and Queue ADT
- 5. Implementation of Binary Trees and operations of Binary Trees
- 6. Implementation of AVL Trees
- 7. Graph representation and Traversal algorithms
- 8. Applications of Graphs Implementation of searching and sorting algorithms

Mode of Assessment: PAT/Project Presentation

1902AS303	Database Management Systems	L	Т	Р	С				
DDEDEOLUGI		2	0	2	3				
PKEKEQUISITE: NIL COURSE OR JECTWES.									
1 To understand the concent of DBMS and ED Modeling									
1. To understand the concept of DDWIS and ER Modeling.									
2. 10 2. To r	explain the normalization and relational algebra.	rool ti	ma di	oto					
3. 107 Modulo I	Introduction to Detabase systems	rear ti	me da						
Introduction to	Introduction to Database systems	Arabit	oture		jetory of				
Detebage System	Database Systems: Overview – Data Models – Database System A			с — П	Entity				
Dalabase Syster	us. Entity-Relationship Model. Basic Concepts – Constraints – Reys	- Dex	abaaa	Solo	- Entry				
Modulo II	Igrani – weak Entity Sels – Extended E-K Features – Design of an E-	K Dat	abase	6 U					
Niodule II	Relational Model	.1 .1.	.1	0 П					
Structure of Re	Elational Databases – Relational Algebra – Extended - Relational	al Alg	ebra	Oper	ations –				
Noonneation of	Database – Views – Tuple Relational Calculus – Domain R		ar Ca		IS. SQL:				
Dackground – D	asic Structure – Set - Operations – Aggregate Functions – Null Valu	es - n	ested	Sub	queries –				
Module III	Life database – Joined Relations – Data-Demittion Language.			6 11					
Nodule III	Integrity Security and File Structures	A	le oui -	0 H (
Domain Constra	unis – Referential Integrity – Assertions–Security and Autorization	– Au		ation	In SQL-				
Relational-Data	base Design: Normanization -Inst normal form, second normal f	orm,	nira Stor		al Iorin,				
Dyre-Coud no	mai form-muexing and masning. Basic Concepts – Ordered mo	nces –	- Sta	лс п	asning –				
Dynamic Hashi				(11					
	Transaction concept	1 1	1	6 H	burs				
Two-Phase Loc	king Techniques for Concurrency Control – Concurrency Control	bl base	a on	time	estamp –				
Recovery Conce	pts – Recovery based on deferred update – Recovery techniques bas	ed on	imme	diate	update -				
Shadow Paging.				<u> </u>					
Module V C	loud and NoSQL Databases	•	1 D	6 H	ours				
Cloud databases	- Data Storage Systems on the Cloud, Data Representation, Partition	ning ai	id Re	trievi	ng Data,				
Challenges with	Cloud-Based Databases- NoSQL Data model: Aggregate Models	, Doci	ment	Data	a Model,				
Key-Value Data	Model, Columnar Data Model, Graph-Based Data Model		TT.	4.1 11	20				
Mada af Assass			10	tal H	ours: 30				
Mode of Assessi	nent: CA 1/Assignment/Quiz/Seminar/Presentation/ESE								
1 Domonstrate	es:								
1. Demonstrate 2. Illustrate the	losign principles for detabase design EP model and normalization								
2. Inustrate the Concur	resign principles for database design, EK model and normalization.	oblom							
4. Compare the	basic database storage structure and access techniques including and h	oolem.	T						
5. Review the fu	ndamental view on unstructured data and its management	lasining	3.						
5. Review the lu	indementative with the fundamental concepts of DBM	2							
	DINC.	ы.							
1 Advance datab									
2 Data science	use systems								
3.SOL.Mysal									
REFERENCES									
1. Fred R McFa	lden, Jeffery A Hoffer, Mary B. Prescott, Modern Database Managen	ient. F	ifth E	ditio	1.				
Addison Wesley 2000									
2. Elmasri, Nava	the, Fundamentals of database Systems, Third Edition, Addison Wes	ley, 20	00.						
3. JefrevD.Ulma	n. Jenifer Widom, A First Course in Database Systems. Pearson Educ	cation	Asia.	2001					
5. sen cyD.0111a	in conter tradin, is i not course in Dumbase Systems, i carson Dud	auton .	. .	2001	•				

4. Bipin C Desai, An Introduction to Database Systems, Galgotia Publications Pvt Limited, 2001.
5. R. Elmasri and S. Navathe, Fundamentals of Database Systems, 7th Edition, AddisonWesley, 2016
6. Abraham Silberschatz, Henry F. Korth, and S. Sudharsan, "Database System Concepts", 7h Edition,
McGraw Hill, 2019.
7. Raghu Ramakrishnan, Database Management Systems, Mcgraw-Hill, 4th edition, 2015.
8. <u>https://hyperskill.org/tracks/31</u>
LIST OF EXPERIMENTS [SUGGESSTED]
1. Study of Basic SQL Commands.
2. DDL and DML
3. Table creation with constraints.
4. Joins operations with views
5. PL/SQL-Procedures
6. PL/SQL- Cursors
7. PL/SQL- Functions, Triggers
Total Hours:30

Mode of Assessment: PAT/Project Presentation

	~	L	Т	Р	С			
1902AS304	Computer Organization and Design	2	0	0	2			
PREREQUISIT	E: NIL		-	-				
and design cond	cepts of a computer. The course also introduced the machine instructio	ns and	l prog	grami	ning			
of a computer u	using its assembly language. It also describes the arithmetic circuits w	vhich	are u	sed in	n the			
model processors to implement the computer arithmetic and introduces the control circuits and execution								
of instructions	of instructions on the processor. The course also introduces the memory technology, memory hierarchy,							
caches to bridge the speed gap between memory and the processor and various I/O techniques and								
concepts includ	ing interrupt and direct memory transfer.			1				
COURSE OBJE	CTIVES:							
The objective of	the course is to learn the.							
1.	Computer system: Major components are processor, memory, I/O.							
2.	Processor: Major components are control unit, registers, ALU, and instruct	ction e	xecu	tion u	nit.			
3.	Control Unit: Provides control signals for the operation and coordina	tion c	f all	proc	essor			
_	components. Traditionally, a microprogramming implementation has	been	used.	in v	vhich			
	major components are control memory, microinstruction sequencing logi	c. and	regis	ters.	More			
	recently, microprogramming has been less prominent but ren	nains	an	impo	ortant			
	implementation technique.			I				
Module I	Fundamental organization of computer system			4 Ho	ours			
Functional units	of computer, performance, truth tables, number representation, switch	from	unipr	ocess	or to			
multiprocessor, f	allacies and pitfalls							
Module II	Instruction execution			5 Ho	ours			
Representing inst	ruction in the computer, logical operations, instruction for making decisions,	parall	elism	and				
instructions : syn	chronization, translating and starting a program							
Module III	Functional units of processor			4 Ho	ours			
Building a data	path, overview of pipelining, pipelined datapath and control, data haza	ards, o	contro	ol haz	ards,			
exceptions, paral	lelism, advanced instruction level parallelism, the C sort example							
Module IV	Addressing modes, instruction formats and control statements			<u>4 Ho</u>	ours			
Addressing mode	es, types, various instruction formats, example instruction set using addressing	g mode	es anc	l cont	rol			
statements, contr	ol path microprogramming			4 11				
Module V	System memory hierarchy	11 1.	1	4 H0	ours			
The basics of cac	nes, measuring and improving cache, virtual memory, virtual machines, para	nensm	and	memo	ory			
Modulo VI	Hendusore for basic orithmetic			5 Uo	1100			
Addition subtrac	tion multiplication and division floating point parallelism and computer an	ithmot	10.000	5 HU	urs vity			
Module VII	Interrupts and DMA	nimei		5 Ho	urs			
I/O techniques in	nterrupts polling DMA			5 110	ui s			
Total Hannes 20								
Mode of Assessr	nent:CAT/Assignment/Quiz/Seminar/Presentation/ESE		Juli	noui	5. 50			
Course Outcom	es:							
1. Describe	the fundamental organization of a computer system including processor, me	mory a	and I/	0				
subsyste	m.	2						
2. Illustrate	the mechanisms of instruction execution including fetch, decode and operate	e						
3. Explain	the functional units of a processor including ALU, register files, control path.							

- 4. Explain various components of the machine instructions and addressing modes for operands, instruction formats and program control statements
- 5. Distinguish the organization of various parts of a system memory hierarchy
- 6. Relate the instructions to its execution through the understanding of the hardware for basic arithmetic
- 7. Explain the I/O mechanisms and various modes including polling, interrupt driven and DMA.

FURTHER READING:

- 1. William Stallings, Computer Organization and Architecture: Designing for Performance, 8/e, Pearson Education India. 2010.
- 2. D. A. Patterson and J. L. Hennessy, Computer Organization and Design, 4/e, Morgan Kaufmann, 2008.

REFERENCES:

- 1. A. S. Tanenbaum, Structured Computer Organization, 5/e, Prentice Hall of India, 2009.
- 2. V. C. Hamacher, Z. G. Vranesic and S. G. Zaky, Computer Organization, 5/e, McGraw Hill, 2002.
- 3. J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 4/e, Morgan Kaufmann, 2006.
- 4. D. V. Hall, Microprocessors and Interfacing, 2/e, McGraw Hall, 2006.

1902AS305	Big Data Systems	L	T	P	C
PREPEOTIS	TE · NII	3	U	U	3
The course assi	mes no prior skill or background in design, art or engineering "Big Da	ta" ref	ers to	our b	urgeoning
ability to crune	the vast collections of information, analyze it instantly, and draw somet	imes r	profou	indly	surprising
conclusions fro	m it. This emerging science can translate myriad phenomena—from the	orice o	f airli	ne tic	kets to the
text of millions	of books-into searchable form and uses our increasing computing power	er to ui	nearth	epip	hanies that
we never could	have seen before. A revolution on par with the internet or perhaps even	the pri	nting	press	, Big Data
will change the	way we think about business, health, politics, education, and innovation	in the	years	to co	me. It also
poses fresh thre	ats, from the inevitable end of privacy as we know it to the prospect of be	eing pe	enaliz	ed for	things we
haven't even do	one yet, based on big data's ability to predict our future behavior.				
COURSE OBJ	ECTIVES:				
1. To	provide an overview of Big Data and its uses cases				
2. To	understand Big Data better in terms of elements of persuasion				
3. To	analyze the Big Data using Hadoop				
4. To	interpret the Big Data analytics and its importance				
5. To	design NoSQL databases and its usecases				
Module I	Introduction to Big Data			9 H	ours
Big Data-Histo	ry, Big Data use cases in Healthcare, Retail, Banking, Media and T	elecon	n indi	ustry,	Big Data
challenges, Hov	w Big Data works, Types of data, Structured vs Unstructured data, Sen	ni-stru	ctured	l data	, Elements
of Big Data	1				
Module II	Elements of Persuasion			9 H	ours
Statistical techr	iques and methods, data visualization, automation, semantics, predictive	analyt	ics, li	mitati	ons of Big
Data, Big Data	lifecycle, Use of Big Data in social networking, preventing fraudulent ac	tivities	5	-	
Module III	Technologies for handling Big Data	1.1	<u>.</u>	9 H	ours
Distributed and	Parallel computing for Big Data, Introducing Hadoop, Cloud Computing	g and I	Big D	ata, I	n-Memory
computing tec	nnology for Big Data, Hadoop Distributed file system, architectur	re, co	ncepts	s, ov	erview of
org.apache.nad	Dop.10. package			0.11	
Exploring the I	DIG Data Ioundations and Storing data	שסח	Sand	9 П Dig	Data Non
Exploring the r	big Data stack, virtualization and big Data, virtualization approaches, r		s and	data x	Data, NOII
changing deplo	when tmodels in Big Data era. Designing a Data Model for 'Catch the Pin	larysis k Flan	ingo'	uata v	varenouse,
Module V N	osol. Data Management	K I Iuli	ingo	9 H	ours
Introduction to	NoSOL Characteristics and History Types of data models schema-	ess da	tabas	es m	aterialized
views, distribut	ion models, sharding, BigData& NoSOL Usecases : Aadhar database.	Googl	e Big	Table	e. Amazon
Dvnamo			0		,
			Т	otal]	Hours: 45
Mode of Asses	sment: CAT/Assignment/Quiz/Seminar/Presentation/ESE				
Course Outcon	nes:				
1. Relate	data and big data in the current data driven world				
2. Articul	ate various elements of persuasion in respect to Big data				
3. Correla	te technologies related to big data and specific requirements				
4. Discov	er methods and methodologies to store big data and data foundations				
5. Criticiz	e NoSQL databases in respect to today and future data driven information	n proce	essing	and	appraise
its adva	antages				
FURTHER RI	SADING:				
I. DT Ed	itorial services, "Big Data", Black Book, Dreamtech press, 2015	1.5			
2. Phil Si	mon, "100 Big to Ignore", the business case for big data, Wiley Press, 20	15	1	1 .,	
3. Viktor	Mayer, Big Data: A Revolution That Will Transform How We Live, Wo	ork, an	a Thu	ıĸ´,	

Phil Simon, "Too Big to Ignore", the business case for oig data, whey rices, 2013
 Viktor Mayer, "Big Data: A Revolution That Will Transform How We Live, Work, and Think",

REFERENCES:

1. Rob Kitchin, "The data revolution : Big data, Open data, Data infrastructures and their consequences", 2nd edition, 2017

T. H. Davenport, "Big Data at Work: Dispelling the Myths, Uncovering the Opportunities", Thomas H.Devanport
 Nathan Marz And James Warren, "Big Data: Principles and Best Practices of Scalable Real-Time Data Systems",

DreamTech Press

4. Bernard Marr, "Big Data in Practice", Wiley, 2017

5. David Stephenson, "Big data demystified", O'Reilly media, 2018

6. Vince Reynolds, "Big Data For Beginners: Understanding SMART Big Data, Data Mining & Data Analytics For improved Business Performance, Life Decisions & More!", Vince Reynolds, 2016

1902AS306	DIGITALPRINCIPLESANDDESIGN	L 2	T 0	P 2	C 3				
AIM: This is to provide the concepts of Digital principles, logic, conversion and design procedures									
COURSEOBJE	CCTIVES:								
Learn how to de	sign digital circuits, by simplifying the Boolean functions. Also, gives an	idea	about	desig	ns				
using PLDs ,and	writing codes for designing larger digital systems.								
UNITI	BOOLEANALGEBRAANDLOGICGATES			6 Ho	urs				
ReviewofNumb	erSystems-ArithmeticOperations-BinaryCodes-BooleanAlgebraandTheo	rems	_						
BooleanFunctio	ns- Simplification of Boolean Functions, LogicGates			6 Uo					
Combinational	CONDINATIONALLOGIC	nood	010	0 110	Jurs				
MultipleversandDemultiplevers_IntroductiontoHDL_HDL_codingofCombinational circuits									
UNIT III	SYNCHRONOUSSEQUENTIALLOGIC			6 Ho	ours				
SequentialCircu	its-FlipFlops-StateReductionandStateAssignment-ShiftRegisters-Count	ers-1	HDL	Codin	g				
forSequential Lo	ogicCircuits.				0				
UNITIV	ASYNCHRONOUSSEQUENTIALLOGIC			6 Ho	ours				
DesignofAsynch	aronousSequentialCircuits-ReductionofStateandFlowTables-Race-freeSta	ite As	ssignr	nent					
UNITV	MEMORYANDPROGRAMMABLELOGIC			6 Ho	ours				
RAMandROM-	MemoryDecoding-ErrorDetectionandCorrection-ProgrammableLogicAr	ray–							
ProgrammableA	rrayLogic ,SequentialProgrammableDevices—Field Programmable Gate	e Arra	ays(Fl	PGA)					
	ТОТА	L:	30	HOU	RS				
FURTHERRE	ADING /SEMINAR:								
1.Implemen	ation of Layout in industrial tool(TANNER,MAGMA,CADENCE)								
2.ASIC Des	ign technique								
COURSEOUT	COMES:								
After completion	to the course, Student will be able to								
CO1 Understand CO2 Explain the	fundamentals of VHDL/Verilog HDL								
CO2 Explain the CO3 Design and	implement combinational circuits								
CO4 Design and	implement synchronous Sequential circuits								
CO5 Design and	implement asynchronous sequential circuits								
LISTOFEXPE	RIMENTS:								
1. Verificationo	Boolean Theorem susing basic gates.	aada		ntono					
2. Designation	mplementation of combinational circuits using Trainer kit and EPGA Kit	1 - hi	t hing	rv ado	ler /				
subtractor Div	ider. Multiplier and Multiplexers	1 01	t onie	ir y uut	101 /				
4. Design and in	nplementation of sequential circuits: ALU, Shift –registers and counters u	sing	FPGA	A kit					
Design and impl	ementation of a simple digital system	0							
Hardware: 1. Di	gital trainer kits 15 2. Digital ICs required for the experiments in suffic	cient r	numb	ers					
Software: 1. HD	L simulator-Aritic-7 Kit								
DEFEDENCE	TO	JTA	L: 3	0 HO	URS				
1 MorrigManal	and Michael D. Ciletti "Digital Design" ReargenEducation 2015								
1. Ivior i siviano ivi. and iviorate D. Ontetu, Digital Design, real solibuleation, 2013.									
2. John Wakerry, DignalDesign finciples and fractices, seven in Editori, Pearson Education, 2015									
5. Charles H. Kothjr, "FundamentalsoiLogicDesign", FifthEdition–JaicoPublishingHouse, Mumbai, 2013.									
4.DonaldD.Givone, "Digital PrinciplesandDesign", TataMcgrawHill, 2013.									
o.KharateG.K.,	DigitalElectronics", OxfordUniversityPress, 2010.								
/.nttp://nptel.ac.	III A guida to Digital Dasign and Symthesis, Samin Dalmithen, Sun Soft Dury	1006							
o. vernog HDL	A guide to Digital Design and Synthesis ,Samir Palintkar, SuffSolt Press	1990							

1902MCX02

Course Content

The Constitution of India is the supreme law of India. Parliament of India can not make any law which violates the Fundamental Rights enumerated under the Part III of the Constitution. The Parliament of India has been empowered to amend the Constitution under Article 368, however, it cannot use this power to change the "basic structure" of the constitution, which has been ruled and explained by the Supreme Court of India in its historical judgments. The Constitution of India reflects the idea of "Constitutionalism" – a modern and progressive concept historically developed by the thinkers of "liberalism" – an ideology which has been recognized as one of the most popular political ideology and result of historical struggles against arbitrary use of sovereign power by state. The historic revolutions in France, England, America and particularly European Renaissance and Reformation movement have resulted into progressive legal reforms in the form of "constitutionalism" in many countries.

The Constitution of India was made by borrowing models and principles from many countries including United Kingdom and America. The Constitution of India is not only a legal document but it also reflects social, political and economic perspectives of the Indian Society. It reflects India's legacy of "diversity". It has been said that Indian constitution reflects ideals of its freedom movement, however, few critics have argued that it does not truly incorporate our ownancient legal heritage and cultural values. No law can be "static" and therefore the Constitution of India has also been amended more than one hundred times. These amendments reflect political, social and economic developments since the year 1950. The Indian judiciary and particularly the Supreme Court of India has played an historic role as the guardian of people. It has been protecting not only basic ideals of the Constitution. The judicial activism of the Supreme Court of India and its historic contributions has been recognized throughout the world and it gradually made it "as one of the strongest court in the world".

Course content

1. Meaning of the constitution law and constitutionalism

- 2. Historical perspective of the Constitution of India
- 3. Salient features and characteristics of the Constitution of India
- 4. Scheme of the fundamental rights
- 5. The scheme of the Fundamental Duties and its legal status
- 6. The Directive Principles of State Policy Its importance and implementation
- 7. Federal structure and distribution of legislative and financial powers between the Union and the States

8. Parliamentary Form of Government in India – The constitution powers and status of the President of India

- 9. Amendment of the Constitutional Powers and Procedure
- 10. The historical perspectives of the constitutional amendments in India
- 11. Emergency Provisions : National Emergency, President Rule, Financial Emergency
- 12. Local Self Government Constitutional Scheme in India
- 13. Scheme of the Fundamental Right to Equality
- 14. Scheme of the Fundamental Right to certain Freedom under Article 19
- 15. Scope of the Right to Life and Personal Liberty under Article 21

1904GE351	LIFE SKILLS: VERBAL ABILITY	L	Т	Р	С
		0	0	2	1
Course Objectives: The students should be made to:					
1 To belp students comprehend and use vocabulary words in their day to day communication					
2. To apply appropriate reading strategies for interpreting technical and non-technical documents used in					
job-related settings.					
3. To ensure students will be able to use targeted grammatical structures meaningfully and appropriately in					
oral and written production.					
constructions rely on active or passive voice					
5. To Apply the principles of effective business writing to hone communication skills					
Unit I V	OCABULARY USAGE		(6 Ho	urs
Introduction	- Synonyms and Antonyms based on Technical terms - Single word Substituti	on -	- Nev	vspa	per,
Audio and video listening activity.					
Unit II C	OMPREHENSION ABILITY		(6 Ho	ours
Skimming and Scanning – Social Science passages – Business and Economics passages – latest political and					
current event based passages – Theme detection – Deriving conclusion from passages					
Unit III	BASIC GRAMMAR AND ERROR DETECTION		(6 Ha	ours
Devellation Dedundancy Ambiguity Concord Common Errors Spotting Errors Sentance improvement					
Faranensin – Redundancy – Ambiguity – Concord - Common Errors – Spouring Errors – Sentence Improvement –					
Unit IV DEADDANCEMENT AND CENEDAL USACE 6 How					line
CHILLIV REARKANGEMENT AND GENERAL USAGE 0 HOULS					
Jumble Sentences – Cloze Test - Idioms and Phrases – Active and passive voice – Spelling test.					
Unit V A	PPLICATION OF VERBAL ABILITY			5 H0	urs
Business Writing - Business Vocabulary - Delivering Good / Bad News - Media Communication - Email					
Etiquette – Report Writing - Proposal writing – Essay writing – Indexing – Market surveying.					
	ΤΟΤΑ	4L	3	d Ho	urs
COURSE OUTCOMES:					
CO1: Use new words in their day to day communication					
CO2: Gather information swiftly while reading passages					
CO3: Students are proficient during their oral and written communication.					
CO4	: Rearrange the sentences and able to identify the voice of the sentence.				
CO5	: Students use their knowledge of the best practices to craft effective business docu	ment	s		
REFERENCES:					
1. Arur	Sharma and Meenakshi Upadhyav, How to Prepare for Verbal Ability and Readin	g Co	mpre	hens	sion
for C	AT, McGrawHill Publication, Seventh Edition 2017				
2. R S	Aggarwal and Vikas Aggarwal, Quick Learning Objective General English, S.	Chan	id Pu	blish	iing
HOUS 3 Dr K	Alex Soft Skills S Chand Publishing House Third Revise Edition 2014				
4 Ravi	nond Murnhy Essential English Grammar in Use Cambridge University press	New	Delh	i Tl	nird
Editi	on, 2007	10 11		., 11	
ASSESSMENT PATTERN :					
1. Two	tests will be conducted ($25 * 2$) - 50 marks				
2. Five	assignments will be conducted (5*10) - 50 Marks		<u>.</u>		