B.E – Bio Medical Engineering | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2023 Approved in 10th Academic Council Meeting held on 30.06.2023

E.G.S.PILLAY ENGINEERING COLLEGE

(Autonomous)

NAGAPATTINAM-611002.

(Affiliated to Anna University, Chennai| Accredited by NAAC with 'A++'Grade Accredited by NBA| Approved by AICTE, NewDelhi)

REGULATIONS -R2023 B.E – BIO MEDICAL ENGINEERING

SECOND SEMESTER CURRICULUM

COURSEC		CATEG						MAX.M	IARKS
ODE	COURSENAME	ORY	L	Т	Р	C	CA	ES	TOTA
TheoryCours	Ses								
2301MA202	Calculus, Ordinary Differential Equations And Complex Variables	BSC	3	1	0	4	40	60	100
2301GEX01	Foundation of Electrical and Electronics Engineering	ESC	3	0	0	3	40	60	100
2301GEX05	Applied Digital Logic and Design	ESC	3	0	0	3	40	60	100
2301GEX02	Engineering Graphics	ESC	2	1	0	3	40	60	100
2301GEX03	Problem Solving using C	ESC	2	0	4	4	50	50	100
	Language Elective	EEC	2	0	0	2	100	0	100
2301TA201	Tamils and Technology/ தமிழரும்தொழில்நட்பமும்	HSMC	1	0	0	1	100	0	100
Laboratory	Courses			•	•	•			
2301GEX51	Computer Practices Laboratory	ESC	0	0	2	1	100	0	100
2301GEX53	Foundation of Electrical and Electronics Engineering Laboratory	ESC	0	0	2	1	60	40	100
2301GEX54	Applied Digital Logic and Design Laboratory	ESC	0	0	2	1	100	0	100
2301LS201	Life Skills–II	-	0	0	0	0	100	0	100
	TOTAL		17	1	10	23	770	330	1100

2302M	A202	CALCULUS, ORDINARY DIFFERENTIALLTPCEQUATIONS ANDCOMPLEXVARIABLE (Common to ECEand BME)3104											
	JUGIT	ъ.	(Con		LeLun		,						
1.Differ	entiation	n											
2.Integr	ation												
	EOBJE	CTIVES	:						1 11				
1. 100	develop findthose	theuseof	Laplace	transfor	misneede	ed byeng	gineersto	orpractica	alapplica	tions			
2. rol	blemsare	echaracte	rizedinth	uisform.	liaiequai	10115a5111	ostorine	engineer	mg				
3. Tof	amiliariz	zethestud	lentwitha	nalyticf	unctions	ofcompl	lexvarial	oles.This	isneeded	linmany	branch	es	
ofengin	eering.			5		1				2			
4. To a	acquaint	the stud	ent with	mathem	atical to	ols need	ed in eva	aluating	complex	integrals	s and th	eirappli	cations.
COURS	EOUTC	<u>COMES:</u>	1	6.1		1 (
(Inthesuc		ompletio	n ofthec	course,sti	identswi		to					
	$\frac{\text{COI:}}{\text{COI:}}$			storms t	osoivepi	iysicalpi	roblems	arising i	nEngine	ering.			
	CO2: S	solveengi	ineering	broblem	sbyusing	theconce	eptsofgr	adient,di	vergence	e,andcurl	•		
	CO3: 5	Solvetheh	igherord	lerdiffer	entialequ	ationsus	singvari	oustechn	iques				
	CO4: N	Makeuseo	ofdiffere	ntiationf	formulas	toconstru	uctanaly	ticfuncti	onsrelate	edtocomp	olexvar	iable	
	OcMAD	DINC.											
		PING:	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
C01	3	2	105	104	105	100	107	100	107	1010	1011	1012	-
$\frac{cor}{cor}$	3	2	1										-
C02	3	2	1										-
C04	3	2	1										-
C04	3	2	1										-
	SOsMA	PPING	1										
005151	0051011												
				C	Os PS	O1 PS	O2 PS	03					
				C	D1 1								
				C	D2 1								
				C	D3 1								
				C	D4 1								
				C	D5 1								
COURS	ECONI	TENTS:											
MODUL	ÆI	LAPLA	CETRA	NSFOI	RM						9	Hours	
Laplace	etransfo	rm-Inver	seLaplac	etransfo	orm-prop	ertiesofl	Laplacet	ransform	ns-Laplac	cetransfo	rmsofu	nit step	
functio	n, impu	lse functi	on and p	eriodic	function	- Convo	olution th	neorem -	Solution	n of ordin	nary		
differen	ntialequ	ations wi	th consta	int coeff	icients a	nd syste	m of lin	ear diffe	rential ec	quations	with co	nstant	
	E II		CALC	rm–App	olication	s toelecti	ricalcirc	uits.			0	Hours	
Scalar	and Ve	ector fiel	ds - Ve	ctor Dit	fferentiat	ion - I	evel su	rfaces -	Directio	nal deriv	vative	- Gradie	ent of a
scalarf	ield - D	ivergenc	e and C	url of a	vector f	ield. Li	ne, surfa	ice and v	volume i	integrals;	Green	's theor	em in a
plane -	GaussD	ivergence	etheorem	nandStol	ke'stheor	rem.	,			U /			
MODUL	E III (ORDINA	RYDIF	FEREN	TIALE	QUATI	ONS				9	Hours	
Higher	orderlin	eardiffer	entialequ	ationsw	vithconst	antcoeff	icients-						
Cauchy	y'sandL	egendre's	slineardi	fferentia	alequatio	ns-Meth	od ofva	riation of	paramet	ers.			
MODUL		COMPL	EXVAR	RIABLE	E-DIFFI	ERENT	IATION				9	Hours	
Analyt	icfunctio	ons-Cauc	hy-Riem	annequ	ations(ex	cluding	proof)–I	Propertie	sofanaly	ticfunctio	on–		
Harmo	nicconju	ugate- Co	onstructio	onofanal	lyticfunc	tionbyM	lilneTho	mson me	ethod –B	ilinear tr	ansfor	nation.	
MODUL	EV	COMPL	EXVAR	RIABLE	E-INTE	GRATIO	ON	_		_	9	Hours	
Cauchy	's integr	al theore	m-Cauch	ny'sinteg	gral form	ulaforde	erivative	s-Cauch	yresidue	theorem-	1 •		
Taylor's	sandLau	rent'sser	ies– Con	tour inte	egralinur	ntcirclea	indsemi	errcle(Ex	cluding	polesonre	ealaxis).	IIDC
1										TOTAL	.:45+1 :	5=00HC	JUKS

REFERENCES:

1.G.B.ThomasandR.L.Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.

2.Erwinkreyszig, AdvancedEngineeringMathematics, 9th Edition, JohnWiley& Sons, 2006.

3.W.E.Boyce and R.C.DiPrima, Elementary Differential Equations and Boundary

ValueProblems,9thEdn., WileyIndia,2009.

4.S.L.Ross, Differential Equations, 3rdEd., Wiley India, 1984.

5.J.W. BrownandR.V.Churchill, ComplexVariablesand Applications, 7thEd., McGrawHill, 2004.

6. N.P.BaliandManishGoyal,AtextbookofEngineeringMathematics, Laxmi

Publications, Reprint, 2008.

			FOUN	DATIC	NOFE	LECTR	RICAL A	AND EL	ECTRO	DNICS	L	Т	P	С
23010	EX01				F	ENGINI	EERINO	3			3	0	0	3
			(Con	nmon to	o CSE, I	Г, AIDS	5, BME,	MECH	and CI	VIL)	5	U	U	5
PRERE	QUISIT	TE:												
	1. Ph	ysics												
COURS	E OBJE	CTIVE	ES:											
CC) 1:	To intro	oduce ba	sic DC	and AC o	circuits								
CC) 2:	To imp	art knov	vledge i	in the bas	sic work	king prin	nciples a	nd appli	cations o	of electri	cal mad	chine	s and
		measur	ing instr	uments										
CC) 3:	To edu	cate the	fundam	ental con	cepts of	analog	and digit	al electr	onics.				
COURS	E OUTO	COMES	5:											
At the e	end of th	nis cours	se, Stude	nts will	be able t	0,								
CO1:		Acquire	e basic k	nowled	ge on DC	C, AC ci	rcuits an	d wiring						
CO2:		Unders	tand the	constru	ction, wo	orking pi	rinciple	and appl	ications	of Electri	ical Mac	hines.		
CO3:		Unders	tand the	various	measurii	ng instru	iments a	nd conce	epts of tr	ansducer	s.			
CO4:		Obtain	the know	wledge o	of semico	onductor	devices	and thei	r applic	ations.				
CO5:		Acquire	e basic k	nowled	ge on log	ic gates	and Bo	olean alg	ebra.					
COs Vs	POs MA	PPINC	;											
	D 01		D 00	DO 1		D O (D 00	D 00	DO10	D 011	0.14		
COs	<u>POI</u>	PO2	PO3	PO4	P05	PO6	PO7 1	PO8 1	PO9	POI0	POII	PO12	_	
$\begin{array}{c} CO1 \\ CO2 \end{array}$	3	5		3			1	1	5			1	_	
	3			1					3			1	-	
CO4	3			1	3				3			1	-	
CO5	3	1		2	3				3			1		
COs Vs	PSOs M	APPIN	G									•		
					COs	PSO1	PSO2	PSO3						
					CO1	1			_					
					<u>CO2</u>	1		1	_					
					<u>CO3</u>	1	1	1	_					
					C04	1	1	1	_					
COURS	E CON	FENTS	:		005		1							
MODUI	LEI	ELEM	ENTAR	Y CIR	CUIT C	ONCEF	PTS					9 H	ours	1
Introdu	ction to	DC and	d AC cir	rcuits -	Ohm's I	Law, Ki	rchhoff'	s Laws,	Simple	problems	; Mesh	analys	is, N	odal
Analys	is; Gen	eration	of AC v	vavefor	m - avera	age valı	ie, RMS	S value, i	form fac	ctor, peak	c factor;	Introdu	lctio	a to
three p	hase syst	tems; El	ectrical s	safety (1	not for ex	aminati	on)							
MODU			CTRICA	AL MA	CHINES)		1:	of DC	Cananata			' Ho	
DC M	otors T	orque	principle	e, EMIF	and an	i, types	and app Wor	king pri	ncinle	ord appli	ors, wor	of sing	ncip de r	hase
transfo	rmers an	d single	phase ir	iduction	n motors,	three pl	nase alte	rnator.(S	Simple a	oproach)	cations	01 51112	sie p	nase
MODI	ILE III	MEA	SURIN	G INST	RUMEN	NTS I			1	· · · ·		()Ηոι	irs
Measu	ring inst	ruments	Classi	fication	of instr	uments	-PMMC	C. MI in	strumen	ts, dynan	nometer	type v	vattm	eter.
static v	vatt-hour	meter;	CRO- Pi	rinciple	and oper	ation; Ir	ntroducti	on to tra	nsducers	8- RTD, I	LVDT.			,
MODU	JLE IV	ANA	LOG EI	LECTR	ONICS								9Hoi	urs
Semico	onductor	devices	- V-I ch	aracteris	stics of P	N junct	ion diod	e and Ze	ener dioc	le; Rectif	fiers - H	alf wav	e and	l full
wave r	ectifiers;	BJT, So	CR, MO	SFET c	onstructio	on and c	peratior	n (simple	approac	ch)				
MODU	JLE V	DIGI	TAL E	LECTR	ONICS		-	_				9	Hour	S
Binary	Number	r Systen	n; Logic	Gates;	Boolean	algebra	a; De-M	lorgan's	theorem	i; Half ai	nd Full	Adder.	SOP	and
FUS 10	л 1118, К -І	nap repi	resentati	ons - m	mmzati	on using	s 🖪 maps	s (Simple		ns ony)	тота	L • 45 F	IOU	RS
1											- O I A			

REFERENCES:
1. Mittle N., "Basic Electrical Engineering", Tata McGraw Hill Edition, New Delhi, 1990.
2. Sedha R.S., "Applied Electronics", S. Chand & Co., 2006.
3. Smarajit Ghosh, "Fundamentals of Electrical and Electronics Engineering", 2 nd Edition, PHI Learning, 2010.
4. R. Muthusubramaniam, S. Salaivahanan and K.A. Mureleedharan, "Basic Electrical Electronics and Computer Engineering", Tata McGraw Hill, 2004
5. D.P. Kothari and I.J. Nagrath, "Theory and Problems of Basic Electrical Engineering", PHI learning, New Delhi, 2004.
6. J.B. Gupta, "Fundamentals of Electrical Engineering and Electronics", S.K. Kataria and Sons, Reprint 2012 Edition
7. R.L. Boylestad and L. Nashelsky, "Electronic Devices and Circuit Theory", Pearson, 11th Edition, 2013.
8. Donald P. Leach, Albert Paul Malvino and Goutam Saha, "Digital Principles and Applications", McGraw- Hill Education, 8th Edition, 2014.

2301GEX	X05		APP	LIED D	IGITAI	LOGI	C AND	DESIG	N		L	C							
		((Common	n to B.E	-CSE, B	ME, B.	Tech - I	T , and A	AIDS)		3	5 0 0 .							
PREREC	QUIS	TE: Basic	mathem	atic skil	ls														
COURSI	E OB,	JECTIVES	5:																
1.	To pr	esent the fu	indamen	tals of d	igital cir	cuits and	d simplif	fication r	nethods.										
2.	To pr	actice the d	lesign of	various	combina	ational a	nd seque	ential dig	gital circ	uits usin	g logi	c gate	es.						
5. 4	To m To pr	actice the H	HDL pro	grammi	nories an	iu progra	onal and	sequent	ial circu	its									
			IDE pro	B	19 101 00			sequent											
At the end	<u>t ot</u>	his course	: Students	s will be	able to														
CO	D1:	Use Boole	an algeb	ora, K-m	$\frac{1}{ap}$ and ta	abulation	n method	to simp	lify Boo	lean fur	ctions	•							
CC)2:	Construct	differen	t combir	national o	circuits u	ising log	gic gates.											
CC)3:	Develop d	ifferent	equentia	1 circuits	s using lo	ogic gate	es and fli	p flops.										
	<u>)4:</u>	Compare o	different	semico	nductor 1	nemory	devices.												
) <u>5:</u>)6·	Develop V	grammat /erilog p	rogram	for comb	logic ga	ites.	quential	circuits										
COs Vs I	Cos Vs POs MAPPING:																		
-																			
COs	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	<u>1</u> P	<u>'012</u>						
$\frac{COI}{CO2}$	3	2	1 1	-	-	-	-	-	2	1	-	\rightarrow	1						
CO2	3	2	1	_	_	-	_	_	2	1	-		1						
CO4	3	2	2 1 2 1 - 1																
CO5	3	2	1	-	-	-	-	-	2	1	-		1						
	3	2	1	-	3	-	-	-	2	1	-		1						
CUS VS I	250s	MAPPIN	J																
				Г	COs	PSO1	PSO2	PSO2											
					CO1	1	1	2											
				_	CO2	1	1	1											
				_	$\frac{CO3}{CO4}$	1	2	1											
				-	CO4 CO5	1	1	1											
					CO6	1	1	1											
COURSI	E CO	NTENTS:																	
MODUL	EI	BOOLEAN	NALGE	BRAAN	DLOG	ICGATI	ES				9Ho	urs							
Reviewof	Num	bersystem-l	Boolean	expressi	onandmi	nimizati	on-Logi	cGatesar	nditsimp	lementa	tion-Si	mpli	ficatio	onof					
Boolean I	Functi	COMBINA	300lean	algebra,	Karnaug IC	gn Mapa	nd Tabu	lation M	ethod.		0Ho	iire							
						a					1	<u>uis</u>							
Combinat Decoders	tional /Enco	Circuits–Ai oders–Multi	plexers/	ndDesigi DEmulti	plexers-	ures–Cir Parityge	nerators	Arithmet /checker	s-Magni	tions,Co tudeCor	de nparat	or.	onvers	10 n –					
MODUL III	E	SEQUENT	TAL CI	RCUIT	S						9Ho	urs							
Sequentia Binary-Sy	al log vnchre	ic-Basic la	tch-Flip ters, Res	-flops (S gisters-S	SR, D, J hift regis	JK, T an sters-Re	nd Mast gisters, H	er-Slave Hazards)-Count	ers-Ripp	ole cou	inter	s-BCE) and					
MODUL	E	MEMORY	ANDPH	ROGRA	MMAB		GIC				9Ho	urs							
1 v Classifica	ation	of	memo	ories(RA	M,ROM	,PROM	,EPRON	1, I	EEPRON	A)-Prog	ramma	ble	L	ogic					
Devices(I	PLA,	PAL,FPGA)-Impler	nentatio	n of circ	uits usin	g ROM,	PLA, PA	L.										
MODUL	EV	VERILOG	HDL N	10DEL	ING						9Ho	urs							
3 types of sequential	f Veri 1 circu	ilog modeli uits.	ng (gate	-level, c	lataflow,	, and bel	navioral)	-Verilog	g prograi	nming f	or con	nbina	itional	and					
										J	TOTA	L: 45	5 нот	JRS					

REFERENCES:

1. Morris Mano and Michael D. Ciletti, "Digital Design", 5th edition, Prentice Hall of India, 2012

2. Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2003

3. https://archive.nptel.ac.in/courses/108/105/108105132/ (Link for NPTEL/SWAYAM/MOOC Courses)

4. https://www.vlab.co.in/broad-area-electronics-and-communications

2301GE	X02		ENGINEERING GRAPHICSLTPC2103												
Prerequisi	ite:	1													
	1. Ba	asic l	know	ledge a	bout ge	ometi	y								
	2. Le	etteri	ng an	d Dim	ensioni	ng									
COURSE	OBJI	ECT	IVES	:											
CO 1	:	То	deve	lop in	studer	nts, g	raphic	skills	for co	ommuni	cation	of conc	epts, ide	eas and	design of
		Eng	gineer	ing pro	oducts		_						_		_
CO 2	2:	To	expos	se them	to exis	ting n	ational	standa	rds rela	ated to t	echnica	al drawing	gs		
COURSE	OUT	CON	AES:												
At the end	of thi	s co	urse, S	Studen	ts will t	be able	e to,								
C01:		Co	nstruc	ct conic	c curves	s, invo	olutes a	nd cycl	oids						
CO2:		Sol	lve pr	oblems	s involv	ing pi	ojectio	on of po	ints, lii	nes and	plane s	surfaces			
CO3:	CO3: Draw the projection of a sectioned simple solids														
CO4: Draw the development of a sectioned simple solids															
CO5: Draw the orthographic, isometric projection of simple solids															
COs Vs P	COs Vs POs / PSOs MAPPING:														
	1		T	1					1	Ĩ	1	T	T	-	
Cos	PO1	<u>PO2</u>	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
$\begin{array}{c} CO1 \\ \hline CO2 \end{array}$	3	1	2		2					3		$\frac{2}{2}$	2	2	
C02	3	1	$\frac{2}{2}$		2					3		$\frac{2}{2}$	$\frac{2}{2}$	2	
CO4	3	1	2		2					3		2	2	2	
CO5	3	1	2		2					3		2	2	2	
COURSE	CON	TEN	TS:												
MODULE	EI	BA	SIC (CONC	EPTS (OF TI	ECHN	ICAL I	DRAW	ING A	ND PI	LANE CU	JRVES	9	Hours
Importan	ce of	gra	phics	in er	igineeri	ng aj	oplicati	ions –	Use of	of draft	ing in	struments	– BIS	conven	tions and
Basic Ge	uons -	- SIZ ical	e, Sca const	ule, lay	out and		ng or u	rawing ngineer	ing pro	- Lellel	Conics	Lamensi – Consti	oning.	of ellince	narahola
and hype	rbola	bv e	ccent	ricity r	nethod	-Col	nstructi	ion of c	vcloid	– const	tructior	of invol	utes of s	auare ar	, parabola d circle –
Drawing	of tan	gent	s and	norma	l to the	above	curve	s.	J					1	
MODUI	LE II	P	ROJI	ECTIO	N OF 1	POIN	TS, LI	INES A	ND PI	LANE S	SURFA	ACES			9 Hours
Principal	Plane	s-Fii	st ang	gle pro	jection-	proje	ction of	f points	. Proje	ction of	straigh	t lines (o	nly First	angle pr	ojections)
inclined	to bot	h the	e prin	cipal p	lanes -	Deter	rminati	on of t	rue len	gths an	d true	inclinatio	ns by ro	tating lir	ne method
and trace	s. Pro ethod	jecti	on of	planes	s (polyg	gonal	and cir	cular s	urraces) inclin	ea to t	oth the p	rincipai	planes b	y rotating
	E III	Р	ROII	ECTIO	NOF	SOLI	DS								9 Hours
Projectio	n of si	mple	e solio	ds like	prisms.	pyrai	nids. c	vlinder	and co	ne whe	n the a	xis is incl	ined to c	ne of the	principal
planes by	rotati	ing o	bject	metho	d.	r J	, , , ,	5							r · r ··
MODUI	LE IV	P SU	ROJI URFA	ECTIO ACES	ON OF	F SE	стю	NED	SOLI	DS AN	ND D	EVELOI	PMENT	OF	9 Hours
Sectionir	ng of a	bove	e soli	ds in si	mple v	ertica	l positi	on whe	n the c	utting p	plane is	inclined	to the o	ne of the	e principal
planes ar	nd per	pend	icula	to the	other -	– obta	ining t	rue sha	pe of s	section.	Develo	opment of	f lateral	surfaces	of simple
and section	oned s	olids	s - Pr	isms, p	yramid	s cylii	nders a	nd cone	es.						
MODUI	LE V	0	RTH	OGRA	PHIC	AND	ISOM	IETRI	C PRO	JECTI	ON				9 Hours
Visualiza	Visualization concepts-Representation of Three-Dimensional objects – Layout of views- Free hand sketching of														
Isometric	views	- Pr	i picu	nvram	ews of ids_cvl	inder	s cone	s Princ	inles o	f isome	tric pro	viection –	isometr	ic scale -	-Isometric
projectio	ns of	simp	ole so	lids an	d trunc	ated s	solids -	- Prism	s, pyra	mids, c	vlinder	s, cones-	combin	ation of	two solid
objects in	objects in simple vertical positions and miscellaneous problems.														
													TOT	AL: 45	HOURS

REFERENCES:

1. H	Bhatt N.D. and	Panchal V.M.	Charotar Publishing	House.	53rd Edition.	2019.
------	----------------	--------------	---------------------	--------	---------------	-------

2. Natrajan K.V., A Text Book of Engineering Graphics, Dhanalakshmi Publishers, Chennai, 2018.

3. Parthasarathy, N. S. and Vela Murali, "Engineering Drawing", Oxford University Press, 2015.

4. Basant Agarwal and Agarwal C.M., "Engineering Drawing", McGraw Hill, 2n d Edition, 2019.

5. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Publications, Bangalore,27th Edition, 2017

6. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson Education India, 2nd Edition, 2009.

7. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.

2201CEV0(PROBLEM SOLVING USING C	L	Т	Р	С
2301GEA00	(Theory cum Laboratory course)	2	0	4	4
PREREQUISI	TE:				
	1. Need some Mathematical Knowledge				
COURSE OBJ	ECTIVES:				
1. To unde	erstand the constructs of C Language.				
2. To deve	elop C programmes using arrays and strings				
3. To deve	elop modular applications in C using functions and pointers				
4. To deve	elop applications in C using structures and union				
COURSE OUT	TCOMES:				
On the success	sful completion of the course, students will be able to				
CO1:	Demonstrate the knowledge about the techniques used to solve problems in con	mputin	ıg.		
CO2:	Build programmes using C constructs.				
CO3:	Design and implement applications using arrays and strings				
CO4:	Develop and implement modular applications in C using functions and pointers	s.			
CO5:	Develop programmes and applications in C using structures, union.				
COURSE CON	NTENTS:				
MODULE I	INTRODUCTION TO PROBLEM SOLVING TECHNIQUES	6 I	Hour	5	
Problem Solvin	g Techniques – Algorithm – Flowchart – Pseudo code - Steps to convert Algorithm	ithm to	o Sou	rce coo	le.
Data Types – C	onstants – Keywords – Expressions – Type of Errors.				
MODULE II	BASICS OF C PROGRAMMING	6 I	Iour	5	
Structure of C p	programme - Pre-processor directives - Compilation process, Execution of sour	ce cod	le. O	perato	rs and
operator's prece	edence – I/O statements – Sequence statements – Selection statements – Loop	oing st	atem	ents –	Solve
Numerical / Log	gical problems.				
MODULE III	ARRAYS AND STRINGS	6 I	Iour	s	
Introduction to	Arrays: Declaration, Initialization – One dimensional array – Two dimensional	array			
String operation	as: length, compare, concatenate, copy, upper case, lower case.	5			
MODULE IV	FUNCTIONS AND POINTERS	6 I	Iour	S	
Function protot	ypes - function definition, function call – Recursion: Binary search using recur	rsive fi	unctio	ons. Po	ointers
– Pointer operat	ors - Pointer arithmetic - Arrays and pointers - Parameter passing: Pass by val	ue, Pas	ss by	referen	nce.
MODULE V	STRUCTURES AND UNION	6 I	Hours	5	
Structure - Nest	ted structures - Pointer and Structures - Array of structures - Dynamic memory	ory allo	ocatio	on – U	nion -
Storage classes	and Visibility.				
-	TOTAL: 3	0 HO	URS		
List of Experin	nents:				

B.E – Bio Medical Engineering | E.G.S. Pillay Engineering College (Autonomous) | Regulations 2023 Approved in 10th Academic Council Meeting held on 30.06.2023

1. Prepare programmes in C to implement basic concepts in C language.	6 11aura
	Hours
2. Produce C programmes to implement decision making and branching statements.	6
	Hours
3. Use the concept of looping to implement C programmes.	6
	Hours
4. Employ the concept of arrays to develop C programmes.	6
	Hours
5 Experiment the concepts of strings using C	6
or Experiment the concepts of strings using or	Hours
6 Develop C programmes to perform code reusability using function	6
of Develop e programmes to perform code reasoning asing random.	Hours
7 Model programmes in C to implement pointers	6
7. Model programmes in e to implement pointers.	Hours
8. Build C programme to implement structures.	6
	Hours
9. Build C programme to implement Union.	6
	Hours
10.Mini Project: Using Structures, Functions & Pointers.	6
	Hours

TOTAL: 60 HOURS

Hardware/software requirement

- 1. Desktop Systems 60 Nos
- 2. C Compiler

TOTAL: 90 HOURS

COs Vs POs / PSOs MAPPING:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1						2				3	1	
CO2	2	1						2				3	1	
CO3	3	2	3					2				3	1	
CO4	3	2	3					2				3	1	
CO5	3	2	3					2				3	1	

REFERENCES:

1. Yashwant Kanetkar, Let us C, 17th Edition, BPB Publications, 2020.

2. ReemaThareja, "Programming in C", Oxford University Press, Second Edition, 2016.

3. Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, Pearson Education, 2015.

4. Byron S. Gottfried, "Schaum's Outline of Theory and Problems of Programming with C", McGraw-Hill Education, 1996.

- 5. <u>https://onlinecourses.nptel.ac.in/noc23_cs53/course</u> (Link for NPTEL/SWAYAM/MOOC Courses)
- 6.https://cse02-iiith.vlabs.ac.in/exp (Link for virtual Lab)7.www.skillrack.com (Link for modern tool usage)

2301F	LX01			ANCE	DENGI	ISH CO		NICATI	ON		L	Т	P	C
				AILCEI	DENGL						2	0	0	2
COUR	SEORIE		2 5: Ierstandt	he hasic	s of com	municat	ion skill	c						
		$\frac{1.100000}{20000000000000000000000000000000$	k Englis	the Dasie	$\frac{1}{10}$ in pub	lic place		3.						
		2. Tospec	l and wri	to logih	v in Eng	lich	-3.							
	•	$\frac{1}{1}$ To un	derstand	the vert	y in Eng	on_verb	al comm	unicatio	n					
COUR	SFOUT			the vert				umcatio	11.					
At the e	and of th		». Studer	te will h	e able to	<u> </u>								
C01		nderstan	d the i	mportar	ice of a	oral and	1 writte	n comr	nunicatio	on in de	av-to-da	v wo	rkino	of th
con.	01	ganisati	on	mportur		orur un		ii comi	numeun) II III G	iy to du	.j	ining	01 11
CO2:	D	evelop t	heir inter	r persona	al skills a	and prob	lem-solv	ving skil	ls.					
CO3:	U	nderstan	d the rol	e of bod	ly langua	ige in efi	fective c	ommuni	cate					
CO4:	I	mplemer	nt the sof	ft skills i	n theore	tical and	practica	al ways.						
CO5:	A	dapt the	e technia	ues of p	ersonalit	v develo	pment.	5						
COsVs	POsMA	PPING	:	<u></u>		<i>j ao</i> (<i>o</i> 10	<u>p</u>							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		P	PO12	
												C		
												1		
												1		
CO1	-	-	-	-	-	-	-	-	-		3	-	-	
CO2	-	-	-	-	-	-	-	-	-	3	3	-	-	
CO3	-	-	-	-	-	-	-	-	-		3	-	-	
CO4	-	-	-	-	-	-	-	-	-		3	-	-	
CO5	-	-	-	-	-	-	-	-	-		3	-	-	
COUR	SECON	TENTS	:	L	1	L		1				<u> </u>		
MODU	JLE1	СОММ	UNICA	TION A	ND WF	RITING	SKILL	S				12 Ho	ours	
Over vi	iony of o	mmuni	potion al	rille Do	rriors of	commu	nightion	obillo E	ffootivo	commun	vication	abilla	Vor	·hal
and not	1 - verb	al and P	ronuncia	tion - Si	tory writ	ting _ Fm	neation ail writ	ing. For	mal and	informal	emails	activ	- vei itv-Ri	uild
vour C	V – start v	vriting v	our com	prehensi	ive CV in	ncluding	everv a	chievem	ent in vo	our life.	ennunis,	ucuv	ny De	
MODU	LEII	VOCAE	BULARY	Y BUIL	DING	2	<u> </u>					12 Ho	ours	
		~ ~ ~	-				-		~ ~	~				
Technic	cal specif	tic terms	s related	to the 1	field of t	technolo	gy, Phra	asal verb	s, Idion	is, Signif	icant at	brevia	ations	
and acr	onyms- F	ormal b	usiness v		iry, Sync	onyms ar	nd anton	yms-Tec	chnical v	ocabular	y.	A TT		
Importo	LEIII	LISIE		Difform) noo hotu	voon lie	toning	and have	ring Tu	nos of 1	L istoning	L HOL	irs	
recordi	ng and ar	iisteiniig	s skills, estions b	Difference Difference	them I	istening	and not	allu lleal e teking	ing, iy	pes of I	istennig	, List	en to	
	II FIV	REA	DING A	ND SP	FAKIN			e taking.			1	2 Hoj	irs	
Reading	g and co	mpreher	ision of	general	and tec	chnical a	articles	Precise	writing	Summar	izing A	Abstra	cting.	
Individ	ual and	group p	resentati	ons. Im	promptu	present	ation. P	ublic sp	eaking:	Interviev	v skills	and (Group	
discussi	ion.	0 1 1				1	,	1	U,				1	
MODU	JLEV	CON	IPONE	NTS OF	PERSC	DNALI	TY DEV	ELOPN	IENT			12 Ho	urs	
Persona	ality deve	elopment	t - Self-p	erceptio	n, Self-c	concept,	Self-este	eem, Stro	ess mana	agement,	Time m	anage	ment,	
Emotio	nal intell	igence, A	Aspiratio	ons, Ach	ievemen	ts and fu	lfillmen	t.						
PRAC	ΓICAL					_								
Listenir	ng and no	ote takin	g, writin	g skills,	oral pre	sentatior	n skills;	field dia	ry and la	b record	; indexii	ng, foc	otnote	
and bib	liograph	ic proce	dures. R	eading a	ind comp	prehensi	on of ge	eneral an	id techni	cal articl	es, prec	ise wi	iting,	
summan	rizing, at	ostractin	g; 1nd1v1	dual and	u group	presenta	utions. L	developi	ng quest	ionnaire	to study	y impa	act of	
pilysiqu	tions of	auonan 1 ander an	d family	uis, aspi	ranons sonality	aspirat	ions and	uevelo] achiew	pillg qu emente	collectin	ur data	throug	social	
question	nnaires o	n small o	samples	Report	writing s	, aspirat	entation		cincints.	Concetiii	is uata	unoug	,ii uic	
140500		ii oman i	sampies.	report	,, in this t	ma prese	-manon.							ł

TEXT BOOKS:

 Raman, Meenakshi and Sangeetha Sharma. 2011. Technical Communication: Principles and Practice, Oxford University Press, New Delhi.

2. Rizvi and Ashraf M. 2005. Effective Technical Communication, Tata McGraw-Hill, New Delhi.

REFERENCES:

1. Regional Institute of English. 2006. English for Engineers, Cambridge University Press, New Delhi.

2. Rutherford and Andrea. 2001. Basic Communication Skills for Technology, Pearson, New Delhi.

3. Viswamohan A. 2008. English for Technical Communication, Tata McGraw-Hill, New Delhi.

2301FLX02	JAPANESE LANGUAGE	L	Т	Р	C
		2	0	0	2
COURSECONTENTS:					
Welcome aboard *ABK-AOTS DOSOKAI BENG	ALURU*				
JLPT N5 integrated Course co	vers 120 hours of intensive coaching, in preparation for .	JLPT exam	l		
+ Revision for JLPT					
(certification by Japan Foundation	on, a world-wide standard)				
Course content					
1 Japanese Scripts / alphabets :					
_Hiragana (native Japanese scrip _Katakana (foreign words) _Kanji (Chinese derived script)	pt)				
2. (bunpou) Grammar 25 lessons					
3. (aisatsu) Greetings					
4. (kaiwa) conversation through	native Japanese enacted videos				
5. (choukai) Listening to native.	Japanese conversion				
6. (dokkai) Reading / compreher	nsion				
& Revision - simulation (mock)	tests				
ABK AOTS DOSOKAI					

	குமிடிரும்கொழில்நாட்பமும்/	L	Т	Р	С					
2301TA201	Tamils and Technology	1	0	0	1					
		-	Ū	Ŭ						
PRE REQUIS	TE: 		l .l							
and be knowled	agable shout their beritage in order to preserve their cultural identity and	and all $\frac{1}{2}$	iù the	e mou	er longue					
and cultural acti	vities	1 ODSE	i ve u		auttional					
Recognizing thi	s fact and for meeting the felt and emerging needs of the Tamil Commu	nities	and o	thers	interested					
in Tamil studies	s fact and for incerning the fert and emerging needs of the Family commu	intics	and	dife15	merestea					
COURSE OBJ	ECTIVES:									
Tamil Literatur	e is way of a life. It focuses on the historical significance of ethics r	noral	cultu	re in	the Tamil					
context.	the may of a me. It is also on the instantial argumente of endes, i	norui	e area		the runn					
Tamil Modern l	iterature emphasizes on the modern development of the behavioral, mor	al and	ethic	al						
Technology is the	he important key for a language and a new sector for the students to voic	e out	for a	socia	l cause					
COURSE OUT	COMES:									
At the end of the	is course, Students will be able to,									
CO1:	Develop a spirit of patriotism.									
CO2:	CO2: Understand the plight of the people living in the society and Biological Struggles.									
CO3:	CO3: Remember the life style of the Sangam people and To recognize the heroic spirit of the ancient Tamil kings									
CO4:	Evaluate the quality and morals of local life through Tamil literature									
CO5:	Introducing the various Literary Genres and dramas and enable them to ideas in modern literary theories	produ	ice in	novat	ive					
COURSE CON	VTENTS:									
MODULE I	WEAVING AND CERAMIC TECHNOLOGY			3 Ho	urs					
Weaving Indus	try during Sangam Age–Ceramic technology–Black and Red Ware Potte	eries (BRW)						
Graffition Potte	ries.									
alour I					•					
SHOO I	ு நசவு மற்றும் பாலைத் தொழில்நுட்பம்.	8		.	3					
சங்க காலத	ததில் நெசவுத் தொழில் – பானைத் தொழில்நடப்பட் -	கருட	л к	ิร์เอเ	ЪЦ					
பாண்டங்க	ள் – பாண்டங்களில் கீறல் குறியீடுகள்.									
MODULE II	DESIGN AND CONSTRUCTION TECHNOLOGY			3 Ho	urs					
Designing and	Structural construction House & Designs in house hold materials dur	ing Sa	angan	1 Age	e Building					
materials and H	lero stones of Sangam age -Details of Stage Constructions in Silappa	thikar	am -	Scult	otures and					
Temples of Ma	mallapuram - Great Temples of Cholas and other worship places - Te	mples	of N	Jayak	a Period -					
Type study (Ma	adurai Meenakshi Temple) - Thirumalai Nayakar Mahal – Chetti Nac	lu Ho	uses,	Indo-	-Saracenic					
architecture at N	Adras during British Period.									
அலகு <mark>I</mark> I	வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பம்:			3						
சங்க கால	த்தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் & சங்க கால	த்தில்	ാ ഖ്	ட்டுப்	I					
பொருட்கள	lில் வடிவமைப்பு- சங்க காலக்கில் கட்டுமான பொருட்களு	ம் ந(கெல்	லும்						
		- 0								

– சிலப்பதிகாரத்தில் மேடை அமைப்பு பற்றிய விவரங்கள் - மாமல்லபுரச் சிற்பங்களும், கோவில்களும் – சோழர் காலத்துப் பெருங்கோயில்கள் மற்றும் பிற வழிபாட்டுத் தலங்கள் – நாயக்கர் காலக் கோயில்கள் - மாதிரி கட்டமைப்புகள் பற்றி அறிதல், மதுரை மீனாட்சி அம்மன் ஆலயம் மற்றும் திருமலை நாயக்கர் மஹால் – செட்டிநாட்டு வீடுகள் – பிரிட்டிஷ் காலத்தில் சென்னையில் இந்தோ-சாரோசெனிக் கட்டிடக் கலை.

MODULE III MANUFACTURING TECHNOLOGY

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel - Copper and gold -Coins as source of history - Minting of Coins – Beads making – industries Stone beads - Glass beads – Terra-cotta beads – Shell beads/bone beats – Archeological evidences –Gems tone types described in

3 Hours

Silappathikaram.

அலகு III உற்பத்தித் தொழில் நட்பம்:

கப்பல் கட்டும் கலை – உலோகவியல் – இரும்புத் தொழிற்சாலை – இரும்பை உருக்குதல், எஃகு – வரலாற்றுச் சான்றுகளாக செம்பு மற்றும் தங்க நாணயங்கள் – நாணயங்கள் அச்சடித்தல் – மணி உருவாக்கும் தொழிற்சாலைகள் – கல்மணிகள், கண்ணாடி மணிகள் – சுடுமண் மணிகள் – சங்கு மணிகள் – எலும்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சிலப்பதிகாரத்தில் மணிகளின் வகைகள்.

MODULE IV AGRICULTURE AND IRRIGATION TECHNOLOGY

Dam, Tank, ponds, Sluice, Significance of KumizhiThoompu of Chola Period, Animal Husbandry -Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries –Pearl – Conche diving – Ancient Knowledge of Ocean – Knowledge Specific Society

அலகு IV வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில் நுட்பம்:

அணை, ஏரி, குளங்கள், மதகு – சோழர்காலக் குமுழித் தூம்பின் முக்கியத்துவம் – கால்நடை பராமரிப்பு – கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள் – வேளாண்மை மற்றும் வேளாண்மைச் சார்ந்த செயல்பாடுகள் – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்றும் முத்துக்குளித்தல் – பெருங்கடல் குறித்த பண்டைய அறிவு – அறிவுசார் சமூகம்.

MODULE V SCIENTIFIC TAMIL & TAMIL COMPUTING

Development of Scientific Tamil – Tamil computing – Digitalization of Tamil Books –Development of Tamil Software – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionaries – Sorkuvai Project.

அலகு V அறிவியல் தமிழ் மற்றும் கணித்தமிழ்:

அறிவியல் தமிழின் வளர்ச்சி –கணித்தமிழ் வளர்ச்சி - தமிழ் நூல்களை மின்பதிப்பு செய்தல் – தமிழ் மென்பொருட்கள் உருவாக்கம் – தமிழ் இணையக் கல்விக்கழகம் – தமிழ் மின் நூலகம் – இணையத்தில் தமிழ் அகராதிகள் – சொற்குவைத் திட்டம்.

REFERENCES:

1. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)

2. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.

3. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu)

(Published by: International Institute of Tamil Studies).

4. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)

5. Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by:

Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation,

Tamil Nadu)

6. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)

7. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

8. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) – Reference Book.

3

3 Hours

TOTAL:15HOURS

3

3 Hours

														L	Т	Р		r T
230	IGEX51	L		CO	MPU	JTER	R PRA	CTI	CES I	LABO	RATO	RY		0	0	2		1
PRF	REOU	ISITI	T:											v	v			-
		T	here is	no pr	ereau	isite f	for the	2 COIII	rse									
COI	IRSE O		CTIV	$\frac{10 \text{ pl}}{\text{ES} \cdot}$	cicqu			cou										
000	1	T	o be f	amilia	r witl	ı Con	nnuter	·Hard	lware	Comp	onents	and in	stallatic	on of so	ftwa	re		
	2	2. N	Iake u	se of	office	pack	age a	nd to	be fan	niliar v	vith the	use o	f Office	softwa	re.			
	3	3. T	'o lear	n abou	it sea	rching	g. dow	vnloa	ding. a	and sto	ring co	ntents	in the C	Cloud N	letwo	ork.		
COU	URSE O	UTC	OME	S:					0, 1		0							
UpA	t the end	d of t	his co	urse, S	Stude	nts wi	ill be a	able t	0,									
	CO1	Р	erforn	n asse	embli	ng ai	nd di	sasse	mblin	g of d	lesktop	mac	hine w	ith dif	feren	t per	ipheral	and
		S	software installation and servicing.															
	CO2	S	imulat	te data	usin	g MS	office	e for l	Presen	itation	and Vis	sualiza	ation.					
	CO3	CO3 Use browsers for searching & accessing/storing the contents to/from cloud.																
LIST OF EXPERIMENTS:																		
1. Familiarization of Computers & Computer Hardware Components																		
	2. Fam	iliariz	zation	of ma	jor ty	pes of	f stora	ige/m	emory	v techn	ology							
	3. Insta	alling	vario	us ope	eratin	g sys	tems	inclu	ding a	softwa	re dow	nload	installa	tion, Fa	amili	arizat	ion of	basic
	software/tools																	
4	4. Wor 5 5	$\frac{1}{1}$	with N	<u>15-Of</u>	fice: I	$\frac{MS}{C1}$	ord, I	<u>MS E</u> 1	xcel,	MS Po	werpon	nt						
	5. Fam	111ar17		of Col	mpute	er Sho	ortcut	keys		4.011 0.00	Oreanat	in a Ca						
(b. Min 7 Daai	1 Pro	Ject-1	Asse	mble	your	comp	uter a	ind ins	stall an	Operat	ing Sy	/stem		~~~*		/ f	aland
	/. Basi	cs of	Drop	let, w	ed dr	owsei	rs and	I Con	tent S	earchi	ng & a	cessi	ng/stori	ng the	conte	ents to	D/Irom (cioud
	8 Fam	iliariz	vation	of var	ious t	vnes	of sec	urity	threat	s inclu	ding vi	7119						
	$\frac{0.12}{9}$ Com	nuter	Fthic	s' One	n Sol	urce v	vav	unty	uncai	5 meru		us						
	10 Min	i Pro	niect-2	$\frac{\mathbf{b}, \mathbf{opc}}{2 \cdot \mathbf{Do}}$	cume	ent n	renara	ntion	using	MS	Word	Data	Proce	ssing 1	ising	MS	Excel	and
	Pres	entati	on usi	ng MS	S Pow	/erpoi	int		asing	, 1010		Duta	11000	bonng (301112	, 110	Liteer	una
				0		· · ·									ТО	TAL	: 30 HC	JURS
COs	S Vs POs	s & P	SOs N	IAPP	ING	:												
_																		_
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	502	PSO3	
	CO1	3	3	2	2	-	-	-	2	2	-	1	1	1	1		1	
	CO2	3	3	2	2	2	-	-	-	-	1	-	1	1	1		1	
[CO3	3	3	2	1	-	-	-	2	-	-	-	1	1	1		1	
HAI	RDWAH	RE/SO	OFTW	ARE	REC)UIR	EME	NT										
		1. St	andal	one De	esktoj	p Con	nputer	rs wit	h Inte	rnet Co	onnectiv	vity						
		2. O	ffice F	Packag	ge													
		3.0	peratii	ng Sys	stem l	Packa	ges											
REF	EREN	CES:																
1.	Kevin	Wils	on, "C	ompu	ter H	ardwa	are: Tl	he Ill	ustrate	ed Guio	le to Ur	nderst	anding	Comput	ter H	ardwa	are", 20	21
2.	Kuma	r Bitt	u, "Ma	sterin	g MS	Offi	ce", 2	020										
3.	Ajay I	Mittal	&Ani	tha G	oel, "	Comp	outer I	Funda	amenta	als and	Progra	mmin	g in C",	2017				
4.	https:/	/npte	l.ac.in/	cours	es/10	61030)68											
5.	https:/	/docs	.oracle	e.com/	cd/E	1912	-01/st	f.x21	$00 \text{m}^2/$	819-65	92-13/	Chap1	.html					
6.	6. https://www.linkedin.com/learning/topics/microsoft-office																	

2301GEX53	FOUNDATION OF ELECTRICAL AND ELECTRONICS	L	Т	Р	С				
2001012/100	FOUNDATION OF ELECTRICAL AND ELECTRONICS ENCINEEDING LADODATODY		-	•	C				
	ENGINEERING LABUKATURY								
	(Common to CSE, IT, AIDS, BME, MECH, CIVIL)	(Common to CSE, IT, AIDS, BME, MECH, CIVIL) 0							
LIST OF EX	PERIMENTS:								
1. Verification of Ohm's law and Kirchhoff's laws									
2. Reside	ential house wiring using fuse, switch, indicator, lamp and energy meter		3 H	lours					
3. V-I ch	3. V-I characteristics of PN junction diode / Zener diode								
4. IC 555	4. IC 555 and IC 741 based experiments								
5. Energy	5. Energy conservation demonstration experiment using energy meter								
6. Waveform generation and calculation of RMS and average values									
7. Design	n of 6V regulated power supply		3 H	3 Hours					
8. Verification of Logic gates									
9. Speed	9. Speed control of DC shunt motor. 3 Hours								
10. I – V 0	- V Characteristics of Solar PV cell (Simulation approach) 3 Hours								
		TOTA	L:3	30 HO	OURS				
REFERENCI	ES :								
1. Edward	Hughes, "Electrical Technology,", Pearson Education								
2. D.P. Ko	thari and Nagrath" Basic Electronics", MH Education 2013.								
3. Paul Scl	nerz and Simon Monk "Practical Electronics for inventors" Mc Graw Hill Pub	olication	1s 20)13.					
4. https://n	ptel.ac.in/courses/122106025/								
5. https://e	m-coep.vlabs.ac.in/exp/speed-control-dc-motor/simulation.html								
6. https://d	e-iitr.vlabs.ac.in/exp/truth-table-gates/simulation.html								
7. Dr.T.Su Electr	resh Padmanabhan, Dr.M.Vinothkumar and Dr.S.Sivamani, "Foundation on the second s	on of	Ele	ctrica	l and				

L Т Р С APPLIED DIGITAL LOGIC AND DESIGN LABORATORY 2301GEX54 Common to B.E-CSE, BME, B. Tech – IT and AIDS 0 0 2 1

PREREQUISITE: Basic mathematic skills

COURSE OBJECTIVES:

- 1. To present the fundamentals of digital circuits and simplification methods.
- 2. To practice the design of various combinational and sequential digital circuits using logic gates.
- To practice the HDL programming for combinational and sequential circuits. 3.

COURSE OUTCOMES:

امسم مطلفه ا	of this course	Cturdante mill ha abla ta	
At the end	of this course,	Students will be able to,	

Construct different combinational circuits using logic gates. CO1:

CO2: Develop differentsequential circuits using logic gates and flip flops.

CO3: Build programmable devices using logic gates.

Develop Verilog program for combinational and sequential circuits. CO4:

COs Vs POs MAPPING:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	1	-	-	-	-	-	2	1	-	1	
CO2	3	2	1	-	-	-	-	-	2	1	-	1	
CO3	3	2	1	-	-	-	-	-	2	1	-	1	
CO4	3	2	1	-	3	-	-	-	2	1	-	1	

COs Vs PSOs MAPPING

COs	PSO1	PSO2	PSO2
CO1	1	1	2
CO2	1	2	1
CO3	2	2	1
CO4	2	2	2

List of Lab experiments

- 1. VerificationofBooleanTheoremsusingbasicgates
- 2. Design and implementation of half adder, half subtractor, full adder and full subtractor
- 3. Design and implementation of code converters
- 4. Design and implementation of multiplexer and de-multiplexer
- 5. Design and implementation parity generator/checker
- 6. Design and implementation counters
- 7. Design and implementation shift register
- 8. Develop and simulation of Verilog program for combinational circuits

9. Develop and simulation of Verilog program for sequential circuits

Hardware/software requirement

- Digital trainer kit 10 Nos 1.
- 2. Adequate numbers of IC's
- 3. XilinxISE (or)Altera Quartus II software

REFERENCES:

1. Morris Mano and Michael D. Ciletti, "Digital Design", 5th edition, Prentice Hall of Ind	ia.2012
--	---------

TOTAL: 30 HOURS

- Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2003 https://archive.nptel.ac.in/courses/108/105/108105132 2.
- 3.
- 4. https://www.vlab.co.in/broad-area-electronics-and-communications

2301GEX54APPLIED DIGITAL LOGIC AND DESIGN LABORATORY
Common to B.E-CSE, BME, B. Tech – IT and AIDSLTPC0021

PREREQUISITE: Basic mathematic skills

COURSE OBJECTIVES:

- 4. To present the fundamentals of digital circuits and simplification methods.
- 5. To practice the design of various combinational and sequential digital circuits using logic gates.
- 6. To practice the HDL programming for combinational and sequential circuits.

COURSE OUTCOMES:

At the end of this course, Students will be able to,

- **CO1:** Construct different combinational circuits using logic gates.
 - **CO2:** Develop differentsequential circuits using logic gates and flip flops.
- **CO3:** Build programmable devices using logic gates.
- **CO4:** Develop Verilog program for combinational and sequential circuits.

COs Vs POs MAPPING:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	2	1	-	1
CO2	3	2	1	-	-	-	-	-	2	1	-	1
CO3	3	2	1	-	-	-	_	-	2	1	-	1
CO4	3	2	1	_	3	-	-	-	2	1	-	1

COs Vs PSOs MAPPING

COs	PSO1	PSO2	PSO2
CO1	1	1	2
CO2	1	2	1
CO3	2	2	1
CO4	2	2	2

List of Lab experiments

- 10. VerificationofBooleanTheoremsusingbasicgates
- 11. Design and implementation of half adder, half subtractor, full adder and full subtractor
- 12. Design and implementation of code converters
- 13. Design and implementation of multiplexer and de-multiplexer
- 14. Design and implementation parity generator/checker
- 15. Design and implementation counters
- 16. Design and implementation shift register
- 17. Develop and simulation of Verilog program for combinational circuits
- 18. Develop and simulation of Verilog program for sequential circuits

Hardware/software requirement

- 4. Digital trainer kit 10 Nos
- 5. Adequate numbers of IC's
- 6. XilinxISE (or)AlteraQuartusII software

TOTAL: 30 HOURS

REFERENCES:

- 5. Morris Mano and Michael D. Ciletti, "Digital Design", 5th edition, Prentice Hall of India, 2012
- 6. Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2003
- 7. https://archive.nptel.ac.in/courses/108/105/108105132
- 8. https://www.vlab.co.in/broad-area-electronics-and-communications