

| 17CA105 COMPUTER ORGANIZATION AND DESIGN |         |               |                      |                                |  |  |  |
|------------------------------------------|---------|---------------|----------------------|--------------------------------|--|--|--|
| Academic Year :                          | 2018-19 |               | Programme :          | P.G – MCA                      |  |  |  |
| Year / Semester :                        | I / I   | Question Bank | Course Coordinator : | Mr. S.Selvaganapathy<br>AP/MCA |  |  |  |

| Course Objectives                        | Course Outcomes:                                           |
|------------------------------------------|------------------------------------------------------------|
|                                          |                                                            |
| 1. To understand the fundamentals of     |                                                            |
| Boolean logic and functions.             | On the successful completion of the course, students will  |
| 2. To have a thorough understanding of   | be able to                                                 |
| the basic structure and operation of a   |                                                            |
| digital computer.                        | CO1: Master the binary and hexadecimal number systems      |
| 3. To design and realize digital systems | including computer arithmetic.                             |
| with basic gates and other               |                                                            |
| components using combinational and       | CO2: Design and implement digital systems with basic       |
| sequential circuits                      | gates and other components using combinational and         |
| 4. To discuss in detail about the        | sequential circuits                                        |
| operation of the arithmetic and logic    |                                                            |
| unit.                                    | CO3: Familiarize the Von Neumann architecture.             |
| 5. To study the instruction sets and     |                                                            |
| operation of a processor.                | CO4: Familiarize the functional units of the processor and |
| 6. To study the different ways of        | addressing modes, instruction sets.                        |
| communication with I/O devices and       |                                                            |
| standard I/O Interfaces.                 | CO5: Familiarize the memories and cache subsystem.         |
| 7. To study the hierarchical memory      |                                                            |
| system including cache memories          |                                                            |
| and virtual memory                       |                                                            |

| PAR                           | PART – A ( 2 Mark Questions With Key)                                |      |     |    |  |
|-------------------------------|----------------------------------------------------------------------|------|-----|----|--|
| S.N                           | Questions                                                            | Mark | COs | BT |  |
| 0                             |                                                                      |      |     | L  |  |
| UNIT I – DIGITAL FUNDAMENTALS |                                                                      |      |     |    |  |
| 1                             | Define Computer Architecture                                         |      |     |    |  |
|                               | Computer Architecture Is Defined As The Functional Operation Of The  |      | 1   | V1 |  |
|                               | Individual H/W Unit In A Computer System And The Flow Of Information | 2    | 1   | K1 |  |
|                               | Among The Control Of Those Units                                     |      |     |    |  |
| 2                             | List the number systems?                                             | 2    | 1   | K1 |  |
|                               | i) Decimal Number system                                             |      |     |    |  |
|                               | ii) Binary Number system                                             |      |     |    |  |
|                               | iii) Octal Number system                                             |      |     |    |  |
|                               | iv) Hexadecimal Number system                                        |      |     |    |  |
| 3                             | What is the binary equivalent of the decimal number 368              | 2    | 1   | K2 |  |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

| _ |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   | -  |
|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|
|   |   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |    |
|   |   | $\frac{2}{2}$ $\frac{1}{5}$ $\frac{1}$ |   |   |    |
|   |   | $\frac{2}{0}$ $\frac{1}{0}$ $\frac{1}{1}$ Decimal number 368 is 101110000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   |    |
|   | 4 | The simplification of the Boolean expression $\overline{(\overline{ABC})} + \overline{(\overline{ABC})}_{is}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 | 1 | K3 |
|   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |    |
|   |   | $(\overline{ABC}) + (\overline{ABC}) = A + \overline{B} + C + \overline{A} + B + \overline{C} = A + \overline{B} + C + \overline{A} + B + \overline{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |    |
|   |   | $= (A + \overline{A})(B + \overline{B})(C + \overline{C}) = 1X1X1 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |    |
|   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |    |
|   | 5 | Convert the octal number 7401 to Binary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 1 | K2 |
|   |   | Conversion of Octal number 7401 to Binary: Each octal digit represents 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |    |
|   |   | binary digits. To convert an octal number to binary number, each octal digit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 |   |    |
|   |   | is replaced by its 3 digit binary equivalent shown below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |    |
|   |   | 7 4 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |    |
|   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |    |
|   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 |   |    |
|   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 |   |    |
|   |   | 111 100 000 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |    |
| _ |   | Thus, $(7401)_8 = (111100000001)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |    |
|   | 6 | Perform 2's complement subtraction of $(7)_{10} - (11)_{10}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 | 1 | K2 |
|   |   | 2's Complements Subtraction of $(7)_{10} - (11)_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |    |
|   |   | First convert the decimal numbers 7 and 11 to its binary equivalents.<br>$(7)_{10} = (0111)_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |   |    |
|   |   | $(11)_{10} = (1011)_2$ in 4-bit system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |    |
|   |   | Then find out the 2's complement for 1011 i.e.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |    |
|   |   | 1's Complement of 1011 is 0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    |
|   |   | 2's Complement of 1011 is 0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    |
|   |   | So, $(7)_{10} - (11)_{10} = 0.000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |   |    |
|   |   | 0101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |    |
|   |   | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |    |
|   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |    |
|   | 7 | Simplify the following expression $Y = (A + B) (A + C') (B' + C')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 | 1 | K3 |
|   |   | Y = (A + B) (A + C') (B' + C')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    |
|   |   | = (AA' + AC + A'B + BC) (B' + C') [A.A' = 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |   |    |
|   |   | = (AC + A'B + BC) (B' + C')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |    |
|   |   | = AB'C + ACC' + A'BB' + A'BC' + BB'C + BCC'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |    |
| _ | 2 | = AB'C + A'BC'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - |   |    |
|   | 8 | Prove that $ABC + ABC' + AB'C + A'BC = AB + AC + BC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 | 1 | K3 |
|   |   | ABC + ABC' + AB'C + A'BC = AB(C + C') + AB'C + A'BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |    |
|   |   | =AB + AB'C + A'BC = A(B + B'C) + A'BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |    |
|   |   | =A(B+C) + A'BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    |
|   |   | =AB + AC + A'BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |    |
|   |   | =B(A+C) + AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |   |    |
|   |   | =AB + BC + AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |    |
| 1 |   | $=AB + AC + BC \dots$ Proved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |   |    |



| 9  | State the limitations of karnaugh map.                                                |   | 1 | K1 |
|----|---------------------------------------------------------------------------------------|---|---|----|
|    | i) Generally it is limited to six variable map (i.e) more then six variable           | 1 |   |    |
|    | involving expression are not reduced.                                                 | 1 |   |    |
|    | ii) The map method is restricted in its capability since they are useful for          | 1 |   |    |
|    | simplifying only Boolean expression represented in standard form                      | 1 |   |    |
| 10 | Convert (B65F)16 to base 10                                                           | 2 | 1 | K2 |
|    | $= 11 \times 16^{3} + 6 \times 16^{2} + 5 \times 16^{1} + 15 \times 16^{0}$           |   |   |    |
|    | = 11 x 4096 + 6 x 256 + 5 x 16 + 15                                                   |   |   |    |
|    | =45056+1536+80+15                                                                     |   |   |    |
|    | $=(46687)_{10}$                                                                       |   |   |    |
|    |                                                                                       |   |   |    |
|    |                                                                                       |   |   |    |
| 11 | Simplify the Boolean function F $(x,y,z) = \Sigma(0,2,6,7)$ using three variable      |   |   |    |
|    | maps.                                                                                 | 2 | 1 | K3 |
|    |                                                                                       |   |   |    |
|    |                                                                                       |   |   |    |
|    | YZ                                                                                    |   |   |    |
|    | X 00 01 11 10                                                                         |   |   |    |
|    |                                                                                       |   |   |    |
|    |                                                                                       |   |   |    |
|    | F= XY + X'Z'                                                                          |   |   |    |
| 12 | Determine the value of base x if $(193)x = (623)_8$ .                                 | 2 | 1 | K2 |
|    | Solution : i) $(193)_{\chi} = (623)_8$                                                | - | - |    |
|    | Converting octal into decimal                                                         |   |   |    |
|    | $6 \times 8^{-} + 2 \times 8 + 3 = (403)$<br>(623) <sub>8</sub> = (403) <sub>10</sub> |   |   |    |
|    | $(193)_{\rm x} = (403)_{10}$                                                          |   |   |    |
|    | $1 \times x^2 + 9 \times x + 3 \times x^0 = 403$                                      |   |   |    |
|    | $x^2 + 9x + 3 = 403$                                                                  |   |   |    |
|    | $\therefore  \mathbf{x} = 10 \text{ or } \mathbf{x} = -22$                            | - |   |    |
| 13 | Implement AND, OR and NOT gates using NAND gates                                      | 2 | 1 | K3 |
|    | The realization of above gates are shown in Fig. 3.85.<br>A  AB  AB                   |   |   |    |
|    |                                                                                       |   |   |    |
|    |                                                                                       |   |   |    |
|    |                                                                                       |   |   |    |
|    |                                                                                       |   |   |    |
| 14 |                                                                                       | - |   |    |
| 14 | Why are NAND and NOR gates known as Universal gates ?                                 | 2 | 1 | K2 |
|    | Ans.: NAND and NOR are the gates that can be used alone to generate remaining gates   |   |   |    |
|    | such as NOT, AND and OR. Thus, with only any of the two gates, we can implement the   |   |   |    |
|    | logic circuit. Hence, they are called Universal gates.                                |   |   |    |
|    |                                                                                       |   |   |    |
| 15 | Determine a AND gate using NOR gates only                                             |   | 1 | K2 |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|     | Y Www.asic-world.com                                                                                                                                                                                                                                                                                 | 2   |   |     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|-----|
| UNI | F II – COMBINATIONAL AND SEQUENTIAL CIRCUITS                                                                                                                                                                                                                                                         |     |   |     |
| 1   | Distinguish between combinational circuit and sequential circuit.                                                                                                                                                                                                                                    | 2   | 2 | K2  |
|     | combinational circuit sequential circuit                                                                                                                                                                                                                                                             |     |   |     |
|     | 1.1.The circuit whose output at any<br>instant depends only on the input<br>present at that instant only is known<br>as combinational circuit .The circuit whose output at any instant<br>depends not only on the input present<br>but also on the past output a is known<br>as sequental circuit 2. |     |   |     |
|     | This type of circuit has no memory<br>unit. This type of circuit has memory unit<br>for store past output                                                                                                                                                                                            |     |   |     |
|     | 3.<br>Examples of combinational circuits<br>are half adder, full adder, magnitude<br>comparator, multiplexer, demultiplexe<br>r e.t.c.<br>3.<br>Examples of sequential circuits are<br>Flip flop, register, counter e.t.c.                                                                           |     |   |     |
| 2   | Design a half adder using NAND gates.                                                                                                                                                                                                                                                                | 2   | 2 | K3  |
|     | A<br>B<br>Half adder using NAND logic                                                                                                                                                                                                                                                                |     |   |     |
| 3   | Construct the truth table of half adder                                                                                                                                                                                                                                                              | 2   | 2 | K2  |
|     | $A \rightarrow Har \rightarrow S$ $B \rightarrow Active \rightarrow C$ $A \rightarrow B \rightarrow C \rightarrow C$ $A \rightarrow B \rightarrow C \rightarrow C$ $A \rightarrow C \rightarrow AB$ $A \rightarrow C \rightarrow AB$ $A \rightarrow C \rightarrow AB$                                |     |   |     |
| 4   | What are the different types of flip-flop?                                                                                                                                                                                                                                                           | 2   | 2 | K2  |
|     | There are various types of flip flops. Some of them are mentioned below they are,<br>(1) RS flip-flop (2) SR flip-flop (3) D flip-flop (4) JK flip-flop (5) T flip-flop                                                                                                                              |     |   |     |
| 5   | What is the operation of JK flip-flop?                                                                                                                                                                                                                                                               | 2   | 2 | K2  |
|     | $\Box$ $\Box$ When K input is low and J input is high the O output of flipflop is set.                                                                                                                                                                                                               |     |   |     |
|     | $\square$ $\square$ When K input is high and J input is low the Q output of flipflop is reset.                                                                                                                                                                                                       |     |   |     |
|     | $\Box$ $\Box$ When both the inputs K and J are low the output does not change                                                                                                                                                                                                                        |     |   |     |
|     | $\Box$ $\Box$ When both the inputs K and J are hgh it is possible to set or reset the                                                                                                                                                                                                                |     |   |     |
|     | Flip-flop (ie) the output toggle on the next positive clock edge.                                                                                                                                                                                                                                    |     |   |     |
| 6   | What do you think about clock generator?                                                                                                                                                                                                                                                             | 2   | 2 | K2  |
|     | A clock generator is a circuit that produces a timing signal (known as                                                                                                                                                                                                                               |     |   |     |
|     | a clock signal and behaves as such) for use in synchronizing a circuit's                                                                                                                                                                                                                             |     |   |     |
|     | operation. The signal can range from a simple symmetrical square wave to                                                                                                                                                                                                                             |     |   |     |
|     | more complex arrangements. The basic parts that all clock generators share                                                                                                                                                                                                                           |     |   |     |
| 7   | What is the difference between a truth table and a state table?                                                                                                                                                                                                                                      |     | 2 | кл  |
| -   | A state table is essentially a truth table in which some of the inputs are the                                                                                                                                                                                                                       | 1   | 2 | IX2 |
|     | current state and the outputs include the next state along with other                                                                                                                                                                                                                                | L L |   |     |
|     | outputs. A state table is one of many ways to specify a state machine, other                                                                                                                                                                                                                         |     |   |     |



|    |                                                                                               |   | - |           |
|----|-----------------------------------------------------------------------------------------------|---|---|-----------|
|    | ways being a state diagram, and a characteristic equation.                                    |   |   |           |
|    | A truth table is a breakdown of a logic function by listing all possible                      | 1 |   |           |
|    | values the function can attain. Such a <b>table</b> typically contains several rows           |   |   |           |
|    | and columns, with the top row representing the logical variables and                          |   |   |           |
|    | combinations, in increasing complexity leading up to the final function.                      |   |   |           |
| 8  | Difference between Asynchronous and Synchronous Counter :                                     | 2 | 2 | к2        |
| 0  | Difference between Asynchronous and Synchronous Counter .                                     | - | 2 | 112       |
|    | Asynchronous Counter Synchronous Counter                                                      |   |   |           |
|    | 1. Clock input is applied to LSB FF. The output 1. Clock input is common to all FF.           |   |   |           |
|    | of first FF is connected as clock to next FF.                                                 |   |   |           |
|    | 2 All Flip Flags are togels FE 2 Any FE can be used                                           |   |   |           |
|    | 2. All ritp-riops are toggie rr. 2. Ally rr can be used.                                      |   |   |           |
|    | 3. Speed depends on no. of FF used for n bit. 3. Speed is independent of no. of FF used.      |   |   |           |
|    | $t_{max} = \frac{1}{t_{b}}$                                                                   |   |   |           |
|    | nxt,     4 No extra Logic Gates are required 4 Logic Gates are required based on              |   |   |           |
|    | design.                                                                                       |   |   |           |
|    | 5 Cast is lace 5 Cast is more                                                                 |   |   |           |
|    | 5. Cost is ress. 5. Cost is inore.                                                            |   |   |           |
| 9  | What is triggering in flip-flop?                                                              | 2 | 2 | K1        |
| -  | The state of a <b>flin-flon</b> is changed by a momentary change in the input                 | _ |   |           |
|    | signal. This change is called a <b>trigger</b> and the transition it causes is said           |   |   |           |
|    | to <b>trigger</b> the <b>flin-flon</b> The basic circuits of Figure 2 and Figure 3 require an |   |   |           |
|    | input trigger defined by a change in signal level                                             |   |   |           |
| 10 | Distinguish between multiplever and de multiplever                                            | 2 | 2 | к2        |
| 10 | Multiplever                                                                                   | 4 | 2 | <u>K2</u> |
|    | 1 Many inputs & one output 1 One inputs & many output                                         |   |   |           |
|    | 1. Many inputs & one output. 1. One inputs & many output.                                     |   |   |           |
|    | 2. Data select lines. 2. Data distributer.                                                    |   |   |           |
|    | 3. Parallel to serial conversion. 3. Serial to parallel conversion.                           |   |   |           |
|    | 4. when we design multiplexer, we 4. when we design demultiplexer,                            |   |   |           |
|    | don't need additional gates. We need additional gates.                                        |   |   |           |
| 44 | 5. Example- 8:1, 16:1, 32:1 5. Example- 1:8, 1:16, 1:32                                       |   | 2 | TZO       |
| 11 | Distinguish between encoder and decoder.                                                      | 2 | 2 | K2        |
|    | difference between decoder and encoder. A decoder is a multiply-input,                        |   |   |           |
|    | multiply-output combinational logic circuit that converts coded inputs into                   |   |   |           |
|    | coded outputs, where the input and output codes are different. The most                       |   |   |           |
|    | commonly used input code is an n-bit binary code                                              |   | _ |           |
| 12 | What are the types of ALU design?                                                             | 2 | 2 | K1        |
|    | An arithmetic logic unit (ALU) is a digital electronic circuit that performs                  |   |   |           |
|    | arithmetic and bitwise logical operations on integer binary numbers It is a                   |   |   |           |
|    | fundamental building block of many types of computing circuits, including                     |   |   |           |
|    | the central processing unit (CPU) of computers, FPUs, and graphics                            |   |   |           |
|    | processing units.                                                                             |   |   |           |
| 13 | What is the control unit?                                                                     | 2 | 2 | K1        |
|    | The control unit (CU) is a component of a computer's central                                  |   |   |           |
|    | processing unit(CPU) that directs the operation of the processor. It tells the                |   |   |           |
|    | computer's memory, arithmetic/logic unit and input and output devices on                      |   |   |           |
|    | how to respond to a program's instructions.                                                   |   |   |           |
|    | computer's memory, arithmetic/logic unit and input and output devices on                      |   |   |           |
|    | how to respond to a program's instructions.                                                   |   |   | 1         |



|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - |   |      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|------|
| 14  | What is the function of a control unit?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 | 2 | K1   |
|     | The Control Unit (CU) is digital circuitry contained within the processor that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |   |      |
|     | coordinates the sequence of data movements into, out of, and between a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |      |
|     | processor's many sub-units. The result of these routed data movements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |      |
|     | through various digital circuits (sub-units) within the processor produces the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |   |      |
|     | manipulated data expected by a software instruction (loaded earlier, likely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   |      |
|     | from memory) It controls (conducts) data flow inside the processor and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |      |
|     | additionally provides several external control signals to the rest of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |      |
|     | additionally provides several external control signals to the rest of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |      |
|     | destinction's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |      |
| 15  | What do you think shout alook concrete?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 | 2 | V1   |
| 15  | what do you think about clock generator?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 | 2 | K1   |
|     | A clock generator is a circuit that produces a timing signal (known as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |      |
|     | a clock signal and behaves as such) for use in synchronizing a circuit's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |      |
|     | operation. The signal can range from a simple symmetrical square wave to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |      |
|     | more complex arrangements. The basic parts that all clock generators share                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |      |
|     | are a resonant circuit and an amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |      |
| UNI | <b>FIII – PROCESSOR FUNDAMENTALS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |   |      |
| 1   | What is meant by von Neumann architecture?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 | 3 | K1   |
|     | The <b>von</b> Neumann architecture, which is also known as the <b>von</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |      |
|     | <b>Neumann</b> model and <b>Princeton architecture</b> is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   |      |
|     | computer <b>architecture</b> based on that described in 1945 by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |   |      |
|     | mathematician and physicist John von Neumann and others in the First                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |   |      |
|     | Draft of a Deport on the EDVAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |   |      |
|     | Dian of a Report on the EDVAC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |   |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • | 2 | 17.1 |
| 2   | Define Processor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 | 3 | KI   |
|     | A processor, or "microprocessor," is a small chip that resides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |   |      |
|     | in computers and other electronic devices. Its basic job is to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |   |      |
|     | receive input and provide the appropriate output. While this may seem like a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |      |
|     | simple task, modern processors can handle trillions of calculations per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |      |
|     | second.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |      |
| 3   | What is pipelining?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 | 3 | K1   |
|     | The technique of overlapping the execution of successive instruction for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |      |
|     | substantial improvement in performance is called pipelining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |      |
| 4   | Define instruction set processor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 | 3 | K1   |
| -   | IR < -[[PC]] The instruction recorder and control logic unit is responsible for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - | 5 |      |
|     | implementing the actions specified by the www.vidyarthiplus.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |      |
|     | instruction loaded in the ID register. The decoder generates the control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |      |
|     | instruction loaded in the in register. The decoder generates the control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |      |
|     | along the second state of the second se |   |   |      |
|     | signals needed to select the registers involved and direct the transfer of data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |      |
|     | signals needed to select the registers involved and direct the transfer of data.<br>The registers, the ALU, and the interconnecting bus are collectively referred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |      |
|     | signals needed to select the registers involved and direct the transfer of data.<br>The registers, the ALU, and the interconnecting bus are collectively referred<br>to as the data path                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |      |
| 5   | signals needed to select the registers involved and direct the transfer of data.<br>The registers, the ALU, and the interconnecting bus are collectively referred<br>to as the data path<br><b>Define</b> Fetch execute cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 | 3 | K1   |
| 5   | signals needed to select the registers involved and direct the transfer of data.<br>The registers, the ALU, and the interconnecting bus are collectively referred<br>to as the data path<br><b>Define</b> Fetch execute cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 | 3 | K1   |
| 5   | signals needed to select the registers involved and direct the transfer of data.<br>The registers, the ALU, and the interconnecting bus are collectively referred<br>to as the data path<br><b>Define</b> Fetch execute cycle<br>An instruction <b>cycle</b> (sometimes called a <b>fetch</b> –decode– <b>execute cycle</b> ) is the                                                                                                                                                                                                                                                                                                                                                                 | 2 | 3 | K1   |
| 5   | signals needed to select the registers involved and direct the transfer of data.<br>The registers, the ALU, and the interconnecting bus are collectively referred<br>to as the data path<br><b>Define</b> Fetch execute cycle<br>An instruction <b>cycle</b> (sometimes called a <b>fetch</b> –decode– <b>execute cycle</b> ) is the<br>basic operational process of a computer. It is the process by which a                                                                                                                                                                                                                                                                                        | 2 | 3 | K1   |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|                     | actions the instruction dictates, and carries out those actions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |         |                      |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|----------------------|
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -           | -       |                      |
| 6                   | What is CPI in computer architecture?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2           | 3       | K1                   |
|                     | In computer architecture, cycles per instruction (aka clock cycles per instruction (aka clock cycles per instruction on CDI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |         |                      |
|                     | a processor's performance: the average number of clock cycles per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |         |                      |
|                     | instruction for a program or program fragment. It is the multiplicative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |         |                      |
|                     | inverse of instructions per cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |         |                      |
| 7                   | <b>Define</b> Throughput and stage time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 3       | K1                   |
| -                   | Throughput: Number of items (cars, instructions, operations) that exit the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1           |         |                      |
|                     | pipeline per unit time. Ex: 1 inst / clock cycle, 10 cars/ hour, 10 fp operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |         |                      |
|                     | /cycle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |         |                      |
|                     | Stage time: The pipeline designer's goal is to balance the length of each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1           |         |                      |
|                     | pipeline stage. Balanced pipeline. In general, stage time = Time per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |         |                      |
|                     | instruction on non-pipelined machine / number of stages. In many instances,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |         |                      |
|                     | stage time = max (times for all stages)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |         |                      |
| 8                   | Define Data path                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2           | 3       | K1                   |
|                     | The data path is the "brawn" of a processor, since it implements the fetch-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |         |                      |
|                     | decode-execute cycle. The general discipline for data path design is to (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |         |                      |
|                     | determine the instruction classes and formats in the ISA, (2) design data path                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |         |                      |
|                     | components and interconnections for each instruction class or format, and (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |         |                      |
|                     | compose the data path segments designed in Step 2) to yield a composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |         |                      |
|                     | data path.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |                      |
| 0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2           | 2       | IZ 1                 |
| 9                   | List out the data path types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2           | 3       | K1                   |
| 9                   | List out the data path types<br>R-format Datapath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2           | 3       | K1                   |
| 9                   | List out the data path types<br>R-format Datapath<br>Load/Store Datapath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2           | 3       | K1                   |
| 9                   | List out the data path types<br>R-format Datapath<br>Load/Store Datapath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2           | 3       | K1                   |
| 9                   | List out the data path types<br>R-format Datapath<br>Load/Store Datapath<br>Branch/Jump Datapath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2           | 3       | <u>K1</u>            |
| 9                   | List out the data path types<br>R-format Datapath<br>Load/Store Datapath<br>Branch/Jump Datapath<br>What is meant by multi core processor?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2           | 3       | K1<br>K1             |
| 9 10                | List out the data path types         R-format Datapath         Load/Store Datapath         Branch/Jump Datapath         What is meant by multi core processor?         By Vangie Beal In consumer technologies, multi-core is usually the term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2           | 3       | K1<br>K1             |
| 9 10                | List out the data path types         R-format Datapath         Load/Store Datapath         Branch/Jump Datapath         What is meant by multi core processor?         By Vangie Beal In consumer technologies, multi-core is usually the term used to describe two or more CPUs working together on the same chip. Also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2           | 3       | K1<br>K1             |
| 9<br>10             | List out the data path types         R-format Datapath         Load/Store Datapath         Branch/Jump Datapath         What is meant by multi core processor?         By Vangie Beal In consumer technologies, multi-core is usually the term used to describe two or more CPUs working together on the same chip. Also calledmulticore technology, it is a type of architecture where a single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2           | 3       | K1<br>K1             |
| 9 10                | List out the data path typesR-format DatapathLoad/Store DatapathBranch/Jump DatapathWhat is meant by multi core processor?By Vangie Beal In consumer technologies, multi-core is usually the term<br>used to describe two or more CPUs working together on the same chip. Also<br>calledmulticore technology, it is a type of architecture where a single<br>physical processor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2           | 3       | K1<br>K1             |
| 9 10 11             | List out the data path types         R-format Datapath         Load/Store Datapath         Branch/Jump Datapath         What is meant by multi core processor?         By Vangie Beal In consumer technologies, multi-core is usually the term used to describe two or more CPUs working together on the same chip. Also calledmulticore technology, it is a type of architecture where a single physical processor contains the core logic of two or more processors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2           | 3       | K1<br>K1             |
| 9<br>10<br>11       | List out the data path types<br>R-format Datapath<br>Load/Store Datapath<br>Branch/Jump Datapath<br>What is meant by multi core processor?<br>By Vangie Beal In consumer technologies, <b>multi-core</b> is usually the term<br>used to describe two or more CPUs working together on the same chip. Also<br>called <b>multicore</b> technology, it is a type of architecture where a single<br>physical <b>processor</b> contains the <b>core</b> logic of two or more <b>processors</b> .<br>How does a multi core processor work?<br>CPUL Devices Multiple CPUs Cores and Harry Three dises Employed. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 2 2       | 3       | K1<br>K1<br>K2       |
| 9<br>10<br>11       | List out the data path types<br>R-format Datapath<br>Load/Store Datapath<br>Branch/Jump Datapath<br>What is meant by multi core processor?<br>By Vangie Beal In consumer technologies, multi-core is usually the term<br>used to describe two or more CPUs working together on the same chip. Also<br>calledmulticore technology, it is a type of architecture where a single<br>physical processor contains the core logic of two or more processors.<br>How does a multi core processor work?<br>CPU Basics: Multiple CPUs, Cores, and Hyper-Threading Explained. The<br>control processing unit (CPU) in your computer does the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 2 2 2     | 3 3 3   | K1<br>K1<br>K2       |
| 9<br>10<br>11       | List out the data path types<br>R-format Datapath<br>Load/Store Datapath<br>Branch/Jump Datapath<br>What is meant by multi core processor?<br>By Vangie Beal In consumer technologies, <b>multi-core</b> is usually the term<br>used to describe two or more CPUs working together on the same chip. Also<br>called <b>multicore</b> technology, it is a type of architecture where a single<br>physical <b>processor</b> contains the <b>core</b> logic of two or more <b>processors</b> .<br>How does a multi core processor work?<br>CPU Basics: Multiple CPUs, Cores, and Hyper-Threading Explained. The<br>central processing unit (CPU) in your computer <b>does</b> the<br>approximation of the same chip. Also                                                                                                                                                                                                                                                                                                                                                                                                            | 2 2 2 2     | 3       | K1<br>K1<br>K2       |
| 9<br>10<br>11       | List out the data path types<br>R-format Datapath<br>Load/Store Datapath<br>Branch/Jump Datapath<br>What is meant by multi core processor?<br>By Vangie Beal In consumer technologies, multi-core is usually the term<br>used to describe two or more CPUs working together on the same chip. Also<br>calledmulticore technology, it is a type of architecture where a single<br>physical processor contains the core logic of two or more processors.<br>How does a multi core processor work?<br>CPU Basics: Multiple CPUs, Cores, and Hyper-Threading Explained. The<br>central processing unit (CPU) in your computer does the<br>computational work — running programs, basically. But one single-core<br>CPU can only perform one task at a time, which is where multiple CPUs                                                                                                                                                                                                                                                                                                                                              | 2 2 2 2     | 3       | K1<br>K1<br>K2       |
| 9<br>10<br>11       | List out the data path types<br>R-format Datapath<br>Load/Store Datapath<br>Branch/Jump Datapath<br>What is meant by multi core processor?<br>By Vangie Beal In consumer technologies, multi-core is usually the term<br>used to describe two or more CPUs working together on the same chip. Also<br>calledmulticore technology, it is a type of architecture where a single<br>physical processor contains the core logic of two or more processors.<br>How does a multi core processor work?<br>CPU Basics: Multiple CPUs, Cores, and Hyper-Threading Explained. The<br>central processing unit (CPU) in your computer does the<br>computational work — running programs, basically. But one single-core<br>CPU can only perform one task at a time, which is where multiple CPUs,<br>hyper-threading and multi-core CPUs come into play                                                                                                                                                                                                                                                                                       | 2 2 2 2     | 3       | K1<br>K1<br>K2       |
| 9<br>10<br>11       | List out the data path types<br>R-format Datapath<br>Load/Store Datapath<br>Branch/Jump Datapath<br>What is meant by multi core processor?<br>By Vangie Beal In consumer technologies, multi-core is usually the term<br>used to describe two or more CPUs working together on the same chip. Also<br>calledmulticore technology, it is a type of architecture where a single<br>physical processor contains the core logic of two or more processors.<br>How does a multi core processor work?<br>CPU Basics: Multiple CPUs, Cores, and Hyper-Threading Explained. The<br>central processing unit (CPU) in your computer does the<br>computational work — running programs, basically. But one single-core<br>CPU can only perform one task at a time, which is where multiple CPUs,<br>hyper-threading, and multi-core CPUs come into play.<br>What is multi core architecture?                                                                                                                                                                                                                                                 | 2 2 2 2 2   | 3       | K1<br>K1<br>K2       |
| 9<br>10<br>11<br>12 | List out the data path types<br>R-format Datapath<br>Load/Store Datapath<br>Branch/Jump Datapath<br>What is meant by multi core processor?<br>By Vangie Beal In consumer technologies, multi-core is usually the term<br>used to describe two or more CPUs working together on the same chip. Also<br>calledmulticore technology, it is a type of architecture where a single<br>physical processor contains the core logic of two or more processors.<br>How does a multi core processor work?<br>CPU Basics: Multiple CPUs, Cores, and Hyper-Threading Explained. The<br>central processing unit (CPU) in your computer does the<br>computational work — running programs, basically. But one single-core<br>CPU can only perform one task at a time, which is where multiple CPUs,<br>hyper-threading, and multi-core CPUs come into play.<br>What is multi core architecture?<br>Multicore refers to an architecture in which a single physical processor                                                                                                                                                                     | 2 2 2 2 2   | 3 3 3 3 | K1<br>K1<br>K2<br>K1 |
| 9<br>10<br>11<br>12 | List out the data path types<br>R-format Datapath<br>Load/Store Datapath<br>Branch/Jump Datapath<br>What is meant by multi core processor?<br>By Vangie Beal In consumer technologies, multi-core is usually the term<br>used to describe two or more CPUs working together on the same chip. Also<br>calledmulticore technology, it is a type of architecture where a single<br>physical processor contains the core logic of two or more processors.<br>How does a multi core processor work?<br>CPU Basics: Multiple CPUs, Cores, and Hyper-Threading Explained. The<br>central processing unit (CPU) in your computer does the<br>computational work — running programs, basically. But one single-core<br>CPU can only perform one task at a time, which is where multiple CPUs,<br>hyper-threading, and multi-core CPUs come into play.<br>What is multi core architecture?<br>Multicore refers to an architecture in which a single physical processor<br>incorporates the core logic of more than one processor. A single integrated                                                                                      | 2 2 2 2 2 2 | 3 3 3 3 | K1<br>K1<br>K2<br>K1 |
| 9<br>10<br>11<br>12 | List out the data path types<br>R-format Datapath<br>Load/Store Datapath<br>Branch/Jump Datapath<br>What is meant by multi core processor?<br>By Vangie Beal In consumer technologies, multi-core is usually the term<br>used to describe two or more CPUs working together on the same chip. Also<br>calledmulticore technology, it is a type of architecture where a single<br>physical processor contains the core logic of two or more processors.<br>How does a multi core processor work?<br>CPU Basics: Multiple CPUs, Cores, and Hyper-Threading Explained. The<br>central processing unit (CPU) in your computer does the<br>computational work — running programs, basically. But one single-core<br>CPU can only perform one task at a time, which is where multiple CPUs,<br>hyper-threading, and multi-core CPUs come into play.<br>What is multi core architecture?<br>Multicore refers to an architecture in which a single physical processor<br>incorporates the core logic of more than one processors. These single integrated<br>circuit is used to package or hold these processors. These single integrated | 2 2 2 2 2 2 | 3 3 3 3 | K1<br>K1<br>K2<br>K1 |



| 13  | Define Hazards                                                                                                                                      | 2 | 3 | K1         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|---|---|------------|
|     | Hazard (computer architecture) In the domain of central processing unit                                                                             |   |   |            |
|     | (CPU) design, hazards are problems with the <b>instruction pipeline</b> in CPU                                                                      |   |   |            |
|     | microarchitectures when the next instruction cannot execute in the <b>following</b>                                                                 |   |   |            |
|     | clock cycle, and can potentially lead to incorrect computation results.                                                                             |   |   |            |
| 14  | What are the types of pipeline hazards?                                                                                                             | 2 | 3 | <b>K</b> 2 |
|     | 1. Pipeline hazards are situations that prevent the next instruction in the instruction stream from executing during its designed alogk evaluation. |   |   |            |
|     | 2 Any condition that causes a stall in the pipeline operations can be                                                                               |   |   |            |
|     | called a hazard                                                                                                                                     |   |   |            |
|     | 3. There are primarily three types of hazards:                                                                                                      |   |   |            |
|     | i. Data Hazards                                                                                                                                     |   |   |            |
|     | ii. Control Hazards or instruction Hazards                                                                                                          |   |   |            |
|     | iii Structural Hazards                                                                                                                              |   |   |            |
| 1 = |                                                                                                                                                     |   |   | 17.4       |
| 15  | Define stored program                                                                                                                               | 2 | 3 | K1         |
|     | A stored-program computer is one that stores program instructions in                                                                                |   |   |            |
|     | that the treatment of <b>programs</b> and data in memory be interchangeable or                                                                      |   |   |            |
|     | uniform                                                                                                                                             |   |   |            |
| UNI | $\Gamma IV - MEMORY$                                                                                                                                |   |   |            |
| 1   | Define Addressing Mode.                                                                                                                             | 2 | 4 | K1         |
|     | Addressing modes are an aspect of the instruction set architecture in most                                                                          |   |   |            |
|     | central processing unit (CPU) designs. The various addressing modes that                                                                            |   |   |            |
|     | are defined in a given instruction set architecture define how machine                                                                              |   |   |            |
|     | language instructions in that <b>architecture</b> identify the operand(s) of each                                                                   |   |   |            |
|     | instruction.                                                                                                                                        |   |   |            |
| 2   | What is Virtual Memory                                                                                                                              | 2 | 4 | K1         |
|     | <b>Virtual Memory</b> : As we know that a <u>Computer</u> is designed for Performing                                                                |   |   |            |
|     | the Multiple Tasks at a Time and for this Some Memory is also used by the                                                                           |   |   |            |
|     | Computer for executing the instructions those are given by the user. But                                                                            |   |   |            |
|     | user is high from the Available Memory. So at that situation we will use the                                                                        |   |   |            |
|     | Concept of Virtual Memory                                                                                                                           |   |   |            |
| 3   | What is the immediate addressing mode?                                                                                                              | 2 | 4 | K1         |
| _   | An <b>immediate</b> operand has a constant value or an expression. When an                                                                          |   |   |            |
|     | instruction with two operands uses <b>immediate addressing</b> , the first operand                                                                  |   |   |            |
|     | may be a registeror memory location, and the second operand is                                                                                      |   |   |            |
|     | an <b>immediate</b> constant. The first operand defines the length of the data.                                                                     |   |   |            |
| 4   | What is register indirect addressing mode?                                                                                                          | 2 | 4 | K1         |
|     | <b>Register indirect addressing</b> means that the location of an operand is held                                                                   |   |   |            |
|     | in aregister. It is also called indexed addressing or                                                                                               |   |   |            |
|     | base addressing. Register indirect addressing mode requires three read                                                                              |   |   |            |
|     | operations to access on operation                                                                                                                   |   |   |            |
| 5   | operations to access an operand.                                                                                                                    | 2 | 1 | <b>V</b> 1 |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|    | Following are the types of Addressing Modes:                                                                                                     |   |     |                      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|----------------------|
|    | Register Addressing Mode                                                                                                                         |   |     |                      |
|    | Direct Addressing Mode                                                                                                                           |   |     |                      |
|    | Register Indirect Addressing Mode                                                                                                                |   |     |                      |
|    | Immediate Addressing Mode                                                                                                                        |   |     |                      |
|    | Index Addressing Mode                                                                                                                            |   |     |                      |
| 6  | List any differences between virtual memory and physical memory?                                                                                 | 2 | 4   | K2                   |
|    | Swapping – A process must be in main memory to be executed, and since                                                                            |   |     |                      |
|    | the main memory is shared by many processes, a process can be swapped                                                                            |   |     |                      |
|    | temporarily out of memory to a backing store (fast disk) to release memory                                                                       |   |     |                      |
|    | execution. The total transfer time is directly proportional to the amount of                                                                     |   |     |                      |
|    | memory swapped, and as such: this process can create a performance                                                                               |   |     |                      |
|    | problem.                                                                                                                                         |   |     |                      |
|    |                                                                                                                                                  |   |     |                      |
|    | <b>Protection</b> – Since the main memory is shared by many processes,                                                                           |   |     |                      |
|    | protection of memory space is required, and as such; the CPU hardware                                                                            |   |     |                      |
|    | attempt by a program execution in the user mode to access operating-system                                                                       |   |     |                      |
|    | memory or other user's memory results in a trap to the operating system.                                                                         |   |     |                      |
|    | which treats the attempt as a fatal error.                                                                                                       |   |     |                      |
|    |                                                                                                                                                  |   |     |                      |
|    | <b>Fragmentation</b> – Different allocation memory strategies such as first-fit and                                                              |   |     |                      |
|    | removed from memory the free memory space is broken into little pieces                                                                           |   |     |                      |
|    | External fragmentation exists when there is enough total memory space to                                                                         |   |     |                      |
|    | satisfy a request but the available spaces are not contiguous.                                                                                   |   |     |                      |
|    |                                                                                                                                                  |   |     |                      |
|    | <b>Paging</b> – Is a memory-management scheme that allows the physical address                                                                   |   |     |                      |
|    | space for a process to be non-configuous. Paging avoids fragmentation and<br>the need of compaction. Such scheme solves the problems with memory |   |     |                      |
|    | fitting of varying sizes onto the backing store where many systems were                                                                          |   |     |                      |
|    | suffering from before the introduction of paging.                                                                                                |   |     |                      |
| 7  | Define address translation                                                                                                                       | 2 | 4   | K1                   |
|    | Network address translation (NAT) is a method of remapping one                                                                                   |   |     |                      |
|    | IP address space into another by modifying network address information in                                                                        |   |     |                      |
|    | across a traffic routing device                                                                                                                  |   |     |                      |
| 8  | Define Cache Memory                                                                                                                              | 2 | 4   | K1                   |
| -  | The Cache Memory is the Memory which is very nearest to the <u>CPU</u> , all the                                                                 |   |     |                      |
|    | Recent Instructions are Stored into the Cache Memory. The Cache Memory                                                                           |   |     |                      |
|    | is attached for storing the input which is given by the user and which is                                                                        |   |     |                      |
|    | necessary for the CPU to Perform a Task. But the Capacity of the Cache                                                                           |   |     |                      |
| 0  | Wemory is too low in compare to Memory and Hard Disk.<br>What is the difference between 11.12 and 13 cache?                                      | 2 | 4   | K)                   |
| 17 | what is the unicidide detween it is and is calle?                                                                                                |   | I 4 | $-\mathbf{N} \Delta$ |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|     | A CPU <b>cache</b> is a smaller faster memory used by the central processing unit                                                                                                                                                                       |   |   |            |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|------------|
|     | (CPU) of a computer to reduce the average time to access<br>memory L1 (Level 1) L2 L3 cache are some specialized memory which                                                                                                                           |   |   |            |
|     | work hand in hand to improve computer performance.                                                                                                                                                                                                      |   |   |            |
| 10  | What are the different types of mappings used in cache memory.                                                                                                                                                                                          | 2 | 4 | К2         |
|     | The three different types of menning used for the nurness of each memory                                                                                                                                                                                |   |   | 112        |
|     | are as follow. Associative mapping Direct mapping and Set-Associative                                                                                                                                                                                   |   |   |            |
|     | manning                                                                                                                                                                                                                                                 |   |   |            |
| 11  | Define direct Manning                                                                                                                                                                                                                                   | 2 | 4 | K1         |
|     | Direct mapping: In direct mapping the RAM is made use of to store data and                                                                                                                                                                              |   |   |            |
|     | some is stored in the cache. An address space is split into two parts index                                                                                                                                                                             |   |   |            |
|     | field and tag field. The cache is used to store the tag field whereas the rest is                                                                                                                                                                       |   |   |            |
|     | stored in the main memory. Direct mapping's performance is directly                                                                                                                                                                                     |   |   |            |
|     | proportional to the Hit ratio.                                                                                                                                                                                                                          |   |   |            |
| 12  | Define LRU Replacement.                                                                                                                                                                                                                                 | 2 | 4 | K1         |
|     | When a page fault occurs, throw out the page that has been unused for the                                                                                                                                                                               |   |   |            |
|     | longest time. This strategy is called LRU (Least Recently Used) paging.                                                                                                                                                                                 |   |   |            |
| 13  | What is a page of memory?                                                                                                                                                                                                                               | 2 | 4 | K1         |
|     | A page, memory page, or virtual page is a fixed-length contiguous block of                                                                                                                                                                              |   |   |            |
|     | virtual <b>memory</b> , described by a single entry in the <b>page</b> table. It is the                                                                                                                                                                 |   |   |            |
|     | smallest unit of data for <b>memory</b> management in a                                                                                                                                                                                                 |   |   |            |
| 14  | virtual <b>memory</b> operating system.                                                                                                                                                                                                                 | 2 | 4 | IZ 1       |
| 14  | Define paging in memory management                                                                                                                                                                                                                      | 2 | 4 | KI         |
|     | In computer operating systems, <b>paging</b> is a <b>memory management</b> scheme                                                                                                                                                                       |   |   |            |
|     | in main <b>memory</b> . In this scheme, the operating system retrieves data from                                                                                                                                                                        |   |   |            |
|     | secondary storage in same-size blocks called pages                                                                                                                                                                                                      |   |   |            |
| 15  | Compare L1.L2.L3 Cashes                                                                                                                                                                                                                                 | 2 | 4 | K2         |
|     | Cache Bulldozer Piledriver Steamroller                                                                                                                                                                                                                  | _ | - |            |
|     | Level 1 code 64 kB, 2-way, 64 B line 64 kB, 2-way, 64 B line 96 kB, 3-way, 64 B line size, shared between two size, shared between two                                                                                                                  |   |   |            |
|     | cores.         cores.         cores.           Level 1 data         16 kB, 4-way, 64 B line         16 kB, 4-way, 64 B line         16 kB, 4-way, 64 B line                                                                                             |   |   |            |
|     | Level 2         1 - 2 MB, 16-way, 64 B line                                                                                                             |   |   |            |
|     | size, shared between two<br>cores. Latency 21 clocks.<br>Read throughput 1 per 4<br>Read throughput 1 per 4                                                                                                                                             |   |   |            |
|     | clock. Write throughput 1<br>per 12 clock.         clock. Write throughput 1<br>per 12 clock.         clock. Write throughput 1<br>per 12 clock.           Level 3         0 - 8 MB. 64-way. 64 B line         0 - 8 MB. 64-way. 64 B line         None |   |   |            |
|     | size, shared between all size, shared between all cores. Latency 87 clock.                                                                                                                                                                              |   |   |            |
|     | clock. Write throughput 1 per 21 clock. Write throughput 1 per 21 clock.                                                                                                                                                                                |   |   |            |
| UNI | Table 14.4. Cache sizes on AMD Buildozer, Piledriver and Steamroller $\Gamma$ V – DATA TRANSFER                                                                                                                                                         |   |   |            |
| 1   | What is data transfer?                                                                                                                                                                                                                                  | 2 | 5 | K1         |
| _   | <b>Data transfer</b> instruction move <b>data</b> from one place in the <b>computer</b> to                                                                                                                                                              | _ | - |            |
|     | another without changing the <b>data</b> content. The most common <b>transfers</b> are                                                                                                                                                                  |   |   |            |
|     | between memory and processes registers, between processes register & input                                                                                                                                                                              |   |   |            |
|     | or output, and between processes register themselves. (Typical data                                                                                                                                                                                     |   |   |            |
|     | transfer instruction) Name.                                                                                                                                                                                                                             |   |   |            |
| 2   | What is Programmed I/O?                                                                                                                                                                                                                                 | 2 | 5 | <b>K</b> 1 |
|     | <b>Programmed</b> input/output (PIO) is a method of transferring data between                                                                                                                                                                           |   |   |            |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|   | the CPU and a peripheral, such as a network adapter or an ATA storage                      |   |   |     |
|---|--------------------------------------------------------------------------------------------|---|---|-----|
| 2 | device.                                                                                    | 2 | _ | V.A |
| 3 | What is asynchronous data transfer explain the concept of handshaking?                     | 2 | 3 | KZ  |
|   | "atroba" and the other is called "acknowledge". The conder provides the                    |   |   |     |
|   | should and the other is called acknowledge. The sender provides the                        |   |   |     |
|   | signal to the shope line and the receiver provides the signal to the                       |   |   |     |
|   | transfor and serial data transfor                                                          |   |   |     |
| 4 | Difference Between Serial And Parallel Transfer                                            | 2 | 5 | К2  |
| - | In <b>Parallel transmission</b> : it happens across a parallel wire. Parallel wires are    |   | 5 | 112 |
|   | level & thick comprise multiple little cables. Each cable can take a single                |   |   |     |
|   | bit of detail A parallel cable can take multiple bits at the similar time one              |   |   |     |
|   | for each cable. An eight cable <b>parallel wire</b> , for instance- could take a           |   |   |     |
|   | totally byte of data. This outcome in earlier data transmission per second.                |   |   |     |
|   | entire things being similar. These devices have an <b>extensive</b> data bus than          |   |   |     |
|   | serial devices & can hence transfer data in word of one or additional bytes at             |   |   |     |
|   | a time. As <b>outcome</b> , there is an expedite in parallel transmission bit rate over    |   |   |     |
|   | serial transmission bit rate.                                                              |   |   |     |
|   | The serial transmission happens over a solo cable, one bit at a time. This                 |   |   |     |
|   | kind of statement is named 'serial' not purely, because the data                           |   |   |     |
|   | transmit one bit at a time, but also since these bits should be prepared in                |   |   |     |
|   | an <b>exacting</b> way so that transmissions can be prepared & deemed                      |   |   |     |
|   | dependable. It is generally <b>inexpensive</b> as only a simply channel b/w sender         |   |   |     |
|   | & receiver is necessary, ex: – the sender broadcasts the seven bits creation               |   |   |     |
|   | up an ASCII character serially in series.                                                  | - |   |     |
| 5 | What is the difference between full and half duplex?                                       | 2 | 5 | K2  |
|   | The Difference Between Half and Full Duplex Explained. "Duplex"                            |   |   |     |
|   | simply means you're able to send and receive data (most often the human                    |   |   |     |
|   | voice) from the same device whether that be with your phone, 2-way radio,                  |   |   |     |
|   | of PC. <b>Han-duplex</b> devices let you send and receive, but only one-way at a           |   |   |     |
| 6 | What is full duplay and half duplay communication?                                         | 2 | 5 | K1  |
| 0 | Full-duplex communication between two components means that both can                       | 4 | 3 | NI  |
|   | transmit and receive information between each other simultaneously                         |   |   |     |
|   | Telephones are <b>full-duplex</b> systems so both parties on the phone can talk            |   |   |     |
|   | and listen at the same time A simple illustration of a <b>half-duplex</b>                  |   |   |     |
|   | communication system                                                                       |   |   |     |
| 7 | What is a bus interface?                                                                   | 2 | 5 | K1  |
|   | The External <b>Bus Interface</b> , usually shortened to EBI, is a computer <b>bus</b> for |   |   |     |
|   | interfacing small peripheral devices like flash memory with the processor. It              |   |   |     |
|   | is used to expand the internal <b>bus</b> of the processor to enable connection with       |   |   |     |
|   | external memories or other peripherals.                                                    |   |   |     |
| 8 | Define polling in Data transfer                                                            | 2 | 5 | K1  |
|   | polling (1) A communications technique that determines when a terminal is                  |   |   |     |
|   | ready to send data. The computer continually interrogates its connected                    |   |   |     |
|   | terminals in a round robin sequence. If a terminal has data to send, it sends              |   |   |     |
| 1 | back an acknowledgment and the transmission begins                                         |   |   |     |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

| 9    | What is interrupt?                                                                                   | 2 | 5 | K1        |
|------|------------------------------------------------------------------------------------------------------|---|---|-----------|
| -    | <b>interrupt</b> is a signal to the processor emitted by hardware or software                        |   |   |           |
|      | indicating an event that needs immediate attention                                                   |   |   |           |
|      | Hardware <b>interrupts</b> are used by devices to communicate that they require                      |   |   |           |
|      | attention from the operating system.                                                                 |   |   |           |
| 10   | What is hardware Interrupt?                                                                          | 2 | 5 | K1        |
|      | an interrupt is a signal to the processor emitted by hardware or software                            |   |   |           |
|      | indicating an event that needs immediate attentionHardware                                           |   |   |           |
|      | interrupts are used by devices to communicate that they require attention                            |   |   |           |
|      | from the operating system.                                                                           |   |   |           |
| 11   | What is the interrupt cycle?                                                                         | 2 | 5 | <b>K1</b> |
|      | An instruction cycle (sometimes called fetch-and-execute cycle, fetch-                               |   |   |           |
|      | decode-execute cycle, or FDX) is the basic <b>operation cycle</b> of a computer. It                  |   |   |           |
|      | is the process by which a computer retrieves a <b>program instruction</b> from its                   |   |   |           |
|      | memory, determines what actions the instruction requires, and carries out                            |   |   |           |
|      | those actions.                                                                                       |   |   |           |
| 12   | define interrupt vector                                                                              | 2 | 5 | <b>K1</b> |
|      | An "interrupt vector table" (IVT) is a data structure that associates a list                         |   |   |           |
|      | of <b>interrupt</b> handlers with a list of <b>interrupt</b> requests in a table of <b>interrupt</b> |   |   |           |
|      | vectors.                                                                                             |   |   |           |
| 13   | What is meant by vectored interrupt?                                                                 | 2 | 5 | <b>K1</b> |
|      | a vectored interrupt is an I/O interrupt that tells the part of the computer                         |   |   |           |
|      | that handles I/O interrupts at the hardware level that a request for attention                       |   |   |           |
|      | from an I/O device has been received and and also identifies the device that                         |   |   |           |
|      | sent the request.                                                                                    |   |   |           |
| 14   | What are the different types of interrupts?                                                          | 2 | 5 | <b>K1</b> |
|      | There are two types of interrupts: hardware interrupts and                                           |   |   |           |
|      | software interrupts. Hardware interrupts are used by devices to                                      |   |   |           |
|      | communicate that they require attention from the operating system The                                |   |   |           |
|      | act of initiating a hardware <b>interrupt</b> is referred to as an <b>interrupt</b> request          |   |   |           |
|      | (IRQ).                                                                                               |   |   |           |
| 15   | What is DMA?                                                                                         | 2 | 5 | <b>K1</b> |
|      | <b>Direct Memory Access (DMA)</b> is a capability provided by                                        |   |   |           |
|      | some <b>computer</b> bus <b>architectures</b> that allows data to be sent directly from              |   |   |           |
|      | an attached device (such as a disk drive) to the memory on                                           |   |   |           |
|      | the <b>computer's</b> motherboard.                                                                   |   |   |           |
| Note | : 15 Questions with answer key must be prepared in each unit                                         |   |   |           |

| PART – B (12 Mark Questions with Key) |                               |                 |                                     |     |    |     |  |  |  |
|---------------------------------------|-------------------------------|-----------------|-------------------------------------|-----|----|-----|--|--|--|
| S.No                                  | Questions                     |                 |                                     | Mar | CO | BTL |  |  |  |
|                                       |                               |                 |                                     | k   | S  |     |  |  |  |
| UNIT I                                | UNIT I – DIGITAL FUNDAMENTALS |                 |                                     |     |    |     |  |  |  |
| 1                                     | Explain in detail about       | ut Number syste | em and its conversion with example. | 12  | 1  | K2  |  |  |  |
|                                       | System                        | Radix           | Allowable Digits                    | 1   |    |     |  |  |  |
|                                       | Binary                        | 2               | 0,1                                 | 4   |    |     |  |  |  |



| г |                                                                                                                                                                        | 0                                                                                                                          | 01001557                                                                                                                          |                                                                                     |    |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----|--|
|   | Octal                                                                                                                                                                  | 8                                                                                                                          | 0,1,2,3,4,5,6,7                                                                                                                   |                                                                                     |    |  |
|   | Decimal                                                                                                                                                                | 10                                                                                                                         | 0,1,2,3,4,5,6,7,8,9                                                                                                               |                                                                                     |    |  |
|   | Hexadecimal                                                                                                                                                            | 16                                                                                                                         | 0,1,2,3,4,5,6,7,8,9,                                                                                                              | A, B, C, D, E, F                                                                    |    |  |
|   | - (4021.2) <sub>5</sub> =                                                                                                                                              | $4 \times 5^{3} + 0 \times 5$<br>$4 \times 125 + 0 +$<br>500 + 11 + .4                                                     | $^{2} + 2 \times 5^{1} + 1 \times 5^{0} + 2$<br>10 + 1 + 2 x (1/5)                                                                | $2 \ge 5^{-1} = (511.4)_{10}$                                                       |    |  |
|   | - (B65F) <sub>16</sub> =                                                                                                                                               | $11 \times 16^{3} + 6 \times 11 \times 4096 + 6 \times 45056 + 1536$                                                       | x 162 + 5 x 161 + 15 x 5 x 256 + 5 x 16 + 15 5 + 80 + 15                                                                          | $x \ 16^0 = (46687)_{10}$                                                           |    |  |
|   | Octal and Hexadeci                                                                                                                                                     | mal Numbers                                                                                                                |                                                                                                                                   |                                                                                     |    |  |
|   | <ul> <li>The conversion f important part in octal digit corresponds</li> <li>Conversion from (10 110 001 101 0)</li> <li>Conversion from (10 110 001 101 0)</li> </ul> | rom and to bin<br>digital compu<br>ponds to three<br>to four binary<br>binary to Octal<br>011. 111 100 0<br>binary to Hexa | hary, octal and hexa<br>iters. Since $2^3 = 8$ a<br>binary digits and e<br>digits.<br>1:<br>00 110) $_2 = (26153.7)$<br>idecimal: | decimal plays an<br>and $2^4 = 16$ , each<br>each hexadecimal<br>(406) <sub>8</sub> |    |  |
|   | (10 1100 0110 10                                                                                                                                                       | 11. 1111 0000                                                                                                              | $(0110)_2 = (2C6B.F0)_2$                                                                                                          | 6) <sub>16</sub>                                                                    |    |  |
|   | <ul> <li>Conversion from<br/>(673.124) <sub>8</sub> = (110)</li> <li>Conversion from<br/>(306 D) = (001)</li> </ul>                                                    | Octal to binary<br>0 111 011. 001<br>Hexadecimal t                                                                         | 7:<br>010 100) <sub>2</sub><br>o binary:<br>101) -                                                                                |                                                                                     | 4  |  |
|   | (300.D) 16 – $(001$                                                                                                                                                    | 1 0000 0110. 1                                                                                                             | 101) 2                                                                                                                            |                                                                                     |    |  |
|   | - Conversion from<br>(37B)<br>$3 \times 16^2 + 7 \times 16^1$<br>$= 3 \times$<br>= 76<br>$= (891)_{10}$                                                                | Hexadecimal t<br>+ 11 x 16 <sup>0</sup><br>256 + 7<br>8                                                                    | o Decimal:<br>7 x 16 +<br>+ 112                                                                                                   | 16<br>11 x 1<br>+11                                                                 |    |  |
|   |                                                                                                                                                                        |                                                                                                                            |                                                                                                                                   |                                                                                     |    |  |
|   | <ul> <li>Number Base Conversion - A binary number powers of 2 of the (1010.011)<sub>2</sub> =</li> <li>Similarly, a num decimal equival</li> </ul>                     | ersions<br>can be conver<br>ose coefficients<br>$2^3 + 2^1 + 2^{-2} +$<br>aber expressed<br>ent by multi                   | ted to decimal by fo<br>s whose value is <b>1</b> .<br>- $2^{-3} = (10.375)_{10}$<br>in base <i>r</i> can be                      | rming the sum of<br>converted to its<br>ficient with the                            | 4  |  |
| 2 | corresponding po<br>(630.4) $_{8} = 6 x 8$                                                                                                                             | wer of r and ac<br>$3^2 + 3 \times 8^1 + 0$                                                                                | Iding.<br>$x 8^0 + 4 x 8^{-1} = (408.$                                                                                            | $(5)_{10}$                                                                          |    |  |
| ۷ | $F(x,y,z)=\Sigma(0,2,6,7)$                                                                                                                                             | <u>(4)</u>                                                                                                                 |                                                                                                                                   |                                                                                     | 12 |  |



|   | (b) $F(A,B,C)=\Sigma(0,2,3,4,6)$ (4)<br>(c) $F(A,B,C,D)=\Sigma(4,6,7,15)$ (4)                          |    | 1 | K2  |
|---|--------------------------------------------------------------------------------------------------------|----|---|-----|
|   |                                                                                                        |    |   |     |
|   | YZ       X     00     01     11     10       0     1     0     0     1       1     0     0     1     1 | 4  |   |     |
|   | a = F = XY + X'Z'                                                                                      |    |   |     |
|   |                                                                                                        | 4  |   |     |
|   | A     00     01     11     10       0     1     0     1     1       1     1     0     0     1          |    |   |     |
|   | b. $F = A'B + C'$                                                                                      |    |   |     |
|   | bc       a     00     01     11     10       0     1     1     1     1       1     0     0     1     0 | 4  |   |     |
|   | a. $F=a'+bc$                                                                                           | 10 |   | 110 |
| 3 | Simplify the following expressions in (1) sum of products and (2) products of sums:                    | 12 | 1 | K2  |
|   | a. $AC' + B'D + A'CD + ABCD$ (6)                                                                       |    |   |     |
|   | b. $(A+D+D)(A+D+C)(A+D+D)(B+C+D)$ (6)                                                                  |    |   |     |



|    | $A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 \\ \hline 0 & 0 & 0 \\ \hline 0 & 0 $ | 6       |   |    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|----|
|    | A<br>$F = (A' + B' + D')(A + B' + C')(A' + B + D')(B + C' + D')$ $F' = ABD + A'BC + AB'D + B'CD$ $A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1$                                                                                                     | 6       |   |    |
| 3. | <ul> <li>a. Interpret NAND and NOR are universal gates (8)</li> <li>b. Simplify the following expressions F(W,X,Y,Z)= Σ(2,3,12,13,14,15). (4)</li> <li>a. Any function can be implemented using only NAND or only NOR gates. How can we prove this? (Proof for NAND gates) Any boolean function can be implemented using AND, OR and NOT gates. So if AND, OR and NOT gates can be implemented using NAND gates only, then we prove our point.</li> <li>1. Implement NOT using NAND</li> <li>2. Implementation of AND using NAND</li> <li>3. Implementation of OR using NAND</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12<br>8 | 1 | K2 |
|    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4       |   |    |
| 4  | Find all the prime implicates for the following Boolean functions and determine which are essential:<br>a) $F(w, x, y, z) = \sum (0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$<br>b) $F(A, B, C, D) = \sum (0, 2, 3, 5, 7, 8, 10, 11, 14, 15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 1 | K2 |



|   | Solution:                                                                                                                | 6  |   |    |
|---|--------------------------------------------------------------------------------------------------------------------------|----|---|----|
|   | Note: Red boxes represent the essential prime implicants.<br>a) $F(w, x, y, z) = \sum (0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$ | 0  |   |    |
|   |                                                                                                                          |    |   |    |
|   |                                                                                                                          |    |   |    |
|   |                                                                                                                          |    |   |    |
|   |                                                                                                                          |    |   |    |
|   |                                                                                                                          |    |   |    |
|   | Escential: $v_{T}$ and $v'_{T}$ . Non escential: $w'_{T}$ and $w'_{T}$                                                   |    |   |    |
|   | F = xz + x'z' + w'z'                                                                                                     |    |   |    |
|   | Q                                                                                                                        | 6  |   |    |
|   |                                                                                                                          | -  |   |    |
|   |                                                                                                                          |    |   |    |
|   |                                                                                                                          |    |   |    |
|   |                                                                                                                          |    |   |    |
|   |                                                                                                                          |    |   |    |
|   |                                                                                                                          |    |   |    |
|   | Prime implicants: CD and B'C                                                                                             |    |   |    |
|   | F= AC+B'D'+A'BD+CD<br>F= AC+B'D'+A'BD+B'C                                                                                |    |   |    |
| 5 | b.<br>i find the complement of $E-WX + VZ$ : the show that $(EE')=0$ and                                                 | 12 | 1 | K2 |
| 5 | $(F_{\pm}F') = 1$ (3)                                                                                                    | 12 | 1 | K2 |
|   | ii Draw logic diagrams to implement the following Boolean expression                                                     |    |   |    |
|   | n. Draw logic diagrams to implement the following boolean expression                                                     |    |   |    |
|   | a) $Y = A + B + B'(A + C')$ (3)                                                                                          |    |   |    |
|   | b) $Y = A + CD + ABC$ (3)                                                                                                |    |   |    |
|   |                                                                                                                          |    |   |    |
|   | c) $Y = A + B'(C + D)$ (3)                                                                                               |    |   |    |
|   | i.SOLUTION :                                                                                                             | 3  |   |    |
|   | $\mathbf{F'} = (\mathbf{WX} + \mathbf{YZ})'$                                                                             |    |   |    |
|   | (WX)'(YZ)'                                                                                                               |    |   |    |
|   | (W'+X').(Y'+Z')                                                                                                          |    |   |    |
|   | $F \cdot F' = (WX+YZ) \cdot (W'+X') \cdot (Y'+Z')$                                                                       |    |   |    |
|   | (WX+YZ).(W'Y'+W'Z'+X'Y'+X'Z')                                                                                            |    |   |    |
|   | (WX.W'Y'                                                                                                                 |    |   |    |
|   | +WX.W'Z'+WX.X'Y'+WX.X'Z'+YZ.W'Y'+YZ.W'Z'+YZ.X'Y'+YZ.X'Z')                                                                |    |   |    |
|   | =0                                                                                                                       |    |   |    |
|   | $\mathbf{F} + \mathbf{F}'$ :                                                                                             |    |   |    |
|   | Let, $(WX = A)$ and $(YZ = B)$                                                                                           |    |   |    |
|   | Then,                                                                                                                    |    |   |    |
|   | • $\mathbf{F} = \mathbf{A} + \mathbf{B}$ ,                                                                               |    |   |    |
|   | • $F'=(A+B)'=A' \cdot B'$ ,                                                                                              |    |   |    |
|   | $\bullet F+F' = (A+B) + (A'.B')$                                                                                         |    |   |    |
|   | = (A+A'.B') +B                                                                                                           |    |   |    |
|   | = (A+A')(A+B') + B                                                                                                       |    |   |    |
|   | = (1) (A+B') + B                                                                                                         |    |   |    |
|   | =A+B'+B                                                                                                                  |    |   |    |
|   | = A + 1 = 1                                                                                                              |    |   |    |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|        | The                                         | sum                                    | of min ter    | ms :                   |                                                 |    |   |    |
|--------|---------------------------------------------|----------------------------------------|---------------|------------------------|-------------------------------------------------|----|---|----|
|        | $F(A,B,C,D) = \Sigma m(1,3,5,7,9,11,13,15)$ |                                        |               |                        |                                                 |    |   |    |
|        | = A'                                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | D + A'B'C     | D + A'BC               | C'D + A'BCD + AB'C'D + AB'CD + ABC'D            |    |   |    |
|        | + AF                                        | BCD                                    | 1             |                        |                                                 |    |   |    |
|        |                                             |                                        |               |                        |                                                 |    |   |    |
|        | T he                                        | pro                                    | duct of the   | max term               | s :                                             |    |   |    |
|        | F(A.                                        | B.C                                    | $(D) = \Pi M$ | (0.2.4.6.8)            | 3.10.12.14)                                     |    |   |    |
|        | =(A+                                        |                                        | C+D).(A+      | B+C'+D).               | (A+B'+C+D).(A+B'+C'+D).(A'+B+C+D+).             |    |   |    |
|        | (A                                          | '+B-                                   | -C'+D).(A'    | +B'+C+D                | ).(A'+B'+C'+D)                                  |    |   |    |
| UNIT I | I – CO                                      | OM                                     | BINATIO       | NAL AN                 | D SEQUENTIAL CIRCUITS                           | •  |   | •  |
| 1      | (i) E                                       | Expla                                  | ain about H   | SCD to Se              | ven Segment Decoder                             |    |   |    |
|        |                                             | 1                                      | Introducti    | on                     |                                                 |    |   |    |
|        |                                             | 2                                      | Principle     | of Display             | Decoder Circuit                                 |    |   |    |
|        |                                             | 3                                      | Theory B      | ehind the              | Circuit:                                        |    |   |    |
|        |                                             | 4                                      | 7 Segmen      | t Display              | Decoder Circuit Design                          | 12 | 2 | K2 |
|        | •                                           |                                        |               | 4.0.1 k                | K-Map Simplification                            |    |   |    |
|        |                                             | 5                                      | Display D     | ecoder Ci              | rcuit Operation                                 |    |   |    |
|        |                                             | 6                                      | Application   | ons of Dis             | play Decoder Circuit                            |    |   |    |
|        |                                             |                                        |               |                        |                                                 |    |   |    |
| 2      | (i)Ba                                       | sic                                    | operation     | of master              | slave D flip-flop with circuit diagram and      |    |   |    |
|        | truth                                       | tabl                                   | le            |                        |                                                 |    |   |    |
|        | (ii)E                                       | Discu                                  | uss about t   | he workin              | g of multiplexer.                               |    |   |    |
|        | i                                           | . Iı                                   | ntroduction   | n to the M             | aster Slave Design                              |    |   |    |
|        | j                                           | ii.                                    | TRUTH         | <b>FABLE</b>           |                                                 |    |   |    |
|        | Inpu                                        | ıt                                     | Output        |                        |                                                 |    |   |    |
|        | CL<br>K                                     | D                                      | Q             | not-Q                  |                                                 |    |   |    |
|        |                                             |                                        | no            | no                     | -                                               |    |   |    |
|        | X                                           | 0                                      | change        | change                 | _                                               | 6  | 2 | К2 |
|        | x                                           | 1                                      | no            | no                     |                                                 |    |   |    |
|        | Δ                                           | 1                                      | change        | change                 | _                                               |    |   |    |
|        | 1                                           | 0                                      | 0             | 1                      | _                                               |    |   |    |
|        | 1                                           | 1                                      | 1             | 0                      |                                                 |    |   |    |
|        | ii                                          | ii. A                                  | analysis an   | d Verifica             | tion                                            |    |   |    |
|        | Wor                                         | king                                   | g Of Mult     | iplexer.               |                                                 |    |   |    |
|        | (ii) A                                      | \ mi                                   | ultiplexer    | of 2 <sup>n</sup> inpu | ts has n select lines, which are used to select | _  |   |    |
|        | whic                                        | h in                                   | put line to   | send to the            | ne output Conversely, a demultiplexer (or       | 6  |   |    |
|        | demi                                        | 1X) 1                                  | s a device    | taking a s             | single input signal and selecting one of many   |    |   |    |
| 3      | uata-                                       | out                                    | out-fines, v  | vinch 18 CC            | onnected to the single input.                   | 10 | 2 | K) |
| 3      | vvna                                        | u ar                                   | e comdina     | auonai cir             | cuits: Give suitable block diagram.             | 12 | 2 | NΔ |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.



#### N-Bit Parallel Subtractor

The subtraction can be carried out by taking the 1's or 2's complement of the number to be subtracted. For example we can perform the subtraction (A-B) by adding either 1's or 2's complement of B to A. That means we can use a binary adder to perform the binary subtraction.

#### 4 Bit Parallel Subtractor

The number to be subtracted (B) is first passed through inverters to obtain its 1's complement. The 4-bit adder then adds A and 2's complement of B to produce the subtraction.  $S_3 S_2 S_1 S_0$  represents the result of binary subtraction (A-B) and carry output  $C_{out}$  represents the polarity of the result. If A > B then Cout = 0 and the result of binary form (A-B) then  $C_{out} = 1$  and the result is in the 2's complement form.

#### **Block diagram**



#### Half Subtractors

Half subtractor is a combination circuit with two inputs and two outputs (difference and borrow). It produces the difference between the two binary bits at the input and also produces an output (Borrow) to indicate if a 1 has been borrowed. In the subtraction (A-B), A is called as Minuend bit and B is called as Subtrahend bit.

#### **Truth Table**

| Inpu | its | Output  |        |
|------|-----|---------|--------|
| А    | В   | (A – B) | Borrow |
| 0    | 0   | 0       | 0      |
| 0    | 1   | 1       | 1      |
| 1    | 0   | 1       | 0      |
| 1    | 1   | 0       | 0      |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu. Rev.0 COE/2017/QB



#### Full Subtractors

The disadvantage of a half subtractor is overcome by full subtractor. The full subtractor is a combinational circuit with three inputs A,B,C and two output D and C'. A is the 'minuend', B is 'subtrahend', C is the 'borrow' produced by the previous stage, D is the difference output and C' is the borrow output.

#### **Truth Table**

|   | Input | s | Outp    | out |
|---|-------|---|---------|-----|
| A | В     | С | (A-B-C) | C'  |
| 0 | 0     | 0 | 0       | 0   |
| 0 | 0     | 1 | 1       | 1   |
| 0 | 1     | 0 | 1       | 1   |
| 0 | 1     | 1 | 0       | 1   |
| 1 | 0     | 0 | 1       | 0   |
| 1 | 0     | 1 | 0       | 0   |
| 1 | 1     | 0 | 0       | 0   |
| 1 | 1     | 4 | 4       | 1   |

#### **Circuit Diagram**



#### Multiplexers

Multiplexer is a special type of combinational circuit. There are n-data inputs, one output and m select inputs with 2m = n. It is a digital circuit which selects one of the n data inputs and routes it to the output. The selection of one of the n inputs is done by the selected inputs. Depending on the digital code applied at the selected inputs, one out of n data sources is selected and transmitted to the single output Y. E is called the strobe or enable input which is useful for the cascading. It is generally an active low terminal that means it will perform the required operation when it is low.

Block diagram



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|   | $D_{1}  D_{2}  D_{2}  D_{3}  D_{4}  D_{5}  P_{1} = D_{1} + D_{2}  P_{1} = D_{1} + D_{2}  P_{2} = D_{1} + D_{2}  D_{3} + D_{3}  D_{3} = D_{3$ |    |   |    |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|----|
| 4 | What is the need for flip flop? Describe the various types of flip flops?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |   |    |
|   | A <b>flip-flop</b> or latch is a circuit that has two stable states and can be<br>used to store state information. A <b>flip-flop</b> is a bistable multivibrator.<br>The circuit can be made to change state by signals applied to one or more<br>control inputs and will have one or two outputs.<br>1.SR Flip-flops<br>2.D flip-flop<br>3.JK Flip-flop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 | 2 | K2 |
|   | 4.T flip-flops                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |   |    |
| 5 | Determine the procedure for the design of combinational circuits and synchronous sequential circuits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |   |    |
|   | <ul> <li>! Sequential Circuits</li> <li>! Latches</li> <li>! Flip-Flops</li> <li>! Analysis of Clocked Sequential Circuits</li> <li>! State Reduction and Assignment</li> <li>! Design Procedure</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 | 2 | K2 |
| 6 | Describe the shift register and design a 4 bit universal shift register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12 | 2 | K2 |
|   | <b>Universal Shift Register</b> is a register which can be configured to load<br>and/or retrieve the data in any mode (either serial or parallel) by shifting<br>it either towards right or towards left. In other words, a combined design<br>of unidirectional (either right- or left-shift of data bits as in case<br>of SISO, SIPO, PISO, PIPO) and bidirectional shift register along with<br>parallel load provision is referred to as <b>universal shift register</b> . Such<br>a shift register capable of storing n input bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |   |    |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|      | Parallel Input Bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | I |    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|
|      | The design uses n 4×1 multiplexers to drive the input pins of n flip-flops in the register which are also connected to clock and clear inputs. All of the multiplexers in the circuit share the same select lines, S <sub>1</sub> and S <sub>0</sub> (pink lines in the figure), in order to select the mode in which the shift registers operates. It is also seen that the MUX driving a particular flip-flop has its 1. First input (Pin Number 0) connected to the output pin of the same flip-flop i.e. zeroth pin of MUX1 is connected to Q1, zeroth pin of MUX2 is connected to Q2, zeroth pin of MUX1 is connected to Qn. 2. Second input (Pin Number 1) connected to the output of the very-previous flip-flop (except the first flip-flop FF1 where it acts like an serial-input to the input data bits which are to be shifted towards right) i.e. first pin of MUX1 is connected to Qn-1. 3. Third input (Pin Number 2) connected to the output of the very-next flip-flop (except the first flip-flop FFn where it acts like an serial-input to the input data bits which are to be shifted towards left) i.e. second pin of MUX1 is connected to Q2, second pin of MUX2 is connected to Q3, second pin of MUXn-1 is connected to Qn. 4. Fourth input (Pin Number 3) connected to the inpividual bits of the input data word which is to be stored into the register, thus providing the facility for parallel loading. |   |   |    |
| UNIT | III - PROCESSOR FUNDAMENTALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |    |
| 1.   | Discuss briefly about von ineumann architecture?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 | 2 | V) |
|      | VonNeumannarchitectureIn the 1940s, a mathematician called John Von Neumann described the<br>basic arrangement (or architecture) of a computer. Most computers today<br>follow the concept that he described although there are other types of<br>architecture. When we talk about the Von Neumann architecture, we are<br>actually talking about the relationship between the hardware that makes<br>up a Von Neumann-based computer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 | 3 | κ2 |
|      | A Von Neumann-based computer is a computer that:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    |
|      | <ul> <li>Uses a single processor.</li> <li>Uses one memory for both instructions and data. A von Neumann computer cannot distinguish between data and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

| instructions in a memory location! It 'knows' only because of the <i>location</i> of a particular bit pattern in RAM.                                                                                                                                                                                                                                                                                                                                                                     |   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| • Executes programs by doing one instruction after the next in a serial manner using a fetch-decode-execute cycle.                                                                                                                                                                                                                                                                                                                                                                        |   |  |
| In this chapter, we are going to build upon and refine the ideas introduced<br>in an earlier chapter. You should re-read the relevant chapter on CPUs<br>before you start this one. We have already said that the CPU was made<br>up of 4 important components:                                                                                                                                                                                                                           |   |  |
| • The ALU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| • The registers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |  |
| • The control unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |  |
| • The IAS (otherwise known as RAM or memory).                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |  |
| A model of a Von Neumann computer system.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 |  |
| We know a few things from before about the Von Neumann CPU.                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 |  |
| 1) The ALU, or Arithmetic Logic Unit<br>A Von Neumann CPU has an ALU. This is the part of the CPU that<br>performs arithmetic and logic operations on data and acts as the<br>revolving for the CPU, letting data enter and leave the CPU. We also<br>know that CPUs have a 'word size'. This is the number of bits that<br>can be added, for example, in one go. The bigger a CPU's word size,<br>the more bits it can work on in one clock cycle and the more work<br>you can get done. |   |  |
| 2) The Control Unit<br>A Von Neumann CPU has a control unit. The control unit is in<br>charge of 'fetching' each instruction that needs to be executed in a<br>program by issuing control signals to the hardware. It then decodes<br>the instruction and finally issues more control signals to the<br>hardware to actually execute it.                                                                                                                                                  |   |  |
| 3) Registers<br>A Von Neumann CPU has registers. These are very fast memory<br>circuits. They hold information such as the address of the next<br>instruction (Program Counter), the current instruction being<br>executed (Current Instruction Register), the data being worked on<br>and the results of arithmetic and logical operations (Accumulators),<br>information about the last operation (Status Register) and whether an                                                      |   |  |



|    | a lot more detail later in this chapter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |   |    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|
|    | 4) The clock<br>Instructions are carried out to the beat of the clock! Some<br>instructions take one beat and others more than one beat. Very<br>roughly speaking, the faster the clock, the more clock beats you have<br>per second so the more instructions per section you can do and the<br>faster your computer will go.                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |    |
|    | Cicck Central Processing Unit<br>Registers<br>Control Unit<br>Alu<br>Primary memory (RAM)<br>Controller<br>Primary system showing the I/O controllers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    |
| 2. | Discuss briefly about Processor and their functions?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |   |    |
|    | <ul> <li>Functions</li> <li>Fetch Instruction</li> <li>Interpret Instruction</li> <li>Fetch Data <u>minor cycle</u></li> <li>Execute Instruction, i.e., process data</li> <li>Write data results, to memory or I/O module</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 | 3 | K2 |
|    | <ul> <li>Major Components of Processor</li> <li>ALU</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 |   |    |
|    | <ul> <li>Additional Processor Components Register Organization</li> <li>User Visible Registers, referenced by machine language General Purpose Registers</li> <li>Orthogonal – any register can contain the operand for any opcode Dedicated – e.g., stack registers, floating-point registers</li> <li>Data Registers</li> <li>Used only to hold data, excluding addresses Used to hold data including addresses</li> <li>Address Registers</li> <li>Partially General Purpose, e.g., X register in Pep/8</li> <li>Dedicated</li> <li>Segment Pointers, i.e., Registers</li> <li>holds the address of the base of the segment Index Registers</li> <li>Indexed addressing, may autoindex Stack Pointer</li> <li>Enables <u>push</u>, pop, etc.</li> </ul> | 5 |   |    |
| 3. | Describe briefly about Multi-core architectures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 | 2 | K) |
|    | Replicate multiple processor cores on a single die.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 | 3 | K2 |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|   | Multi-core architectures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 |   |    |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|
|   | register file<br>ALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU<br>CALU | 1 |   |    |
|   | • Interaction with OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 |   |    |
|   | • OS perceives each core as a separate processor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    |
|   | • OS scheduler maps threads/processes to different cores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |    |
|   | Most major OS support multi-core today                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |    |
| 4 | Discuss briefly about Instruction Format?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |    |
| - | Instruction Format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 | 3 | K2 |
|   | All instructions are 32 bits long. There are four types of instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |    |
|   | format.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |    |
|   | Arithmetic instruction format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |    |
|   | Conditional Branch and Immediate format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |    |
|   | Unconditional Jump format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |    |
|   | Input and Output instruction format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |   |    |
|   | Arithmetic instruction format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 |   |    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |    |
|   | 2 bits 6 bits 4 bits 4 bits 4 bits 12 bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |    |
|   | 00 OPCODE S-reg S-reg D-reg 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |    |
|   | The first two bits are always 00, indicating that the instruction is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |    |
|   | Anumetic of Register transfer type of instruction. S-reg is the source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |    |
|   | they are not used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |    |
|   | Conditional Branch and Immediate format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 | - |    |
|   | 2 bits 6 bits 4 bits 4 bits 16 bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 |   |    |
|   | 01 OPCODE B-reg D-reg Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |    |
|   | The first two bits are always 01, indicating that the instruction is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |    |
|   | Conditional Branch and Immediate type of instruction. B-reg is the base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |    |
|   | register. D-reg is the destination register. The last 16 bits may be an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |    |
|   | address or an immediate data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |    |
|   | When the last 16 bits contain data, the D-reg is always 0000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |    |
|   | The Address may at times be treated as data, which is direct addressing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |    |
|   | An indirect Address is calculated as :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |    |
|   | Effective Address = Content (B-reg) + Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |    |
|   | Conditional Branch checks for B and D reg to cause a branch, to a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |    |
|   | specified Address, or not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |    |
|   | Unconditional Jump format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |    |
|   | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |    |
| 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 | 1 | 1  |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|    | The first two bits are always 10, indicating that the instruction is an Unconditional Jump type of instruction, with a jump to the specified Address.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
|    | Input and Output instruction format2 bits6 bits4 bits4 bit16 bits11OPCODEReg 1Reg 2AddressThe first two bits are always 11, indicating that the instruction is an Inputand Output type of instruction.The instruction may read the content of Address/Reg 2 into Reg 1.The instruction may write the content of Reg 1 into a specifiedAddress/Reg 2.                                                                                                                                                                                                                                                                                                                                                               | 2 |  |
|    | Registers<br>There are 16 registers; each of 32 bit long.<br>Reg-0 (0000) being the Accumulator.<br>Reg-1(0001) being the Zero register, which contains the value 0.<br>All other registers are general purpose register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 |  |
|    | <b>Buffers</b><br>Input buffer – containing data read by the program<br>Output buffer – containing data produced by the program<br>Temp buffer – area in memory to store/retrieve the data temporarily.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 |  |
| 5. | Discuss briefly about Arithmetic Logic Unit?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |  |
|    | <ul> <li>Definition</li> <li>Key processing element of a microprocessor that performs arithmetic and logic operations</li> <li>Description</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 |  |
|    | <ul> <li>Directed by Control Unit, ALU performs operations such as ADD, SUB, NOT, OR, AND, XOR</li> <li>Data is inputted from and outputted to the Register Array</li> <li>Control Signals from Control Unit determine what type of operation is performed</li> <li>Input data consists of two operands: operand A and operand B stored in registers and having n bits</li> <li>Output data consists of result S</li> <li>ALU also outputs Status Signals such as: <ul> <li>Zero (when the result of the operation is 0)</li> <li>Negative (when the operation result is &lt; 0)</li> <li>Carry (when the operation results in carry)</li> <li>Overflow (when the result exceeds the number</li> </ul> </li> </ul> |   |  |



|    | o Etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|
|    | ALU<br>Control Unit<br>Register Array                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 |   |    |
|    | CPU     Memory Unit<br>(RAM, ROM, HDD)     I/O Units<br>(Mouse, Keyboard,<br>Monitor, Printer, etc.)       Arithmetic<br>Logic Unit     Image: Control Unit     Image: Control Unit       Unit     Image: Control Unit     Image: Control Unit                                                                                                                                                                                                                                                                                                                                                                                                   | 4 |   |    |
| 6. | Discuss briefly about Instruction Fetch Execute Cycle?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |    |
|    | The Instruction Fetch Execute Cycle is one of the most important                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 |   |    |
|    | mental models of computation as aptly put by Prof. Rockford Ross. This<br>embodies the basic principle of how all modern processors work. This<br>functional model has remained more or less the same over the decades no<br>matter how and when the development of processors have taken place<br>ever since the days of Von Newmann architecture to today's Super<br>computers. The principles are fairly simple and can be easily generalized<br>to any processor or Operating System. It further proceeds to explain what<br>happens when a computer is first switched on till the time it is ready to<br>accept instructions from the user. | 4 | 3 | K2 |



| c. Execute the instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| Begin       Fetch Next       Instruction       Decode       Instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 |  |
| Figure 1: Basic Instruction Fetch Execute Cycle Instruction Fetch Execute Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 |  |
| A more complete form of the Instruction Fetch Execute Cycle can be<br>broken down into the following steps:                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • |  |
| 1. Fetch Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |  |
| 2. Decode Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| 3. Execute Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |  |
| 4. Interrupt Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |  |
| 1. Fetch Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |  |
| The fetch cycle begins with retrieving the address stored in the <i>Program Counter</i> (PC). The address stored in the PC is some valid address in the memory holding the instruction to be executed. (In case this address does not exist we would end up causing an interrupt or exception). The Central Processing Unit completes this step by fetching the instruction stored at this address from the memory and transferring this instruction to a special register – <i>Instruction Register</i> ( <i>IR</i> ) to hold the instruction to be executed. |   |  |
| The program counter is incremented to point to the next address from which the new instruction is to be fetched.                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |  |
| 2. Decode Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| The decode cycle is used for interpreting the instruction that was fetched<br>in the Fetch Cycle. The operands are retrieved from the addresses if the<br>need be.                                                                                                                                                                                                                                                                                                                                                                                             |   |  |
| 3. Execute Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |  |
| This cycle as the name suggests, simply executes the instruction that was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |  |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu. Rev.0 COE/2017/QB

fetched and decoded.

#### 4. Interrupt Cycle

An interrupt can occur any time during the program execution. Whenever it is caused, a series of events take place so that the instruction fetch execute cycle can again resume after the OS calls the routine to handle the interrupt. Therefore, when an interrupt occurs, the following steps are performed by the OS:

- • Suspend the execution of current instruction
- • Push the address of current instruction on the system stack
- • Loading the PC with the address of the interrupt handler
- • This starts the Instruction Fetch Execute cycle again for the instructions in the Interrupt handler.
- • Set the mode of operation as a privileged one often termed as the *Supervisor mode* so that the OS can execute the handler.
- • Once the OS completes the execution of the interrupt handler, the address of the next instruction to be executed is obtained from popping the value of the address in the stack. The suspended instruction can now continue with its execution.

This cycle of fetching a new instruction, decoding it and finally executing it continues until the computer is turned off. Since we have said that it is mainly the operating system which aids the processor in executing the programs which holds the different instructions, a question which is immediately raised is how does the OS start executing.

#### Loading of the Operating System

The process by which the OS gets loaded into the memory so that it can start executing is known as the *System Bootup*. During the boot up sequence, a series of instructions need to be executed so that at the end of this sequence the OS is running and can in turn start executing user programs. The boot sequence begins with the following:

- 1. The *RESET* pin of the CPU is set to logical high.
- 2. The code which is found at some specific starting address (0xfffffff0 in case of an Intel processor) is executed.
- 3. 0xfffffff0 maps to the persistent memory chip of the computer known as the Read Only Memory (ROM).
- 4. The series of instructions stored in ROM is called the *Basic Input* /Output System (BIOS).

#### **Role of BIOS during System Bootup**

Although the BIOS performs a number of functions e.g. making sure that all the different chips, hard drives, and the CPU function together as an entity, its most important function is loading the Operating System. When the computer is first powered on, the microprocessor attempts to execute the first instruction. For this purpose as mentioned earlier the



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|      | processor needs to fetch this instruction. The processor cannot fetch it<br>from the Operating System because the OS has not been loaded yet into<br>the memory; it is still residing on the disk. It is the BIOS which provides<br>the processor with the first instructions to be executed in order to load the<br>OS.                           |   |   |    |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|
|      | The other functions performed by the BIOS during the system bootup apart from loading the OS are summarized as:                                                                                                                                                                                                                                    |   |   |    |
|      | <ul> <li>A power-on self-test (POST) for the different hardware components in the system to make sure everything are functioning properly.</li> <li>Activating other BIOS entities e.g. graphics cards.</li> <li>Providing a set of low-level routines to enable the OS to interface different hardware devices keyboard screen and the</li> </ul> |   |   |    |
|      | ports (serial as well parallel).                                                                                                                                                                                                                                                                                                                   |   |   |    |
| UNIT | IV - MEMORY                                                                                                                                                                                                                                                                                                                                        |   |   | 1  |
| 1.   | Discuss briefly about Virtual Memory?                                                                                                                                                                                                                                                                                                              |   |   |    |
|      | Virtual Memory:                                                                                                                                                                                                                                                                                                                                    |   |   |    |
|      | *Virtual memory deals with the main memory size limitations                                                                                                                                                                                                                                                                                        | 3 | 4 | K2 |
|      | * Provides an illusion of having more memory than the system's RAM                                                                                                                                                                                                                                                                                 |   |   |    |
|      | Virtual memory concepts                                                                                                                                                                                                                                                                                                                            | 6 |   |    |
|      | * Page replacement policies                                                                                                                                                                                                                                                                                                                        |   |   |    |
|      | * Write policy                                                                                                                                                                                                                                                                                                                                     |   |   |    |
|      | * Page size tradeoff                                                                                                                                                                                                                                                                                                                               |   |   |    |
|      | * Page mapping                                                                                                                                                                                                                                                                                                                                     |   |   |    |
|      | Page table organization                                                                                                                                                                                                                                                                                                                            | 3 |   |    |
|      | *Page table entries                                                                                                                                                                                                                                                                                                                                |   |   |    |
| 2.   | Explain briefly about Paging?                                                                                                                                                                                                                                                                                                                      |   |   |    |
|      | Paging:                                                                                                                                                                                                                                                                                                                                            | 4 | 4 | K2 |
|      | • Memory is divided into <b>page frames</b> all of equal size.                                                                                                                                                                                                                                                                                     |   |   |    |
|      | • The logical address space divided into <b>pages</b> of equal size.                                                                                                                                                                                                                                                                               |   |   |    |
|      | The memory manager determines                                                                                                                                                                                                                                                                                                                      |   |   |    |
|      | <ol> <li>The number of pages in the program</li> <li>Locates enough empty page frames to facilitate</li> <li>Loads all of the pages into memory, pages need not be contiguous.</li> </ol>                                                                                                                                                          |   |   |    |
|      | A number of tables need to be maintained for this system to operate:                                                                                                                                                                                                                                                                               |   |   |    |
|      | 1. JOD LADIE- TOT EACH JOD HOLDS the Size of the                                                                                                                                                                                                                                                                                                   |   |   |    |
|      | job, the memory location of the Page table.                                                                                                                                                                                                                                                                                                        |   |   |    |
|      | 2. rage rable – For each active job the Page,                                                                                                                                                                                                                                                                                                      |   |   |    |
|      | 3 Memory Man table – for each page Frame its                                                                                                                                                                                                                                                                                                       |   |   |    |
|      | location and whether free or busy                                                                                                                                                                                                                                                                                                                  |   |   |    |
|      |                                                                                                                                                                                                                                                                                                                                                    |   | L |    |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

| Page addr                                                                                                           | essing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                         |                                                                                                                                |                                                                                                                                               | 8 |   |    |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|
| Page                                                                                                                | Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                         | Frame No                                                                                                                       | Offset                                                                                                                                        |   |   |    |
| Mem<br>from mem<br>of a page r<br>a frame nu<br>entries.                                                            | hory address transl<br>hory involves trans<br>number and offset,<br>imber and offset.<br>If the system<br>this fashion:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ation takes pla<br>slating a virtua<br>into an actual<br>This process w<br>used 16 bits                                 | ace at run time<br>al or logical ad<br>l physical addr<br>vill make use c<br>then it could u                                   | Reading a word dress, consisting of of the Page Table tilize memory in                                                                        |   |   |    |
|                                                                                                                     | 15<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                      | 0                                                                                                                              |                                                                                                                                               |   |   |    |
|                                                                                                                     | Page r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                      | Displacemer                                                                                                                    | lt                                                                                                                                            |   |   |    |
|                                                                                                                     | with the second | his set up the s<br>with 2048 byt                                                                                       | System would here $(2^{11})$                                                                                                   | have 32 pages $(2^5)$                                                                                                                         |   |   |    |
|                                                                                                                     | Example If a<br>encountered t<br>Page table wo<br>5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | logical addre<br>his will repre-<br>ould be access                                                                      | ess of 0010100<br>esent offset 42<br>ed to see the M                                                                           | 0000101010 was<br>on page 5. The<br>Mapping of page                                                                                           |   |   |    |
| Sta                                                                                                                 | tic paging:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         |                                                                                                                                |                                                                                                                                               |   |   |    |
| •                                                                                                                   | No external fragn<br>Fixed size pages<br>Internal fragment<br>Non- contiguous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nentation<br>ation – only or<br>memory (page                                                                            | n last page<br>(table)                                                                                                         |                                                                                                                                               |   |   |    |
| Explain l<br>example?                                                                                               | briefly about alg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | orithm of L                                                                                                             | RU Replacen                                                                                                                    | nent and give                                                                                                                                 |   |   |    |
| LRU(Leas<br>In this alg<br>time is sele<br>it is not c<br>linked list<br>front and t<br>list must l<br>list, deleti | t Recently Used):<br>gorithm, the page<br>ected for replacem<br>theap. To fully im<br>of all pages in me<br>the least recently us<br>be updated on eve<br>ng it, and then mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | that has not b<br>ent. Although<br>plement LRU<br>mory, with the<br>used page at th<br>ery memory re<br>oving it to the | een used for l<br>LRU is theore<br>, it is necessa<br>e most recently<br>e rear. The dif<br>eference. Findi<br>front is a very | ongest period of<br>tically realizable,<br>ry to maintain a<br>used page at the<br>ficulty is that the<br>ng a page in the<br>y timeconsuming | 4 | 4 | K2 |



|    | Example:                                                                                                                                                                                                                                                                                                                                      | 6 |   |    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|
|    | LRU                                                                                                                                                                                                                                                                                                                                           |   |   |    |
|    | •Consider the following reference string: 0, 2, 1, 6, 4, 0, 1, 0, 3, 1, 2, 1<br>$\begin{array}{c} \underline{x \ x \ x \ x \ x} \\ \text{Compulsory Misses} \end{array}$                                                                                                                                                                      |   |   |    |
|    | $ \begin{array}{c} 0\\ 2\\ 1\\ 6 \end{array} \xrightarrow{4}\\ 6 \end{array} \xrightarrow{4}\\ 0\\ 1\\ 6 \end{array} \xrightarrow{6}\\ 0\\ 1\\ 6 \end{array} \xrightarrow{3}\\ 0\\ 1\\ 3 \end{array} \xrightarrow{4}\\ 0\\ 1\\ 3 \end{array} \xrightarrow{2}\\ 0\\ 1\\ 3 \end{array} \xrightarrow{2}\\ 0\\ 1\\ 3 \end{array} \xrightarrow{2}$ |   |   |    |
|    | •Fault Rate = 8 / 12 = 0.67                                                                                                                                                                                                                                                                                                                   |   |   |    |
|    | • Two status bit associated with each page. R is set whenever the page is referenced (read or written). M is set when the page is written to (i.e., modified).                                                                                                                                                                                | 2 |   |    |
|    | • When a page fault occurs, the operating system inspects all the pages and divides them into four categories based on the current values of their R and M bits:                                                                                                                                                                              |   |   |    |
|    | Class 0: not referenced, not modified.                                                                                                                                                                                                                                                                                                        |   |   |    |
|    | Class 1: not<br>referenced,<br>modified.                                                                                                                                                                                                                                                                                                      |   |   |    |
|    | Class 2: referenced, not modified.                                                                                                                                                                                                                                                                                                            |   |   |    |
|    | Class 3: referenced, modified.                                                                                                                                                                                                                                                                                                                |   |   |    |
|    | The NRU (Not Recently Used) algorithm removes a page at random from the lowest numbered nonempty class.                                                                                                                                                                                                                                       |   |   |    |
| 4. | Discuss how the cache memory Works, design of cache and their types                                                                                                                                                                                                                                                                           |   | 4 | K2 |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

| 5. | Explain about addressing modes and their types?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|
|    | The simplest addressing mode is to include the operand itself in the instruction, that is, no address information is needed                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 | 4 | K2 |
|    | The different ways in which operands can be addressed are called<br>the addressing modes. Addressing modes differ in the way the address<br>information of operands is specified This is called immediate addressing.<br>A more involved addressing mode is to compute the address of the<br>operand by adding a constant value to the content of a register. This is<br>called indexed addressing. Between these two addressing modes there<br>exist a number of other addressing modes including absolute addressing,<br>direct addressing, and indirect addressing. |   |   |    |
|    | Immediate Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 |   |    |
|    | According to this addressing mode, the value of the operand is (immediately) available in the instruction itself.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |    |
|    | Direct (Absolute) Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 |   |    |
|    | According to this addressing mode, the address of the memory location that holds the operand is included in the instruction.                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |    |
|    | Indirect Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 |   |    |
|    | In the indirect mode, what is included in the instruction is not the address<br>of the operand, but rather a name of a register or a memory location that<br>holds the (effective) address of the operand.                                                                                                                                                                                                                                                                                                                                                             |   |   |    |
|    | Indexed Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 |   |    |
|    | In this addressing mode, the address of the operand is obtained by adding<br>a constant to the content of a register, called the index register.                                                                                                                                                                                                                                                                                                                                                                                                                       |   |   |    |
|    | Relative Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 |   |    |
|    | Recall that in indexed addressing, an index register is used. Relative addressing is the same as indexed addressing except that the program counter (PC) replaces the index register.                                                                                                                                                                                                                                                                                                                                                                                  |   |   |    |
|    | Autoincrement Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 |   |    |
|    | This addressing mode is similar to the register indirect addressing mode<br>in the sense that the effective address of the operand is the content of a<br>register, call it the autoincrement register, that is included in the<br>instruction.                                                                                                                                                                                                                                                                                                                        |   |   |    |
|    | Autodecrement Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 |   |    |
|    | Similar to the autoincrement, the autodecrement mode uses a register to hold the address of the operand.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |    |
| 6. | Discuss briefly about types of Cache Mapping?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   |    |
|    | Direct Mapping Cache Organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 | 4 | K2 |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|    | For TRAP ,its RST value is 4.5,then the subroutine address is                                     |    |   |    |
|----|---------------------------------------------------------------------------------------------------|----|---|----|
|    | 8*4.5=36=(24)H.                                                                                   |    |   |    |
|    | similarly u can calculate for other vector interupt addresses.                                    |    |   |    |
|    | Memory page for all interrupts are (00).                                                          | 2  |   |    |
|    | 2 RST D Cocations<br>2 RST D Cocations<br>2 03Cu                                                  | 3  |   |    |
|    |                                                                                                   |    |   |    |
|    |                                                                                                   |    |   |    |
|    |                                                                                                   |    |   |    |
|    |                                                                                                   |    |   |    |
|    |                                                                                                   |    |   |    |
|    |                                                                                                   |    |   |    |
|    | Any Interrupt Recognized Theterrupt                                                               |    |   |    |
| 4. | Explain the working and design issue of Interrupt driven I/O?                                     |    | 5 | K2 |
|    | Interrupt driven I/O:                                                                             | 02 |   |    |
|    | The problem with programmed I/O is that the processor has to wait a long                          |    |   |    |
|    | time for the I/O module of concern to be ready for either reception or                            |    |   |    |
|    | transmission of data.                                                                             |    |   |    |
|    | The processor, while waiting, must repeatedly interrogate the status of the                       |    |   |    |
|    | I/O module.                                                                                       |    |   |    |
|    | Working a of Interrupt driven I/O:                                                                | 07 |   |    |
|    | a) From the point of view of the $I/O$ module:                                                    | 07 |   |    |
|    | • For input the I/O module services a READ command from                                           |    |   |    |
|    | the processor.                                                                                    |    |   |    |
|    | • The I/O module then proceeds to read data from an                                               |    |   |    |
|    | associated peripheral device.                                                                     |    |   |    |
|    | • Once the data are in the modules data register, the module                                      |    |   |    |
|    | issues an interrupt to the processor over a control line.                                         |    |   |    |
|    | • The module then waits until its data are requested by the                                       |    |   |    |
|    | processor.                                                                                        |    |   |    |
|    | • When the request is made, the module places its data on                                         |    |   |    |
|    | the data bus and is then ready for another I/O operation.                                         |    |   |    |
|    | From the processor point of view; the action for an input is as follows:                          |    |   |    |
|    | • The processor issues a READ command.                                                            |    |   |    |
|    | • It then does something else(e.g. the processor may be                                           |    |   |    |
|    | working on several different programs at the same time)                                           |    |   |    |
|    | • At the end of each instruction cycle, the processor checks                                      |    |   |    |
|    | for interrupts                                                                                    |    |   |    |
|    | • When the interrupt from an I/O module occurs, the                                               |    |   |    |
|    | processor saves the context (e.g. program counter &                                               |    |   |    |
|    | processor registers) of the current program and processes                                         |    |   |    |
|    | the interrupt.                                                                                    |    |   |    |
|    | • In this case, the processor reads the word of data from the I/O module and stores it in memory. |    |   |    |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|    | • If then restores the context of the program it was working                 |    |   |    |
|----|------------------------------------------------------------------------------|----|---|----|
|    | on and resumes execution.                                                    |    |   |    |
|    | Design issues for Interrupt:                                                 | 03 |   |    |
|    | Two design issues arise in implementing interrupt I/O.                       |    |   |    |
|    | • There will almost invariably be multiple I/O modules, how does             |    |   |    |
|    | the processor determine which device issued the interrupt                    |    |   |    |
|    | • If multiple interrupts have occurred how the processor does decide         |    |   |    |
|    | which one to process                                                         |    |   |    |
| 5. | Explain how to Handling the multiple interrupt?                              | 12 | 5 | K2 |
|    | i. There are several techniques to identify the requesting I/O module.       |    |   |    |
|    | These techniques also provide a way of assigning priorities when             |    |   |    |
|    | more than one device is requesting interrupt service.                        |    |   |    |
|    | ii. With multiple lines, the processor just picks the interrupt line with    |    |   |    |
|    | highest priority. During the processor design phase itself priorities        |    |   |    |
|    | may be assigned to each interrupt lines.                                     |    |   |    |
|    | iii. With software polling, the order in which modules are polled            |    |   |    |
|    | determines their priority.                                                   |    |   |    |
|    | iv. In case of daisy chain configuration, the priority of a module is        |    |   |    |
|    | determined by the position of the module in the daisy chain. The             |    |   |    |
|    | module nearer to the processor in the chain has got higher                   |    |   |    |
|    | priorities, because this is the first module to receive the                  |    |   |    |
|    | acknowledge signal that is generated by the processor.                       |    |   |    |
|    | v. In case of bus arbitration method, more than one module may need          |    |   |    |
|    | control of the bus. Since only one module at a time can                      |    |   |    |
|    | successfully transmit over the bus, some method of arbitration is            |    |   |    |
|    | needed. The various methods can be classified into two group -               |    |   |    |
|    | centralized and distributed.                                                 |    |   |    |
|    | vi. In a centralized scheme, a single hardware device, referred to as a      |    |   |    |
|    | bus controller or arbiter is responsible for allocating time on the          |    |   |    |
|    | bus. The device may be a separate module or part of the processor.           |    |   |    |
|    | vii. In distributed scheme, there is no control controller. Rather, each     |    |   |    |
|    | module contains access control logic and the modules act together            |    |   |    |
|    | share bus.                                                                   |    |   |    |
|    | viii. It is also possible to combine different device identification         |    |   |    |
|    | techniques to identify the devices and to set the priorities of the          |    |   |    |
|    | devices. As for example multiple                                             |    |   |    |
| 6  | i)Explain briefly about serial Data Transfer?                                |    |   |    |
|    | Serial transmission                                                          | 4  | 5 | К2 |
|    | Within a piece of equipment, the distance and hence lengths of wire          | •  |   |    |
|    | used to connect each subunit together are short. Thus, it is normal practice |    |   |    |
|    | to transfer the data between subunits by using a separate piece of wire to   |    |   |    |
|    | carry each bit of the data. This means that there are multiple wires         |    |   |    |
|    | connecting each subunit together and data are said to be exchanged using     |    |   |    |
|    | a <b>parallel transfer mode</b> . This mode of operation results in minimal  |    |   |    |
|    | delays in transferring each word                                             |    |   |    |
|    |                                                                              |    | 1 |    |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|      | When transferri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng information b                                                                                                                                                  | etween two physically separa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | te               |    |     |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|-----|
|      | pieces of equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , especially if the                                                                                                                                               | separation is more than sever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al               |    |     |
|      | metres, for reasons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of cost and var                                                                                                                                                   | ying transmission delays in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | he               |    |     |
|      | individual wires, it is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | more usual to use                                                                                                                                                 | just single pair lines and transm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11t              |    |     |
|      | each octet making up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | p the data a single                                                                                                                                               | e bit at a time using a fixed tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ne               |    |     |
|      | interval for each bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t. This mode of o                                                                                                                                                 | operation is known as <b>bit-seri</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ai               |    |     |
|      | transmission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |    |     |
|      | (a) Time<br>0 1<br>1 $02$ $03$ $1$ $14$ $05$ subunit $34$ $01$ $1$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $11$ $111$ $11$ $11111111$ | 0<br>1<br>2<br>Destination<br>3 subunit<br>4<br>n-1<br>Signal<br>reference<br>FIGURE 3.1<br>Transmission modes:<br>(a) paralel; (b) serial.<br>Destination<br>DTE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                |    |     |
|      | Signal refe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | erence                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |    |     |
|      | ii)Difference betwee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n serial and paral                                                                                                                                                | lel data Transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |    |     |
|      | BASIS FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SERIAL                                                                                                                                                            | PARALLEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                |    |     |
|      | COMPARISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TRANSMISSI                                                                                                                                                        | TRANSMISSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |    |     |
|      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ON CL I                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |    |     |
|      | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Data flows in                                                                                                                                                     | Multiple lines are used to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |    |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | by bit                                                                                                                                                            | send data i.e. 8 bits of 1 byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |    |     |
|      | Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Economical                                                                                                                                                        | at a time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |    |     |
|      | Rits transforred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 bit                                                                                                                                                             | 8 bits or 1 byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |    |     |
|      | at 1 clock pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 DIL                                                                                                                                                             | 8 bits of 1 byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |    |     |
|      | Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Slow                                                                                                                                                              | Fast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |    |     |
|      | Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Used for long                                                                                                                                                     | Short distance Fg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |    |     |
|      | rippiloutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | distance                                                                                                                                                          | computer to printer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |    |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | communication.                                                                                                                                                    | r in r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |    |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Eg, Computer                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |    |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | to computer                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |    |     |
| PART | - C (20 Mark Questio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ons with Key)                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |    |     |
| S.No | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mark             | С  | BTL |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | Os |     |
| UNIT | I – DIGITAL FUNDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MENTALS                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |    | Γ   |
| 1    | Simplify the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ig Boolean functio                                                                                                                                                | in F, together with the don't-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | re               |    |     |
|      | conditions d, and ther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $x = 1$ express the simpler $\sum_{i=1}^{n} (0, 1, 2, 4)$                                                                                                         | 111ed function in sum of minterm<br>5) $d(x, y, z) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_$ | 18:<br>7)        |    |     |
|      | $(A) \Gamma(X, Y, Z) = (A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ∠ (0, 1, 2, 4,                                                                                                                                                    | (3), $u(x, y, z) = 2(3, 0, 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>')</sup> 20 |    |     |
|      | b) $F(A B C D)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ = \Sigma (0 \ 6 \ 8 \ 13) $                                                                                                                                     | 14) $d(A \ B \ C \ D) = \sum (2 \ 4 \ 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0) 20            | 1  | К3  |
|      | $\left \begin{array}{c} 0, 1(1, D, C, D) \\ (8) \end{array}\right $                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                   | ···, ···, ··, ··, ·· / (2, ¬, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~/               |    |     |
|      | c) $F(A B C D)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $) = \sum (1357914)$                                                                                                                                              | 5) $d(A \ B \ C \ D) = \sum (4.6.12.1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3)               |    |     |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|   | during a clock pulse only if Q was previously 1. Similarly Q' is ANDed with J and CP, so that the flip-flop is cleared during a clock pulse only if Q' was previously 1.                                                                                                                                                                                                                     |    |   |    |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|----|
|   | When J=K=0                                                                                                                                                                                                                                                                                                                                                                                   |    |   |    |
|   | When both J and K are 0, the clock pulse has no effect on the output and the output of the flip-flop is the same as its previous value. This is because when both the J and K are 0, the output of their respective AND gate becomes 0.                                                                                                                                                      |    |   |    |
|   | When J=0, K=1                                                                                                                                                                                                                                                                                                                                                                                |    |   |    |
|   | When J=0, the output of the AND gate corresponding to J becomes 0 (i.e.) S=0 and R=1. Therefore Q' becomes 0. This condition will reset the flip-flop. This represents the RESET state of Flip-flop.                                                                                                                                                                                         |    |   |    |
|   | When J=1, K=0                                                                                                                                                                                                                                                                                                                                                                                |    |   |    |
|   | In this case, the AND gate corresponding to K becomes $0(i.e.)$ S=1 and R=0. Therefore Q becomes 0. This condition will set the Flip-flop. This represents the SET state of Flip-flop.                                                                                                                                                                                                       |    |   |    |
|   | When J=K=1                                                                                                                                                                                                                                                                                                                                                                                   |    |   |    |
|   | Consider the condition of CP=1 and J=K=1. This will cause the output to complement again and again. This complement operation continues until the Clock pulse goes back to 0. Since this condition is undesirable, we have to find a way to eliminate this condition. This undesirable behavior can be eliminated by Edge triggering of JK flip-flop or by using master slave JK Flip-flops. |    |   |    |
|   | The characteristic table explains the various inputs and the states of JK flip-flop.                                                                                                                                                                                                                                                                                                         |    |   |    |
| 2 | <ul><li>i.Discuss and draw the circuit diagram of a 4 to 16 line decoder with five 2 to 4 line decoders with enable. (12)</li><li>ii. Steps involved in the design of sequential circuits (8)</li></ul>                                                                                                                                                                                      | 20 | 2 | K2 |
|   | A 4x16 decoder has 4 inputs and 16 outputs, with the outputs going high<br>for the corresponding 4-bit input. Similar is the case of a 2x4 decoder<br>except for its 2 inputs and 4 outputs. Assuming all the 2x4 decoders have<br>an enable input, which activates the decoder when the input to it is logic<br>high, 5 such decoders would be required as shown below.                     | 12 |   |    |
|   |                                                                                                                                                                                                                                                                                                                                                                                              |    |   |    |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.



#### **E.G.S. PILLAY ENGINEERING COLLEGE** (An Autonomous Institution, Affiliated to Anna University, Chennai)



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

| A<br>a<br>b<br>c<br>C      | An <b>arithmetic logic unit</b> ( <b>ALU</b> ) is a digital circuit used to perform<br>withmetic and logic operations. It represents the fundamental building<br>block of the <b>central processing unit</b> ( <b>CPU</b> ) of a computer. Modern CPUs<br>contain very powerful and complex ALUs. In addition to ALUs, modern<br>CPUs contain a control unit (CU).                                               |   |   |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|--|
| N<br>v<br>s<br>c<br>c<br>t | Most of the operations of a CPU are performed by one or more ALUs,<br>which load data from input registers. A <b>register</b> is a small amount of<br>storage available as part of a CPU. The control unit tells the ALU what<br>operation to perform on that data, and the ALU stores the result in an<br>output register. The control unit moves the data between these registers,<br>he ALU, and memory.      |   |   |  |
| I                          | How an ALU Works                                                                                                                                                                                                                                                                                                                                                                                                 |   |   |  |
| A<br>a<br>c<br>N           | An ALU performs basic arithmetic and logic operations. Examples of arithmetic operations are addition, subtraction, multiplication, and livision. Examples of logic operations are comparisons of values such as NOT, AND, and OR.                                                                                                                                                                               |   |   |  |
| A<br>C<br>T<br>S<br>C<br>C | All information in a computer is stored and manipulated in the form<br>of <b>binary numbers</b> , i.e. 0 and 1. <b>Transistor</b> switches are used to<br>manipulate binary numbers since there are only two possible states of a<br>switch: open or closed. An open transistor, through which there is no<br>current, represents a 0. A closed transistor, through which there is a<br>current, represents a 1. |   |   |  |
| C<br>ti<br>ti<br>T<br>c    | Operations can be accomplished by connecting multiple transistors. One ransistor can be used to control a second one - in effect, turning the ransistor switch on or off depending on the state of the second transistor. This is referred to as a <b>gate</b> because the arrangement can be used to allow or stop a current.                                                                                   |   |   |  |
| T<br>t<br>a<br>g           | The simplest type of operation is a NOT gate. This uses only a single<br>ransistor. It uses a single input and produces a single output, which is<br>always the opposite of the input. This figure shows the logic of the NOT<br>gate:                                                                                                                                                                           |   |   |  |
|                            | NOT gate $V$ input input $V$                                                                                                                                                                                                                                                                                                                                                 |   |   |  |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                  | I | • |  |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

| 2       a.Describe the different hazards that cause performance degradation<br>in a pipelined processor. (15)       20         b.Define clock rate and instruction count.(5)       20         a. Pipelining is the use of a pipeline. Without a pipeline,<br>a computer processor gets the first instruction from memory, performs<br>the operation it calls for, and then goes to get the next instruction from<br>memory, and so forth. While fetching (getting) the instruction, the<br>arithmetic part of the processor is idle.       15         There are three classes of hazards: <ul> <li>Structural Hazards. They arise from resource conflicts when<br/>the hardware cannot support all possible combinations of<br/>instructions in simultaneous overlapped execution.</li> <li>Data Hazards. They arise when an instruction depends on the<br/>result of a previous instructions in the pipeline.</li> <li>Control Hazards. They arise from the pipelining of branches<br/>and other instructions that change the PC.</li> <li>b. The clock rate typically refers to the frequency at which a chip like a<br/>central processing unit (CPU), one core of a multi-core processor, is<br/>running and is used as an indicator of the processor's speed. It is measured<br/>in clock cycles per second or its equivalent, the SI unit hertz (Hz).             <li>In computer architecture, cycles per instruction (aka clock cycles<br/>per instruction for a program or program fragment. It is the multiplicative<br/>inverse of instructions per cycle.</li> </li></ul> 5         UNIT IV - NEGATIVE FEED BACK AMPLIFIERS       1         Define addressing mode and Describe the different types of addressing<br>modes       20         Addressing modes are an aspect of the instruction set architecture de |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |   |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|----|
| a. Pipelining is the use of a pipeline. Without a pipeline, a computer processor gets the first instruction from memory, performs the operation it calls for, and then goes to get the next instruction from memory, and so forth. While fetching (getting) the instruction, the arithmetic part of the processor is idle.       15         There are three classes of hazards: <ul> <li>Structural Hazards. They arise from resource conflicts when the hardware cannot support all possible combinations of instructions in simultaneous overlapped execution.</li> <li>Data Hazards. They arise when an instruction depends on the result of a previous instructions in the pipeline.</li> <li>Control Hazards. They arise from the pipelining of branches and other instructions that change the PC.</li> </ul> <li>b. The clock rate typically refers to the frequency at which a chip like a central processing unit (CPU), one core of a multi-core processor, is running and is used as an indicator of the processor's speed. It is measured in clock cycles per instruction, or CPI) is one aspect of a processor's performance: the average number of clock cycles per instruction for a program or program fragment. It is the multiplicative inverse of instructions per cycle.</li> <li> <ul> <li>UNIT IV - NEGATIVE FEED BACK AMPLIFIERS</li> <li>I Define addressing mode and Describe the different types of addressing modes at a spect of the instruction set architecture identify by machine instructions in the various addressing modes that are defined in a given instruction set architecture identify by the instruction is that the instruction is a trachitecture intervention in the pipeline.</li> </ul> </li>                                                                                 | 2    | <ul><li>a.Describe the different hazards that cause performance degradation<br/>in a pipelined processor. (15)</li><li>b.Define clock rate and instruction count.(5)</li></ul>                                                                                                                                                                                                                                                                                                                                                                | 20 |   |    |
| There are three classes of hazards: <ul> <li>Structural Hazards. They arise from resource conflicts when the hardware cannot support all possible combinations of instructions in simultaneous overlapped execution.</li> <li>Data Hazards. They arise when an instruction depends on the result of a previous instruction in a way that is exposed by the overlapping of instructions in the pipeline.</li> <li>Control Hazards. They arise from the pipelining of branches and other instructions that change the PC.</li> <li>The clock rate typically refers to the frequency at which a chip like a central processing unit (CPU), one core of a multi-core processor, is running and is used as an indicator of the processor's speed. It is measured in clock cycles per second or its equivalent, the SI unit hertz (Hz).</li> <li>In computer architecture, cycles per instruction (aka clock cycles per instruction for a program or program fragment. It is the multiplicative inverse of instructions per cycle.</li> </ul> 5           UNIT IV – NEGATIVE FEED BACK AMPLIFIERS         1         Define addressing mode and Describe the different types of addressing modes are an aspect of the instruction set architecture in most central processing unit (CPU) designs. The various addressing modes that are defined in a given instruction set architecture identify                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | <b>a. Pipelining</b> is the use of a <b>pipeline</b> . Without a <b>pipeline</b> , a <b>computer</b> processor gets the first instruction from memory, performs the operation it calls for, and then goes to get the next instruction from memory, and so forth. While fetching (getting) the instruction, the arithmetic part of the processor is idle.                                                                                                                                                                                      | 15 |   |    |
| • Stuticular Trazads, They arise from resource combinations of instructions in simultaneous overlapped execution.       • Data Hazards, They arise when an instruction depends on the result of a previous instructions in a way that is exposed by the overlapping of instructions in the pipeline.       • Ochical Hazards, They arise from the pipelining of branches and other instructions that change the PC.         b. The clock rate typically refers to the frequency at which a chip like a central processing unit (CPU), one core of a multi-core processor, is running and is used as an indicator of the processor's speed. It is measured in clock cycles per instruction, or CPI) is one aspect of a processor's performance: the average number of clock cycles per instruction for a program or program fragment. It is the multiplicative inverse of instructions per cycle.       5         UNIT IV – NEGATIVE FEED BACK AMPLIFIERS       20       4       K2         Maddressing modes are an aspect of the instruction set architecture in most central processing unit (CPU) designs. The various addressing modes that are defined in a given instruction set architecture identify       20       4       K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | There are three classes of hazards:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |   |    |
| b. The clock rate typically refers to the frequency at which a chip like a<br>central processing unit (CPU), one core of a multi-core processor, is<br>running and is used as an indicator of the processor's speed. It is measured<br>in clock cycles per second or its equivalent, the SI unit hertz (Hz).In computer architecture, cycles per instruction (aka clock cycles<br>per instruction, clocks per instruction, or CPI) is one aspect of a<br>processor's performance: the average number of clock cycles<br>per instruction for a program or program fragment. It is the multiplicative<br>inverse of instructions per cycle.5UNIT IV - NEGATIVE FEED BACK AMPLIFIERS<br>1Define addressing mode and Describe the different types of addressing<br>modes204K2Addressing modes are an aspect of the instruction set architecture in<br>most central processing unit (CPU) designs. The various addressing<br>modes that are defined in a given instruction set architecture define<br>how machine language instructions in that architecture identify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | <ul> <li><u>Structural Hazards.</u> They arise from resource conflicts when the hardware cannot support all possible combinations of instructions in simultaneous overlapped execution.</li> <li><u>Data Hazards.</u> They arise when an instruction depends on the result of a previous instruction in a way that is exposed by the overlapping of instructions in the pipeline.</li> <li><u>Control Hazards.</u> They arise from the pipelining of branches and other instructions that change the PC.</li> </ul>                           |    |   |    |
| In computer architecture, cycles per instruction (aka clock cycles<br>per instruction, clocks per instruction, or CPI) is one aspect of a<br>processor's performance: the average number of clock cycles<br>per instruction for a program or program fragment. It is the multiplicative<br>inverse of instructions per cycle.5UNIT IV - NEGATIVE FEED BACK AMPLIFIERS<br>1204K2Addressing mode and Describe the different types of addressing<br>modes204Addressing modes are an aspect of the instruction set architecture in<br>most central processing unit (CPU) designs. The various addressing<br>modes that are defined in a given instruction set architecture define<br>how machine1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | b. The <b>clock rate</b> typically refers to the frequency at which a chip like a central processing unit (CPU), one core of a multi-core processor, is running and is used as an indicator of the processor's <b>speed</b> . It is measured in <b>clock</b> cycles per second or its equivalent, the SI unit hertz (Hz).                                                                                                                                                                                                                     |    |   |    |
| UNIT IV – NEGATIVE FEED BACK AMPLIFIERS         1       Define addressing mode and Describe the different types of addressing modes       20       4       K2         1       Addressing modes are an aspect of the instruction set architecture in most central processing unit (CPU) designs. The various addressing modes that are defined in a given instruction set architecture define how machine language instructions in that architecture identify       0       4       K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | In computer architecture, cycles per <b>instruction</b> (aka clock cycles per <b>instruction</b> , clocks per <b>instruction</b> , or CPI) is one aspect of a processor's performance: the average number of clock cycles per <b>instruction</b> for a program or program fragment. It is the multiplicative inverse of <b>instructions</b> per cycle.                                                                                                                                                                                        | 5  |   |    |
| 1       Define addressing mode and Describe the different types of addressing 20       4       K2         1       Modes       20       4       K2         Addressing modes       are an aspect of the instruction set architecture in most central processing unit (CPU) designs. The various addressing modes that are defined in a given instruction set architecture define how machine language instructions in that architecture identify       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNIT | IV – NEGATIVE FEED BACK AMPLIFIERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |   |    |
| Addressing modes are an aspect of the instruction set architecture in<br>most central processing unit (CPU) designs. The various addressing<br>modes that are defined in a given instruction set architecture define<br>how machine language instructions in that architecture identify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1    | Define addressing mode and Describe the different types of addressing modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 | 4 | K2 |
| the operand(s) of each instruction. An addressing mode specifies how to<br>calculate the effective memory address of an operand by using<br>information held in registers and/or constants contained within a machine<br>instruction or elsewhere.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | Addressing modes are an aspect of the instruction set architecture in<br>most central processing unit (CPU) designs. The various addressing<br>modes that are defined in a given instruction set architecture define<br>how machine language instructions in that architecture identify<br>the operand(s) of each instruction. An addressing mode specifies how to<br>calculate the effective memory address of an operand by using<br>information held in registers and/or constants contained within a machine<br>instruction or elsewhere. |    |   |    |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|    | to compiler writers and to those who write in assembly languages.                                                                                                                                                                                                                                                    |    |   |    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|----|
|    | - Immediate Mode: As the name suggests the instruction in itself contains the operand.                                                                                                                                                                                                                               |    |   |    |
|    | - <b>Register Mode:</b> In this mode the operands of an instruction are placed in the registers which themselves are placed inside the CPU.                                                                                                                                                                          |    |   |    |
|    | - <b>Direct address mode:</b> The address part of an instruction in this mode is the effective address.                                                                                                                                                                                                              |    |   |    |
|    | - Indexed addressing mode: In this mode in order to obtain the effective address the contents of the index register is added to the instructions address part.                                                                                                                                                       |    |   |    |
|    | - <b>Relative address mode:</b> In this mode in order to find out the effective address the contents of the program counter are added to the address part of the instruction.                                                                                                                                        |    |   |    |
| 2. | Describe the different methods to access the associative memories.                                                                                                                                                                                                                                                   |    |   |    |
|    | In computing, an access method is a program or a hardware mechanism<br>that moves data between the computer and an outlying device such as a<br>hard disk (or other form of storage) or a display terminal.                                                                                                          | 20 | 4 | K2 |
|    | The term is sometimes used to refer to the mechanics of placing or<br>locating specific data at a particular place on a storage medium and then<br>writing the data or reading it. It is also used to describe the way that data<br>is located within a larger unit of data such as a data set or file.              |    |   |    |
|    | There are two type of access method random access and sequential access.                                                                                                                                                                                                                                             |    |   |    |
|    | Sequential<br>Access                                                                                                                                                                                                                                                                                                 |    |   |    |
|    | The terms random access and sequential access are often used to describe<br>data files. A random-access data file enables you to reador<br>write information anywhere in the file. In a sequential-access file, you can<br>only read and write information sequentially, starting from the beginning<br>of the file. |    |   |    |
|    | Both types of files have advantages and disadvantages. If you are always accessing information in the same order, a sequential-access file is faster. If you tend to access information randomly, random access is better                                                                                            |    |   |    |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

| UNIT Y | V – POSITIVE FEED BACK AMPLIFIERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n  |   | 1  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|----|
| 1      | Serial and Parallel Transmission in detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 |   |    |
|        | Serial and Parallel Transmission<br>Digital data transmission can occur in two basic modes: serial or parallel.<br>Data within a computer system is transmitted via parallel mode<br>on <b>buses</b> with the width of the parallel bus matched to the word size of<br>the computer system. Data between computer systems is usually<br>transmitted in <b>bit serial mode</b> . Consequently, it is necessary to make a<br>parallel-to-serial conversion at a computer <b>interface</b> when sending data<br>from a computer system into a network and a serial-to-parallel conversion<br>at a computer interface when receiving information from a network. The<br>type of transmission mode used may also depend upon distance and<br>required data rate.<br><i>Parallel Transmission</i><br>In parallel transmission, multiple <b>bits</b> (usually 8 bits or a byte/character)<br>are sent simultaneously on different channels (wires frequency channels) | 20 | 5 | К2 |
|        | within the same cable, or radio path, and <b>synchronized</b> to a clock.<br>Parallel devices have a wider data bus than serial devices and can<br>therefore transfer data in words of one or more bytes at a time. As a result,<br>there is a speedup in parallel transmission bit rate over serial transmission<br>bit rate. However, this speedup is a tradeoff versus cost since multiple<br>wires cost more than a single wire, and as a parallel cable gets longer, the<br>synchronization timing between multiple channels becomes more<br>sensitive to distance. The timing for parallel transmission is provided by a<br>constant clocking signal sent over a separate wire within the parallel<br>cable; thus parallel transmission is considered <b>synchronous</b> .                                                                                                                                                                               |    |   |    |
|        | Walgreens Photo Prints - Up To 40% Off Photo Prints<br>Get Up To 40% Off All Prints. Use Code GOBIG to Redeem!<br>photo.walgreens.com/Photo/Prints   Sponsored ▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |   |    |
|        | <i>Serial Transmission</i><br>In serial transmission, bits are sent <b>sequentially</b> on the same channel<br>(wire) which reduces costs for wire but also slows the speed of<br>transmission. Also, for serial transmission, some overhead time is needed<br>since bits must be assembled and sent as a unit and then disassembled at<br>the receiver.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |   |    |
|        | Serial transmission can be either synchronous or <b>asynchronous</b> . In synchronous transmission, groups of bits are combined into frames and frames are sent continuously with or without data to be transmitted. In asynchronous transmission, groups of bits are sent as independent units with start/stop flags and no data link synchronization, to allow for arbitrary size gaps between frames. However, start/stop bits maintain physical bit level synchronization once detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |   |    |
|        | Sato M8480, 8485S/Se Printhead - Is your Printhead China Made?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |   |    |

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|   | Common mechanical interface standards associated with parallel transmission are the DB-25 and Centronics connectors. The Centronics connector is a 36-pin parallel interface that also defines electrical signaling. Functional characteristics specify the operations performed by each pin in a connector; these can be classified into the broad categories of data, control, timing, and electrical ground. The procedural characteristics or protocol define the sequence of operations performed by pins in the connector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |   |    |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|----|
| 2 | Explain the DMA based data transfer techniques for I/O devices?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 | 5 | K2 |
|   | Differ from Programmed I/O and Interrupt-Driven I/O, Direct Memory<br>Access is a technique for transferring data within main memory and<br>external device without passing it through the CPU. DMA is a way to<br>improve processor activity and I/O transfer rate by taking-over the job of<br>transferring data from processor, and letting the processor to do other<br>tasks. This technique overcomes the drawbacks of other two I/O<br>techniques which are the time consuming process when issuing command<br>for data transfer and tie-up the processor in data transfer while the data<br>processing is neglected. It is more efficient to use DMA method when<br>large volume of data has to be transferred. For DMA to be implemented,<br>processor has to share its' system bus with the DMA module. Therefore,<br>the DMA module must use the bus only when the processor does not need<br>it, or it must force the processor to suspend operation temporarily. The<br>latter technique is more common to be used and it is referred to as cycle<br>stealing.<br>Figure 5 shows an add-on DMA module cycles in an Instruction Cycle. |    |   |    |
|   | Instruction cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |   |    |
|   | Processor<br>cycle     Processor<br>cycle     Processor<br>cycle     Processor<br>cycle     Processor<br>cycle     Processor<br>cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |   |    |
|   | Petch Decode Fetch operand instruction Store result interrupt<br>DMA Interrupt breakpoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |    |
|   | Figure 5: DMA and Interrupt Breakpoints during an Instruction Cycle<br><b>Basic Operation of DMA</b><br>When the processor wishes read or<br>send a block of data, it issues a<br>command to the DMA module by<br>sending some information to DMA<br>module. The information includes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |   |    |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

|                                                                                                                                                      | Typical DMA Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| •                                                                                                                                                    | read or write command,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                      | sending through read and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                      | write control lines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ٠                                                                                                                                                    | number of words to be read or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                      | written, communicated on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                      | data lines and stored in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                      | data count register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| •                                                                                                                                                    | starting location in memory to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                      | read from or write to,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                      | communicated on data lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                      | and stored in the address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                      | register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| •                                                                                                                                                    | address of the I/O device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                      | involved, communicated on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                      | the data lines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Atter th                                                                                                                                             | e information are sent, the processor continues with other work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| The DN                                                                                                                                               | A module then transfers the entire block of data directly to or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| from m                                                                                                                                               | emory without going through the processor. When the transfer is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| complet                                                                                                                                              | e, the DMA module sends an interrupt signal to the processor to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| inform 1                                                                                                                                             | hat it has finish using the system bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| ~ ~ ~                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Confi                                                                                                                                                | gurations of DMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| <i>Confi</i><br>DMA r                                                                                                                                | gurations of DMA nechanism can be configured in a variety of ways, which are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| <i>Confi</i><br>DMA r                                                                                                                                | gurations of DMA nechanism can be configured in a variety of ways, which are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| <i>Confi</i><br>DMA r                                                                                                                                | gurations of DMA<br>nechanism can be configured in a variety of ways, which are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Confi<br>DMA r                                                                                                                                       | <i>gurations of DMA</i><br>nechanism can be configured in a variety of ways, which are:<br>Single-bus, detached DMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Confi<br>DMA r                                                                                                                                       | <i>gurations of DMA</i><br>nechanism can be configured in a variety of ways, which are:<br>Single-bus, detached DMA<br>Single-bus, integrated DMA-I/O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Confi<br>DMA r                                                                                                                                       | <i>gurations of DMA</i><br>nechanism can be configured in a variety of ways, which are:<br>Single-bus, detached DMA<br>Single-bus, integrated DMA-I/O<br>I/O bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Confi<br>DMA r                                                                                                                                       | <i>gurations of DMA</i><br>nechanism can be configured in a variety of ways, which are:<br>Single-bus, detached DMA<br>Single-bus, integrated DMA-I/O<br>I/O bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Confi<br>DMA r<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                                                                                    | <i>gurations of DMA</i><br>nechanism can be configured in a variety of ways, which are:<br>Single-bus, detached DMA<br>Single-bus, integrated DMA-I/O<br>I/O bus<br><u>bus, detached DMA</u><br>hules share the same system bus. The DMA module is acting as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Confi<br>DMA r<br>•<br>•<br>•<br>•<br>Single-t<br>All mod<br>surroga                                                                                 | gurations of DMA         nechanism can be configured in a variety of ways, which are:         Single-bus, detached DMA         Single-bus, integrated DMA-I/O         I/O bus         bus,         detached         DMA         tules share the same system bus. The DMA module is acting as a te processor, which uses programmed I/O to exchange data                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Confi<br>DMA r<br>•<br>•<br>•<br>Single-H<br>All mod<br>surrogat<br>betweer                                                                          | gurations of DMA         nechanism can be configured in a variety of ways, which are:         Single-bus, detached DMA         Single-bus, integrated DMA-I/O         I/O bus         bus,       detached         DMA         tules share the same system bus. The DMA module is acting as a te processor, which uses programmed I/O to exchange data a memory and an I/O module through the DMA module. This                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Confi<br>DMA r<br>•<br>•<br>•<br><u>Single-l</u><br>All mod<br>surrogat<br>betweer<br>configu                                                        | gurations of DMAnechanism can be configured in a variety of ways, which are:Single-bus, detached DMASingle-bus, integrated DMA-I/OI/O busbus,detachedDMAhules share the same system bus. The DMA module is acting as a<br>te processor, which uses programmed I/O to exchange data<br>a memory and an I/O module through the DMA module. This<br>ration is inexpensive, but is inefficient. This is because each                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Confi<br>DMA r<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                        | gurations of DMA         nechanism can be configured in a variety of ways, which are:         Single-bus, detached DMA         Single-bus, integrated DMA-I/O         I/O bus         bus,       detached         DMA         tules share the same system bus. The DMA module is acting as a         the processor, which uses programmed I/O to exchange data         a memory and an I/O module through the DMA module. This         ration is inexpensive, but is inefficient. This is because each of a word consumes two bus cycles.                                                                                                                                                                                                                                                           |  |
| Confi<br>DMA r<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                        | gurations of DMA         nechanism can be configured in a variety of ways, which are:         Single-bus, detached DMA         Single-bus, integrated DMA-I/O         I/O bus         bus,       detached         DMA         hules share the same system bus. The DMA module is acting as a         te processor, which uses programmed I/O to exchange data         a memory and an I/O module through the DMA module. This         ration is inexpensive, but is inefficient. This is because each         of a word consumes two bus cycles.                                                                                                                                                                                                                                                    |  |
| Confi<br>DMA r<br>•<br>•<br>•<br><u>Single-t</u><br>All mod<br>surrogat<br>betweer<br>configu<br>transfer                                            | gurations of DMA         nechanism can be configured in a variety of ways, which are:         Single-bus, detached DMA         Single-bus, integrated DMA-I/O         I/O bus         bus,       detached         DMA         tules share the same system bus. The DMA module is acting as a         the processor, which uses programmed I/O to exchange data         a memory and an I/O module through the DMA module. This         ration is inexpensive, but is inefficient. This is because each         of a word consumes two bus cycles.                                                                                                                                                                                                                                                   |  |
| Confi<br>DMA r<br>DMA r<br><u>Single-H</u><br>All mod<br>surrogat<br>between<br>configu<br>transfer                                                  | gurations of DMA         nechanism can be configured in a variety of ways, which are:         Single-bus, detached DMA         Single-bus, integrated DMA-I/O         I/O bus         bus,       detached         DMA         hules share the same system bus. The DMA module is acting as a te processor, which uses programmed I/O to exchange data a memory and an I/O module through the DMA module. This ration is inexpensive, but is inefficient. This is because each of a word consumes two bus cycles.         essor       DMA                                                                                                                                                                                                                                                            |  |
| Confi<br>DMA r<br>DMA r<br>Single-l<br>All mod<br>surrogat<br>between<br>configu<br>transfer                                                         | gurations of DMA<br>nechanism can be configured in a variety of ways, which are:<br>Single-bus, detached DMA<br>Single-bus, integrated DMA-I/O<br>I/O bus<br><u>bus, detached DMA</u><br>dules share the same system bus. The DMA module is acting as a<br>the processor, which uses programmed I/O to exchange data<br>in memory and an I/O module through the DMA module. This<br>ration is inexpensive, but is inefficient. This is because each<br>of a word consumes two bus cycles.                                                                                                                                                                                                                                                                                                           |  |
| Confi<br>DMA r<br>DMA r<br>Single-H<br>All mod<br>surrogat<br>between<br>configu<br>transfer                                                         | gurations of DMA<br>nechanism can be configured in a variety of ways, which are:<br>Single-bus, detached DMA<br>Single-bus, integrated DMA-I/O<br>I/O bus<br><u>bus</u> , <u>detached</u> <u>DMA</u><br>hules share the same system bus. The DMA module is acting as a<br>the processor, which uses programmed I/O to exchange data<br>in memory and an I/O module through the DMA module. This<br>ration is inexpensive, but is inefficient. This is because each<br>of a word consumes two bus cycles.<br><u>essor</u> <u>DMA</u> <u>1/0</u> <u>1/0</u> <u>Memory</u><br>bus, detached DMA                                                                                                                                                                                                        |  |
| Confi<br>DMA r<br>DMA r<br><u>Single-H</u><br>All mod<br>surrogat<br>between<br>configu<br>transfer<br>Single-H<br>Single-H                          | gurations of DMA<br>nechanism can be configured in a variety of ways, which are:<br>Single-bus, detached DMA<br>Single-bus, integrated DMA-I/O<br>I/O bus<br>DMA<br>tules share the same system bus. The DMA module is acting as a<br>the processor, which uses programmed I/O to exchange data<br>a memory and an I/O module through the DMA module. This<br>ration is inexpensive, but is inefficient. This is because each<br>of a word consumes two bus cycles.                                                                                                                                                                                                                                                                                                                                 |  |
| Confi<br>DMA r<br>DMA r<br>Single-t<br>All mod<br>surrogat<br>betweer<br>configu<br>transfer<br>Single-t<br>Single-t<br>In this c                    | gurations of DMA<br>nechanism can be configured in a variety of ways, which are:<br>Single-bus, detached DMA<br>Single-bus, integrated DMA-I/O<br>I/O bus<br>DMA<br>tules share the same system bus. The DMA module is acting as a<br>the processor, which uses programmed I/O to exchange data<br>a memory and an I/O module through the DMA module. This<br>ration is inexpensive, but is inefficient. This is because each<br>of a word consumes two bus cycles.<br>DMA<br>bus, integrated DMA<br>pus, integrated DMA<br>configuration, there is a path between the DMA module and one or                                                                                                                                                                                                        |  |
| Confi<br>DMA r<br>DMA r<br>Single-H<br>All mod<br>surrogat<br>betweer<br>configu<br>transfer<br>Single-H<br>In this c<br>more I/                     | gurations of DMA<br>nechanism can be configured in a variety of ways, which are:<br>Single-bus, detached DMA<br>Single-bus, integrated DMA-I/O<br>I/O bus<br><u>bus</u> , <u>detached</u> <u>DMA</u><br>hules share the same system bus. The DMA module is acting as a<br>te processor, which uses programmed I/O to exchange data<br>a memory and an I/O module through the DMA module. This<br>ration is inexpensive, but is inefficient. This is because each<br>of a word consumes two bus cycles.<br><u>esor</u> <u>DMA</u> <u>1/0</u> <u>1/0</u> <u>Memory</u><br>bus, detached DMA<br>bus, <u>integrated</u> <u>DMA</u><br>configuration, there is a path between the DMA module and one or<br>O module that does not include the system bus. The DMA logic                                  |  |
| Confi<br>DMA r<br>DMA r<br>Single-H<br>All mod<br>surrogat<br>between<br>configu<br>transfer<br>Single-H<br>In this c<br>more I/<br>can be           | gurations of DMA<br>nechanism can be configured in a variety of ways, which are:<br>Single-bus, detached DMA<br>Single-bus, integrated DMA-I/O<br>I/O bus<br>bus, detached DMA module is acting as a<br>the processor, which uses programmed I/O to exchange data<br>a memory and an I/O module through the DMA module. This<br>ration is inexpensive, but is inefficient. This is because each<br>of a word consumes two bus cycles.                                                                                                                                                                                                                                                                                                                                                               |  |
| Confi<br>DMA r<br>DMA r<br>Single-H<br>All mod<br>surrogat<br>betweer<br>configu<br>transfer<br>Proc<br>Single-H<br>Single-H<br>In this c<br>more I/ | gurations of DMA<br>nechanism can be configured in a variety of ways, which are:<br>Single-bus, detached DMA<br>Single-bus, integrated DMA-I/O<br>I/O bus<br>DMA<br>bules share the same system bus. The DMA module is acting as a<br>te processor, which uses programmed I/O to exchange data<br>a memory and an I/O module through the DMA module. This<br>ration is inexpensive, but is inefficient. This is because each<br>of a word consumes two bus cycles.<br>DMA<br>bus, integrated DMA<br>bus, integrated DMA<br>configuration, there is a path between the DMA module and one or<br>O module that does not include the system bus. The DMA logic<br>a part of an I/O module, or a separate module that controls one or<br>O modules. Therefore, the number of required bus cycles can be |  |



(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.





(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu. Rev.0 COE/2017/QB

|               | memory                                                                                         |  |  |
|---------------|------------------------------------------------------------------------------------------------|--|--|
| Disadvantages | - requires a DMA controller to carry out the operation, which increases the cost of the system |  |  |
|               | - cache coherence problems                                                                     |  |  |

Note : 2 Questions with answer key must be prepared in each unit and maximum two sub divisions are allowed.