

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

1701CA101 MATHEMATICAL FOUNDATIONS OF COMPUTER APPLICATIONS				
Academic Year :	2018-2019	Oraction Bank	Programme :	MCA
Year / Semester :	I/I	Question Bank	Course Coordinator:	

Course Objectives	Course Outcomes
The primary objectives of this	After completing this course, students should demonstrate competency in the
course to provide mathematical background	following skills:
and sufficient experience on various topics	CO 1: Apply the knowledge of matrix, functions and relations concepts needed
of discrete mathematics like matrix algebra,	for designing and solving problems (K3)
logic and proofs, combinatorics, graphs,	CO 2: Relate logical operations and predicate calculus needed for computing
algebraic structures, formal languages and	skill (K2)
finite state automata. This course will	CO 3: Interpret the validity of verbal or symbolic arguments using rules of
extend student's logical and mathematical	inference (K2)
maturity and ability to deal with abstracting	CO 4: Construct and solve Boolean functions for defined problems (K3)
and to introduce most of the basic	CO 5: Comprehend the algebraic structure with their applications to handle
terminologies used in computer science	algebraic spaces (K2)
courses and application of ideas to solve	CO 6: Apply the acquired knowledge of finite automata theory and to design
practical problems.	discrete problems to solve by computers (K3)

PART – A (2 Mark Questions With Key)				
S.No	Questions	Mark	Cos	BTL
UNIT I	– MATRIX ALGEBRA			
1	Define Diagonal matrix with example	2		
	In a square matrix all the elements except elements in the main diagonal are zeros, then the	1		
	matrix is called a diagonal matrix	1		K1
	$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$	1	1	KI .
2	Define Symmetirc matrix with example	2	1	V 1
	A matrix is symmetric, if $A = A^{T}$	1		K1

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}; A^{T} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$	1		
3	Define Skew Symmetric matrix with example	2	1	
	A matrix is symmetric, if $A = -A^{T}$	1		
	$(0 \ 3 \ 2) (0 \ 3 \ 2)$	1		K1
	$A = \begin{pmatrix} -3 & 0 & 5 \\ -2 & -5 & 0 \end{pmatrix}; -A^{T} = \begin{pmatrix} -3 & 0 & 5 \\ -2 & -5 & 0 \end{pmatrix}$			
4	Define singular matrix and nonsingular matrix	2	1	
	A square matrix is said to be singular if $ A = 0$	1		K1
	A square matrix is said to be non-singular if $ A \neq 0$	1		
5	Define Hermitian matrix and Skew Hermitian matrix	2	1	
	A square matrix is said to be Hermitian if $A = (\overline{A})^T$	1		K1
	A square matrix is said to be Skew Hermitian if $(\overline{A})^T = -A$	1		
6	Define Unitary matrix	2	1	
	A square matrix A is said to be unitary if $A(\overline{A})^T = I$	1		K1
7	Check whether the matrix B is orthogonal? $B = \begin{pmatrix} cos\theta & sin\theta & 0 \\ -sin\theta & cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$	2	1	
	Condition of orthogonal matrix is $AA^T = A^T A = I$	1		
	Here, $BB^T = B^T B = I$			
	$\left(\begin{array}{ccc} \cos\theta & \sin\theta & 0 \end{array}\right) = \left(\begin{array}{ccc} \cos\theta & -\sin\theta & 0 \end{array}\right)$			
	$B = \begin{pmatrix} -\sin\theta & \cos\theta & 0 \end{pmatrix}; B^{T} = \begin{pmatrix} \sin\theta & \cos\theta & 0 \end{pmatrix}$			
	$\begin{pmatrix} 0 & 0 & 1/ \\ (aac^2 0 + air^2 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \end{pmatrix}$			
	$BB^{T} = \begin{bmatrix} cos^{2}\theta + sin^{2}\theta & 0 & 0 \\ 0 & sin^{2}\theta + sos^{2}\theta & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = I$			
	$DD = \begin{pmatrix} 0 & Sin \theta + cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$			
	Similarly, $B^{T}B = I$. Therefore, the given matrix is orthogonal			
8	Define the rank of a matrix	2	1	V 1
	The order of highest non-zero minor is known as rank of a matrix	1		K1
9	Find the rank of $A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$	2	1	K2

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu. Rev.0 COE/2017/QB

			1	
	A is of type 2 x 3, take any 2 x 2 matrix	1		
	$\begin{vmatrix} -1 & 1 \\ 0 & 2 \end{vmatrix} = -2 \neq 0 \implies \text{Rank of } A = 2$			
10	Find the rank of $A = \begin{pmatrix} 1 & 3 & 0 \\ 2 & -1 & 4 \\ 2 \end{pmatrix}$	2	1	
	A is of type 2 x 4, take any 2 x 2 matrix	1		K1
	$\begin{vmatrix} 0 & 5 \end{vmatrix} = -20 \neq 0 \implies \text{Rank of } A = 2$			
	$ 4 2 ^{-20 \neq 0} = 20 \neq 0^{-4}$ Kalk of $A = 2$			
11	Find K so that the rank of the matrix $\begin{pmatrix} 2 & 1 & -1 \\ 1 & 4 & 2 \\ 3 & 5 & K \end{pmatrix}$ is 2.	2	1	
		1		K2
	$\begin{vmatrix} 1 & 4 & 2 \end{vmatrix} = 0$	1		
	$\begin{vmatrix} 3 & 5 & K \\ \hline 0 & 2(4K, 10) & (K, C) & (5, 12) \\ \hline 0 & 8K, 20, K, C, 7 \\ \hline 0 & 7K \\ \hline 0 & K \\ 1 \\ 0 \\ \\ 0 \\ 0 \\ K \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$			
10	$\frac{\sqrt{2(4K-10)-(K-0)-(5-12)} = \sqrt{8K-20-K+0+k-20} /K^{4}\tau = 0 K = 1}{[1 2 2]}$	2	1	
12	Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 5 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$	2	1	
		1	3	K2
	$A \sim \begin{bmatrix} 0 & 2 & -1 \end{bmatrix}$ $R_2 \rightarrow R_2 - R_1; R_3 \rightarrow R_3 - 2R_1$			
	$\begin{bmatrix} 0 & 2 & -1 \end{bmatrix}$	1		
	$\sim \begin{bmatrix} 0 & 2 & -1 \end{bmatrix} R_3 \rightarrow R_3 - R_2$			
	$\begin{bmatrix} 0 & 0 \end{bmatrix}$			
12	The number of non-zero rows is 2; Rank of $A = 2$	2	1	
13	State Cayley-Hamilton theorem.	2	1	к2
	Every square matrix satisfies its own characteristic equation	2		112
14	(-2 2 -3)	2	1	
	Find the characteristic equation of the matrix $\begin{pmatrix} 2 & 1 & -6 \\ 1 & 2 & 0 \end{pmatrix}$			
	The characteristic equation is $\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_2 = 0$	1		
	Where S ₁ = sum of the main diagonal elements = $(-2) \pm 1 \pm 0 = -1$	1		K1
	$S_2 = S_1 m \text{ of the minors of the main diagonal elements}$			
	$ 1 - 6 \cdot -2 - 3 \cdot -2 2 $	1		
	$= \begin{vmatrix} -2 & 0 \end{vmatrix} + \begin{vmatrix} -1 & 0 \end{vmatrix} + \begin{vmatrix} 2 & -1 \end{vmatrix}$	·		

3 | Page

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	-(0, 12) + (0, 3) + (2, 4) - 12, 3, 6 - 21			
	$= (0^{-1}2) + (0^{-3}) + (-2^{-4}) = -12^{-3} - 0 = -21$			
	$S_3 = A = \begin{vmatrix} 2 & 1 & -6 \end{vmatrix} = 45$			
	Therefore the characteristic equation is $\lambda^3 + \lambda^2 - 21\lambda - 45 = 0$			
15	Find the characteristic equation of the matrix $\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$	2		
	The characteristic equation of A is $\lambda^2 - S_1\lambda + S_2 = 0$	1	1	K2
	$S_1 = 3; S_2 = 2$			
	Hence the required characteristic equation is $\lambda^2 - 3\lambda + 2 = 0$	1		
UNIT I	I – LOGIC			
1	Write the truth table for conjunction	2		
	p q $p \land q$			
	T T T		23	K1
	T F F	2	2,5	IX1
	F T F			
	F F F			
2	Write the truth table for Disjunction	2		
	$p q p \lor q$			
	T T T		23	K 1
	T F T	2	2,5	IX1
	F T T			
	F F F			
3	Write the truth table for conditional statement	2		
	$p q \rightarrow q$			
	T T T	2	2,3	K1
	T F F	2		
	F T T			
	F F T			
4	Write the truth table for Bi-conditional statement	2		
		2	2,3	K1
	$ p q \leftrightarrow q$	2		
			•	

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	T T T T F F			
	F T F			
	F F T			
5	Construct the truth table for $\exists P \land \exists Q$	2		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2,3	K2
6	Write the following statement in symbolic form.	2		
	If either Jerry takes calculus or Ken takes sociology, then Larry will take English			
	J: Jerry takes Calculus		23	K1
	K: Ken takes Sociology	2	2,5	
	L: Larry takes English	2		
_	$\therefore (J \lor K) \to L$			
7	Write the following statement in symbolic form.			
	Mark is neither rich nor happy	2		
	Mark is poor or he is both rich and unhappy		2,3	K1
	K: Mark is rich, H: Mark is happy $\Box D = U$	1		
		1	_	
0	$\frac{ R \vee (R \wedge \Pi)}{ R \vee (R \wedge \Pi)}$	1		
0	Lack and Jill went up the hill	2		
	$P \rightarrow \text{Jack went up the hill}$	2	23	K1
	$0 \rightarrow \text{Jill went up the hill}$	2	2,5	IXI
	Symbolic form is $PA Q$	-		
9	State Free and Bound Variables	2		
	A formula containing a part of the form $(x)P(x)or(\exists x)P(x)$, such a part is called an x-bound			V 1
	part of formula. Any variable appearing in an x bound part of the formula is called bound	2	2,3	KI
	variable. Otherwise it is called free occurrence.			
10	Some cats are black but all buffaloes are black	2	2,3	K2

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	I = (==) = == != = = = = (
	Let $c(x)$: x is a cat					
	B(x): x is a buffal	Des		2		
	D(x): x is black					
	$\exists x \ (c(x) \rightarrow b(x)) \land$	$\forall x (B(x) \rightarrow b(x)))$				
11	Every student in t	is school is either goo	at studies or good in sports	2		
	s(x): x is a student	of this school				
	p(x): x is good at s	tudies		2	2,3	K2
	q(x):x is good at s	ports		2		
	$\forall x(s(x) \rightarrow (p(x)) \lor$	q(x)))				
12	Use quantifiers to	say that the square of e	very real number is non-negative	2	23	к2
	$(\forall x) \mathbf{R} (x^2 \ge 0)$			2	2,5	112
13	Symbolise:For eve	ery x, there exists y suc	h that $x^2+y^2 \ge 100$	2	22	K)
	$(\mathbf{x})(\exists \mathbf{y})(\mathbf{x}^2+\mathbf{y}^2) \ge$	100		2	2,5	K2
14	All integers are ra	ional numbers. Some i	ntegers are power of 2.some rational num	mbers are 2		
	power of 2.				2.2	KO.
	I(x):x is an interge	r, R(x):x is a rational n	umber, $P(x)$: x is the power of 2	2	2,3	K2
	$\forall x I(x) \rightarrow R(x), \exists$	$I(x) \land P(x), \exists x R(x) \land x R(x) R(x) \land x R(x) \land$	$P(\mathbf{x})$	2		
15	Show that $(\forall x)(H)$	$(x) \rightarrow M(x)) \land H(S) \Longrightarrow M$	(S)	2		
	S.	No Proposition	Explanation			
	1	$(\forall x)(H(x) \rightarrow M(x))$) Rule P			
	2	$H(S) \rightarrow M(S)$	US Rule T	2	2,3	K2
	3	H(S)	Rule P			
	4	M(S)	$P P \rightarrow O \Rightarrow O$. Modus ponens Rule T			
UNIT-	III LATTICES		, , , , , , , , , , , , , , , , , , , ,			
1	Write a proof of Id	lempotent law		2		
-	Let aFL for any x	vzeL				
	$\begin{array}{c c} 1 & 1 \\ r & v \\ r & v \\ r & v \\ r & 1 \\ r & r \\ r & r$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1		
	and if $z \le x$ and $z \le y$	then $z < x * y$ (2)		1		
	Now take $x=y=z=$:a			4	K1
	Then from (1) and (2) $a * a \leq a$ and $a \leq a * a$					
			a = a * a	1		
		Cim	a = a + a			
		511				

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

		2		
2	State Hasse Diagram	2	-	
	Each vertex of A must be related to itself, so that the arrows from a vertex to itself are not necessary	1/2		
	If vertex b appears above vertex a and if vertex a is connected to vertex b by an edge then a r b,	1/2	4	K1
	so direction arrows are not necessary	1/2		
	If vertex c is above verted a and if c is connected to a by a sequence of edges then a r c	1/2		
	The vertices (or nodes) are denoted by points rather than by circles	1/2		
3	Let A = $\{1,2,3,4\}$ and let r be the relation \leq on A. Draw the Hasse diagram of r.	2		
	$\mathbf{r} = \{\{1,1\}\{1,2\}\{1,3\}\{1,4\}\{2,2\}\{2,3\}\{2,4\}\{3,3\}\{3,4\}\{4,4\}\}$			
		2	4	K2
4	Let $A=\{a,b,c\}$ and $P(A)$ be its power set. Draw a Hasse diagram of $(P(A), \subseteq)$	2	4	K2
	$P(A) = \{\{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}, \emptyset\}$			
	fa. b) (a,b,c] fab (b) (b,c) fab (c) (b,c)	2		
5	Write distributive lattice	2		
	Let (L,V,Λ) be a lattive under \leq . Then (L,V,Λ) is called distributive lattice \Leftrightarrow	1	4	K1
	aV(bAc)=(aVb)A(aVc); aA(bVc)=(aAb)V(aAc)	1		
6	When is a lattice said to be bounded?	2		
	Let $$ be a given Lattice. It it has both '0' element and '1' element then I is said to be bounded Lattice. It is denoted by $ 1>$	2	4	K2
7	Define a Reelean Algebra	2	4	K1
/		2	4	N1

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	A complemented distributive lattice is called Boolean Algebra. i.e., A Boolean algebra is	2		
	distributive lattice with '0' element and '1' element in which every element has a complement.	2		
8	In a Lattice $\langle L, \leq \rangle$ prove that $a \land (a \lor b) = a$, for all $a, b \in L$	2		
	Since $a \land b$ is the glb of $\{a,b\}$, we have $a \land b \le a$ (1)			
	Obviously a≤a (2)	1		
	From (1) and (2) , we have	1	4	K2
	$a \lor (a \land b) \le a$ (3)		4	
	By defn of lub, we have			
	$a \le a \lor (a \land b)$ (4)	1		
	from (3) and (4), $a \lor (a \land b) = a$, similarly $a \land (a \lor b) = a$			
9	Is there a Boolean Algebra with five elements? Justify your answer.	2		
	No, there is no Boolean Algebra wih five elements	1	1	
	Stone's representation theorem state that any Boolean Algebra is isomorphic to power set		4	K2
	Algebra P(S).	1		
	Therefore, the element is Boolean Algebra should be of the form 2^n			
10	Show that least upper bound of a subset B in a poset $< A, \le >$ is unique of it exists.	2		
	Let $A = \{a_1, a_2\}$		1	
	Let u_1, u_2 be two least upper bounds of A.	1		
	We have,(i) $a_1 \le u_1$ and $a_2 \le u_1$ [u_1 is upper bound	1	4	WO.
	(ii) $a_1 \le u_2$ and $a_2 \le u_2$ [u_2 is upper bound]		4	K2
	From (i) and (ii) u_1 and u_2 are the LUB			
	$u_1 \ge u_2 \& u_2 \ge u_1$	1		
	This implies that $u_1 = u_2$. Therefore, $\langle A, \leq \rangle$ is unique			
11	Give an example of distributive lattice but not complemented	2		
	No complement exist o,b,c,d,1			
	The element 'a' is a complement of d and vice c versa			
	Therefore the above graph is not complemented		4	К2
	ag	2	-	112
	b			
	Ő			
	Define Lattice homomorphism	2		
12	Let <i>L</i> A VS and <i>L</i> # (A) he true given Lettings		4	K1
12	Let $< L_1, \land, \lor >$ and $< L_2, *, \bigtriangledown >$ be two given Lattices	1		-

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	A mapping f: $L_1 \rightarrow L_2$ is called Lattice homomorphism if, $\forall a, b \in L$			
	1. $f(a) = f \wedge b(a) * f(b)$			
	2. $f(a \lor b) = f(a) \oplus f(b)$	1		
13	Prove that the Boolean identity ab+ab'=a is true	2	4	кo
	L.H.S = ab + ab' = a(b+b') = a.1 = a = R.H.S	2	4	K2
	Show that in any Boolean algebra $(a+b)(a'+c)=ac+a'b+bc$	2		
14	Let $(B,+,,,')$ be a Boolean algebra & $a,b,c\in B$	2	4	K2
	L.H.S= $(a+b)(a'+c) = (a+b)a'+(a+b)c = aa'+ba'+ac+bc = 0+ba'+ac+bc=a'b+ac+bc = R.H.S$	Z		
	Every distributive lattice is modular.	2		
15	Let (L,\leq) be a distributive lattice	1		
	For all $a,b,c \in L$ we have		4	K2
	$a \lor (b \land c) = (a \lor b) \land (a \lor c)$		4	KZ
	Thus if a \leq c then a \lor c=c and a \lor (b \land c)=(a \lor b) \land	1		
	So if $a \le c$, the modular equation is satisfied and L is modular			
UNIT-I	V LINEAR ALGEBRA			
1	Define Vector Space	2		
	A non-empty set V is said to be a vector space over a field F if	1		
	V is an abelian group under an operation called addition which we denote by +	1		
	For every $\alpha \in F$ and $v \in V$, there is defined an element αv in V subject to the following			
	conditions	14	5	K1
	$\alpha(u+v) = \alpha u + \alpha v$ for all $u, v \in V$ and $\alpha \in F$	72		
	$(\alpha+\beta)u=\alpha u+\beta u$ for all $u \in V$ and $\alpha, \beta \in F$			
	$\alpha(\beta u) = (\alpha \beta)u$ for all $u \in V$ and $\alpha, \beta \in F$	1/2		
	$1u=u$ for all $u \in V$	72		
2	Let V denote the set of all solutions of the differential equation $2\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 3y = 0$. Then V	2		
	is a vector space over R.			
	Let f,g \in V and $\alpha \in$ R. Then		5	кo
	$2\frac{d^2f}{dx^2} - 7\frac{df}{dx} + 3f = 0 \text{ and } 2\frac{d^2g}{dx^2} - 7\frac{dg}{dx} + 3g = 0$	1	5	K2
	$2\left[\frac{d^2f}{dx^2} + \frac{d^2g}{dx^2}\right] - 7\left[\frac{df}{dx} + \frac{dg}{dx}\right] + 3(f+g) = 0$			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	12 1			
	$2\frac{d^{2}}{dx^{2}}(f+g) - 7\frac{d}{dx}(f+g) + 3(f+g) = 0 \text{ Hence } f+g \in V$			
	Also $2\frac{d^2}{dx^2}(\alpha f) - 7\frac{d}{dx}(\alpha f) + 3\alpha f = 0$ Hence $\alpha f \in V$	1		
	Since the operations are usual addition and scalar multiplication, the axioms of vector space are			
	true. Hence V is a vector space over R.			
	Prove that the intersection of two subspaces of a vector space is a subspace	2		
3	Let A and B be two subspaces of a vector space V over a field F.			
	Clearly $0 \in A \cap B$ and hence $A \cap B$ is non-empty	1		
	Now, let $u, v \in A \cap B$ and $\alpha, \beta \in F$		5	K2
	Then u, v \in A and u,v \in B			
	Therefore, $\alpha u + \beta v \in A$ and $\alpha u + \beta v \in B$	1		
	$\alpha u+\beta v \in A\cap B$. Hence $A\cap B$ is a subspace of V.			
4	Prove that the union of two subspaces of a vector space need not be a subspace	2		
	Let A = {(a,0,0)/a \in R}; B = {(0,b,0)/b \in R}			
	Clearly A and B are subspaces of R^3	1	_	
	However AUB is not a subspace of \mathbb{R}^3		5	K2
	For $(1,0,0)$ and $(0,1,0) \in A \cup B$	1		
	But $(1,0,0) + (0,1,0) = (1,1,0) \notin A \cup B$	1		
5	Define Linear Span	2		
	Let S be a non-empty subset of a vector space V. Then the set of all linear combinations of	2	5	K1
	finite sets of elements of S is called the linear span of S and is denoted by L(S).		-	
6	Write the definition of finite dimensional			
	Let V be a vector space over a field F. V is said to be finite dimensional if there exists a finite	2	5	K2
	subset S of V such that $L(S)=V$		-	
7	Any subset of a linearly independent set is linearly independent	2	4	
	Let V be a vector space over a field F			
	Let $S = \{v_1, v_2, \dots, v_n\}$ be a linearly independent set	1		
	Let S' be a subset of S. We take $S' = \{v_1, v_2, \dots, v_k\}$ where $k \le n$	1	5	K2
	Suppose S ² is linearly dependent set.		_	
	Then there exist $\alpha_1, \alpha_2, \dots, \alpha_k$ in F not all zero, such that $\alpha_1 v_1, \alpha_2 v_2, \dots, \alpha_k v_k + 0 v_{k+1} + \dots + 0 v_n = 0$ is	1		
	non-trivial linear combination given the zero vector.			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	Here S is a linearly dependent set which is a contradiction.			
0	A pu set containing a linearly dependent set is also linearly dependent	2		
0	Any set containing a linearly dependent set is also linearly dependent Let V be a vector space over a field E. Let S be a linearly dependent set. Let $S^2 \supset S$	<u>ک</u>	_	
	Let v be a vector space over a field r. Let S be a finearity dependent set. Let $S = S$.	1	5	K2
	If S' is linearly independent S is also linearly independent which is a contradiction	1		
0	Hence S is linearly dependent.	2		
9	$S = \{(1,0,0), (0,1,0), (1,1,1)\} \text{ is a basis for } V_3(R)$	2	_	
	Let $(a,b,c) = \alpha(1,0,0) + \beta(0,1,0) + \gamma(1,1,1)$	1		
	I nen $\alpha + \gamma = \alpha, \beta + \gamma = b, \gamma = c$	1	5	K2
	Hence $\alpha = a - c$ and $\beta = b - c$		_	
	I hus (a,b,c) = (a-c)(1,0,0) + (b-c)(0,1,0) + c(1,1,1)	1		
10	Therefore, S is a basis for $V_3(\mathbf{K})$	2		
10		2		17.1
	Let V be a finite dimensional vector space over a field F. The number of elements in any basis	2	5	K1
11	of V is called the dimension of V and is denoted by dimV.	2		
11	Define maximal linearly independent set.	2		
	Let V be a vector space and $S = \{v_1, v_2,, v_n\}$ be a set of independent vectors in v. Then S is	2 5	5	K1
	called a maximal linearly independent set if for every $v \in v$ -S, the set $\{v_1, v_2, \dots, v_n\}$ is linearly	2		
10	Define minimal concepting act	2		
12	Define minimal generating set V and let $V(S)$. V. Then S is called a minimal	2	_	17.1
	Let $S = \{V_1, V_2, \dots, V_n\}$ be a set of vectors in V and let $L(S) = V$. Then S is called a minimal	2	5	KI
12	generating set if for any $v_i \in S$, $L(S - \{v_i\}) \neq v$	2		
15	Define Kank and Nullity $L_{1} \neq T_{2}$ Then the dimension of $T(V)$ is called the nucle of T	2	_	17.1
	Let $1: v \rightarrow w$ be a linearly transformation. Then the dimension of $1(v)$ is called the rank of 1 The dimension of here f is called the multitude f.T.	1	- 3	KI
1.4	The dimension of kerl is called the nullity of 1.	1		
14	Let $1: V \rightarrow W$ be a linearly transformation. Then dim $V = rank 1 + nullity 1$	2	_	
	W.K.T V/kerT= $\Gamma(V)$	1	5	K2
	$\therefore \dim V - \dim(\operatorname{Ker}\Gamma) = \dim(\Gamma(V))$	-	_	
1.7	$\therefore \dim V - \operatorname{nullity} T = \operatorname{rank} T \qquad \qquad \therefore \dim V = \operatorname{nullity} T + \operatorname{rank} T$			
15	Obtain the matrix representing the linear transformation T: $V_3(R) \rightarrow V_3(R)$ given by	2	5	К2
	$T(a,b,c)=(3a, a-b, 2a+b+c)$ w.r.t the standard basis $\{e_1,e_2,e_3\}$			
	$T(e_1) = T(1,0,0) = (3,1,2) = 3e_1 + e_2 + e_3$			
	$T(e_2) = T(0,1,0) = (0,-1,1) = -e_2 + e_3$			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	$T(e_2) = T(0, 0, 1) = (0, 0, 1) = e_2$				
	$\frac{1}{3} \frac{1}{2}$		1		
	The matrix T is $\begin{pmatrix} 0 & -1 & 1 \end{pmatrix}$				
	0 0 1/				
UNIT-V	/ FINITE STATE MACHINE AUTOMATA AN	ID GRAMMARS	1		
1	Definite finite automaton		2		
	A finite automation is a 5-tuple M = {Q, \sum , δ , q	₀ , F} where			
	Q is a non empty finite set(states)				
	\sum is a finite non empty set whose elements are c	called input symbols	2	6	K1
	q_0 is the initial state		-		
	F the set of final states				
	$\delta: Q \ge X \ge \rightarrow Q$ is called the next state function				
2	What are the steps involved in the construction	of state diagram	2		
	represent the states of Q as nodes				
	initial state q_0 has an arrow pointing towards it			6	К2
	final states are indicated by double circles		2	Ũ	
	there is a directed edge from node representing	q to node representing q' if $\delta(q,a) = q'$ it is			
	given the label				
3	When is a string is accepted by a finite automate	on	2		
	The string S in \sum is accepted by M if $\delta(q_0, X) = 0$ M if M reaches a final state on processing X.	q for some q in F i.e., the string S is accepted by	2	6	K2
4	When do you say that the languages is accepted	d or rejected by FSA	2		
	When the symbols of an input string are fed into	o an FSM M sequentially they change the states			
	of the automation successively and the automati	ion ends up in a certain state. If the last state is	2	6	K2
	an accepting state of an automation the string is	said to be accepted or recognized by M	2		
	otherwise it is rejected by M				
5	When are two finite state automata are equivale	nt	2	6	K2
	Two finite state are said to be equivalent if they accept the same language				K2
6	Differentiate NFA and DFA				
	NFA	A DFA			K2
	The transition function assigns a unique next	The transition function assigns several next			112
	state to every pair of state and input	states to every pair of state and input			
7	Define non-deteministic finite automaton		2	6	K1

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Nagore Post, Nagapattinam – 611 002, Tamilnadu.

Q is a non empty finite set(states)	
\sum is a finite non empty set whose elements are called input symbols	
$\overline{q_0}$ is the initial state	
F the set of final states	
δ is the next state function Q X $\Sigma \rightarrow 2^{Q}$	
8 Construct an FA accepting all strings over {0,1} having even number of 0's and even number 2	
of 1's	
	K2
9 Construct an NFA accepting all strings over {0,1} which end in one but does not contain the 2	
substring 00	
	K2
10Definite context free grammar2	
A grammar G is said to a context free grammar or Type-2 grammar if each production $a \rightarrow b$ in 6	K1
G satisfy the condition $a \in V_N$ and $ a \le b $	
11 Find L(G) where G has the productions $S \rightarrow aA$, $S \rightarrow bS$, $S \rightarrow a$, $S \rightarrow bA$, $A \rightarrow bS$, $A \rightarrow b$ 2	
$S \Rightarrow aA \Rightarrow abA \Rightarrow abbS \Rightarrow abba$	WO I
$S \Rightarrow aA \Rightarrow abS \Rightarrow abb$; $S \Rightarrow aA \Rightarrow abA \Rightarrow abb$ 2 6	K2
$L(G) = \{abba, abb\}$	
12 Definite generation tree of a grammar 2	
The generation tree (also called the parse tree) for a grammar $G = \{V_N, V_T, P, S\}$ is a tree such that 1	K1

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	Every vertex has a label, which is an element of $V_N \cup V_T$, where T includes the null string λ			
	also.			
	The label of the root is S			
	If a vertex is interior and has label A, then A \in V _N			
	If a vertex has label A and has n children with labels X_1, X_2, \dots, X_n respectively from left to right			
	then $A \rightarrow X_1, X_2, \dots X_n$ must be a production in P	1		
	If a vertex has label λ then it is a leaf and the only son of its parent			
13	Define Top-down parsing, Bottom-up parsing	2	2	
	Generation of a string by beginning with start symbol and by successively applying the		6	V1
	productions is called top-down parsing, the reverse of top-down parsing is called bottom-up	2	0	K1
	parsing			
14	Define Ambiguity of a grammar	2		
	If in a grammar G a word WEL(G) has more than one left most or right most derivation then	2	6	K1
	the grammar G is said to be ambiguous	2		
15	Examine whether the following grammar G is ambiguous or not	2		
	$G = \{N, T, S, P\}$, where $N = \{S, A\}$, $T = \{a, b\}$, P consist of the rules $S \rightarrow aAb$, $S \rightarrow abSb$, $S \rightarrow a$,			
	$A \rightarrow bS, A \rightarrow aAAb$		6	K2
	$S \Rightarrow aAb \Rightarrow abSb \Rightarrow abab; S \Rightarrow abSb \Rightarrow abab$			
	The word abab is generated by two left most derivation. Hence G is ambiguous	2		

PART	- B (12 Mark Questions with Key)						
S.No	Questions	Mark	COs	BTL			
UNIT	I – MATRIX THEORY						
1	Find the rank of the matrix $\begin{pmatrix} 3 & 1 & 4 & 6 \\ 2 & 1 & 2 & 4 \\ 4 & 2 & 5 & 8 \\ 1 & 2 & 2 & 2 \end{pmatrix}$				12		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3R ₁			4	1	К3

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	$\sim \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & -3 & -2 & 0 \\ 0 & -6 & -3 & 0 \\ 0 & -5 & -2 & 0 \end{bmatrix} R_3: R_3 - 2R_2; R_4: 3R_4 - 5R_2$	3		
	$\sim \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & -3 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 4 & 0 \end{bmatrix} R_4 : R_4 - 4R_3 \sim \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & -3 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	3		
	Rank of $A = No$. of non-zero rown in the last equivalent matrix = 3	2		
2	Solve (if possible) the equations $x + 2v - z = 3$, $3x - v + 2z = 1$, $2x - 2v + 3z = 2$, $x - v + z = -1$	12		
	$[A,B] \sim \begin{bmatrix} 1 & 2 & -1 & 3 \\ 3 & -1 & 2 & 1 \\ 2 & -2 & 3 & 2 \\ 1 & -1 & 1 & -1 \end{bmatrix} R_2:R_2 - 3R_1; R_3:R_3 - 2R_1; R_4:R_4 - R_1$	3		
	$\sim \begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & -7 & 5 & -8 \\ 0 & -6 & 5 & -4 \\ 0 & -3 & 2 & -4 \end{bmatrix} R_3: 7R_3 - 6R_2; R_4: 7R_4 - 3R_2$	2		K3
	$\sim \begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & -7 & 5 & -8 \\ 0 & 0 & 5 & 20 \\ 0 & 0 & -1 & -4 \end{bmatrix} R_4 : 5R_4 + R_1 \sim \begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & -7 & 5 & -8 \\ 0 & 0 & 5 & 20 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	2	1	
	$\therefore A \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & -7 & 5 \\ 0 & 0 & 5 \end{bmatrix}$ Rank of [A,B] = Rank of A = No. of unknowns=3 \therefore The system is consistent, and a unique solution	3	1	
	x + 2y - z = 3 -7y + 5z = -8 $5z = 20 \Leftrightarrow z = 4$ $-7y + 5(4) = -8 \Leftrightarrow y = 4$ $x + 2(4) - 4 = 3 \Leftrightarrow x = -1$ $\therefore The solution is x = -1, y = 4, z = 4$	2		

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

3	Show that the matrix $\begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ satisfies cayley – hamilton theorem	12		
	Characteristic equation is $\lambda^3 - 4\lambda^2 - 20\lambda - 35 = 0$	4		
	By theorem, $A^3-4A^2-20A-35I=0$	2		
	Now, $A^{3}-4A^{2}-20A-35I = \begin{pmatrix} 135 & 152 & 232 \\ 140 & 163 & 208 \\ 60 & 76 & 111 \end{pmatrix} - 4 \begin{pmatrix} 20 & 23 & 23 \\ 15 & 22 & 37 \\ 10 & 9 & 14 \end{pmatrix} - 20 \begin{pmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix} - 35 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Hence cayley hamilton theorem is verified	6	1	К3
4	Use cayley-Hamilton theorem to find the value of the matrix given by			
-	$A^{8}-5A^{7}+7A^{6}-3A^{5}+A^{4}-5A^{3}+8A^{2}-2A+I, \text{ if the matrix } A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$	12		
	The characteristic equation is $\lambda^3 - 5\lambda^2 + 7\lambda - 3 = 0$	4		
	By C-H theorem $A^3-5A^2+7A-3I=0$	1	1	K3
	Divide the g iven equation with characteristic equation we get,	4	1	
	$\Phi(A) = (A^{3}-5A^{2}+7A-3I)(A^{5}+A) + A^{2}+A+I = A^{2}+A+I$	4		
	Now, $A^2 = \begin{pmatrix} 5 & 4 & 4 \\ 0 & 1 & 0 \\ 4 & 4 & 5 \end{pmatrix}$ $\therefore \phi(A) = \begin{pmatrix} 8 & 5 & 5 \\ 0 & 3 & 0 \\ 5 & 5 & 8 \end{pmatrix}$	3		
5	Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix}$	12		
	The characteristic equation of A is $\lambda^3 + \lambda^2 - 21\lambda - 45 = 0$	3		W2
	Eigen values are $\lambda = -3, -3, 5$	3	1	КЭ
	Eigen vectors are $\begin{bmatrix} 0\\3\\2 \end{bmatrix}$, $\begin{bmatrix} 3\\0\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\-1 \end{bmatrix}$	6		
6	Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$	12	1	K3
	The characteristic equation of A is $\lambda^3 - 3\lambda - 2 = 0$	3		

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Nagore Post, Nagapattinam – 611 002, Tamilnadu.

Eigen values are $\lambda = -1, -1, 2$ 3 0 2 Eigen vectors are 1 -1 6 1 UNIT II – LOGIC Check whether \neg (PV(QAR)) \Leftrightarrow ((PVQ)A(PVR)) is tautology or contradiction 1 12 Consider \exists (PV(Q \land R)) \Leftrightarrow ((PVQ) \land (PVR))=S QR PVO PVR $Q \wedge R = PV(Q \wedge R)$ $(PV(Q \land R))$ $(PVQ) \land (PVR)$ Ρ S F Т Т Т Т F Т Т Т Т T F Т Т F F Т Т Т F Т F Т F Т F Т Т Т F 2.3 K3 F F Т F F F 12 Т Т Т Т F F Т Т Т Т F Т Т Т Т F F F F F Т F F Т F Т F F Т F Т F F F F F F F F F Т F F F Hence it is contradiction Find the PDNF for $(P \land Q) \lor (\neg P \land R) \lor (Q \land R)$ 2 12 Consider $(P \land O) \lor (\neg P \land R) \lor (O \land R) = S$ QR $\neg P$ PΛQ $\neg P \land R$ $Q \land R = S$ Minterm Р Т Т Т F F Т ΡΛQΛR Т Т Т F F F F Т Т Т $P \land Q \land \neg R$ F F Т F F F F Т 2.3 K3 Т F F F F F F F Т ТТ F Т Т F Т $\neg P \land Q \land R$ F Т F F Т F F F 8 F F Т Т F Т Т $\neg P \land \neg Q \land R$ F F F Т F F F F F The PDNF of $(P \land Q) \lor (\neg P \land R) \lor (Q \land R)$ is $(P \land Q \land R) \lor (P \land Q \land \neg R) \lor (\neg P \land Q \land R) \lor (\neg P \land \neg Q \land R)$ 4 Show that the premise $E \rightarrow S$, $S \rightarrow H$, $A \rightarrow \exists H$, $E \land A$ are inconsistent 3 12 S.No Proposition Explanation 2.3 K3 ЕΛА Rule P 1

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

		2	E	DAO→D Dula T				
				$P/Q \rightarrow P$, Rule I		6		
			E→S	Rule P		0		
		4	S	$P, P \rightarrow Q \Rightarrow Q$, Modus Ponens				
		5	S→H	Rule P				
		6	Н	$P, P \rightarrow Q \Rightarrow Q$, Modus Ponens				
		7	$A \rightarrow \exists H$	Rule P				
		8	$\neg A$	$\neg Q, P \rightarrow Q \Rightarrow \neg P$ Modus tollens		6		
		9	А	$P \land Q \Rightarrow Q [1], Rule T$				
		10	$A \land \exists A$	$P,Q \Rightarrow P \land Q [8,9], Rule T$				
	Hence it is inconsister	nt						
4	Determine the validity	of the fo	llowing ar	gument "My father praises me only it I can be pro-	oud of myself.			
	Either I do well in spo	ell in sports.						
	Therefore if father praises me then I do not study well.							
	Let A:My father praises me; B: I can proud of myself; C: I do well in sports; D: I study well							
	Premise: $A \rightarrow B$; $C \lor \exists B; D \rightarrow \exists C;$ Conclusion: $A \rightarrow \exists D$							
	S.	No Pro	position	Explanation				
	1	Α		Rule P (assumed)				
	2	A-	→B	Rule P			2,3	K3
	3	В		P, $P \rightarrow Q \Rightarrow Q$, Modus Ponens				
	4	CV	$\exists B$	Rule P		6		
	5	C		Rule T, P, $QV \exists P \Longrightarrow Q[Disjunctive syllogism]$		0		
	6	D-	→ T C	Rule P				
	7	ΠΓ)	$\neg Q, P \rightarrow Q \Rightarrow \neg P$ Modus tollens				
	9	A-	→ T D	СР		6		
	Show that $(x)(P(x)VQ)$	$(\mathbf{x}) \Rightarrow \overline{(\mathbf{x})}$	$P(x) V(\overline{\exists x})$)Q(x)		12	22	V2
5	We shall use the indire	ect metho	d of proof	by assuming \neg ((x)P(x)V (\exists x)Q(x)) as an addition	onal premise		2,3	КЭ

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

		S.No	Proposition	Explanation			
		1	$\exists [(x)P(x) \lor \exists (x)Q(x)]$	Negation Rule, Rule T			
		2	\neg (x)P(x) $\land \neg$ \exists (x) Q(x)	Rule T, Demorgan's law			
		3	\neg (x)P(x)	Rule T, $P \land Q \Longrightarrow P$			
		4	$\exists (x) \exists P(x)$	Rule T, \neg (x)P(x) $\Leftrightarrow \exists$ (x) \neg P(x)			
		5	$\exists P(y)$	ES, Rule T	~		
		6	$\exists (x)Q(x)$	Rule T,(2), $P \land Q \Longrightarrow Q$	6		
		7	$(\mathbf{x}) \exists \mathbf{Q}(\mathbf{x})$	Rule T, $\exists (x)A(x) \Leftrightarrow$			
				$(\mathbf{x}) \exists \mathbf{A}(\mathbf{x})$			
		8	$\exists Q(y)$	US, Rule T			
		9	$\neg P(y) \land \neg Q(y)$	Rule T, P,Q \Rightarrow PAQ			
		10	$\exists [P(y) \lor Q(y)]$	Rule T, Demorgan's law			
		11	\exists (x)[P(x)VQ(x)]	UG			
		12	(x)[P(x)VQ(x)]	Rule P	6		
		13	\neg (x)[P(x)VQ(x)] \land	Rule T,P,Q \Rightarrow PAQ, AA \neg A \Leftrightarrow F			
			(x)[P(x)VQ(x)]				
	Hence it is a c	contradi	ction				
6	Show that fro	m (∃x)($\overline{F(x) \land S(x)) \longrightarrow (\forall y)} (M(y) \longrightarrow W(y)), \ (\exists$	$(M(y) \land W(y))$ the conclusion	12	23	K3
	$(\forall x)(F(x) \rightarrow $	S(x) f	follows		12	2,5	KJ

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	S	No	Proposition	Explanation					
	1	1110	$(\forall v) (M(v) \land \forall W(v))$	Rule P					
	2	,	$\frac{(-y)(x(y))(x+y(y))}{M(x)}$	ES. Rule T					
			$\neg (\neg M(x) \lor W(x))$	Demorgan's law, Rule T					
	3		\neg (M(x) \rightarrow W(x))	$\neg P \lor Q \Leftrightarrow P \rightarrow Q$, conditional, Rule T					
	4		$(\exists \mathbf{y}) \ \neg \ (\mathbf{M}(\mathbf{y}) \longrightarrow \mathbf{W}(\mathbf{y}))$	EG, Rule T					
	5		$(y) \rceil ((M(y) \rightarrow W(y)))$	$\exists (x) \mid A(x) \Longrightarrow (x) \mid A(x), \text{Rule T}$					
	6		$(\exists x)(F(x)\land S(x))\rightarrow (\forall y)(M(y)\rightarrow W(y))$	Rule P					
	7		\neg ((\exists x)(F(x) \land S(x))	Modus tollens					
	8		$(x) \rceil (F(x) \land S(x))$	$\exists (x) \mid A(x) \Longrightarrow (x) \mid A(x), \text{Rule T}$					
	9		\neg (F(x) \land S(x))	US					
	1	0	$F(x) \rightarrow \exists S(x)$	Equivalence					
	1	1	$(\forall x)(F(x) \rightarrow \exists S(x))$	UG					
UNIT		C.							
	$\frac{111 \text{ LATTICE}}{1 \text{ at } (1 \text{ VA})}$	い ha a l	attice and a b a d $\subset I$ prove that if $a \leq a$	r b d then (i) $a / b < a / d$ (ii) $a / b < a / d$	-	12			
1	Let (L, \vee, Λ)	$\frac{bc a}{b of c}$	attice and a,0,c,u $\in \mathbf{L}$. Frove that if $a \geq c$ o			12			
	\Rightarrow cVd is UB	Bofc	& d		2	2	_		
	\Rightarrow c <c <math="">\lor d & d</c>	l <c∨d< td=""><td></td><td></td><td></td><td>-</td></c∨d<>				-			
	Given a≤c, c	$\leq c \lor c$	$l \Rightarrow a \le c \lor d$,				
	b≤d, d≤ c∨d=	⇒b≤	c∨d			2			
	\therefore c \lor d is also	an uj	pperbound of a & b.		,	2	4	К3	
	Then $a \lor b \le c$	c∨d				2	4	KJ	
	Let a∧b is gl	b of a	ı & b						
	\Rightarrow a \land b is LB	ofa	& b		-	2			
	$a \wedge b \leq a \& a \wedge$	$b \le b$							
	Given $a \le c$, $a \land b \le a \Rightarrow a \land b \le c$								
	$b \leq d, a \wedge b \leq b$	$a \Rightarrow a/a$	$b \leq a$			2			
2	∴a∧t	U IS AL	so an lower bound of a & b	$1 \text{ nen } a \land b \leq c \land a$		2 12			
2	State and pro	ot (I	\leq be a lattice. For a b of I			12	4	W2	
			(\geq) be a fattice. For $a, b, c \in L$			2	4	К3	
	$b \leq c \Rightarrow a \land b$	$\leq a \wedge c$	$c; b \le c \implies a \lor b \le a \lor c$						

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	Case (i) To prove $a \land b \le a \land c$			
	$a \wedge b$ is the glb of a and b	4		
	$\Rightarrow a \land b \text{ is the LB of a and } b \Rightarrow a \land b \le a \And a \land b \le b \text{ But } b \le c \Rightarrow a \land b \le c \text{ ; } a \land b \le a \land a \land b \le a \land c$			
	Case (ii) To prove $a \lor b \le a \lor c$			
	$a \lor c$ is the LUB of a and c	4		
_	\Rightarrow avc is the UB of a and c \Rightarrow avc \geq a & avc \geq c But b \leq c \Rightarrow avc \geq b; avc \geq a \Rightarrow avb \leq avc			
3	State and prove Modular inequality in a lattice	12		
	Statement: Let (L, \leq) be a lattice. For a,b,c \in L the inequality holds in L. a \leq iff a \vee (b \wedge c) \leq (a \vee b) \wedge c	2		
	Assume $a \le c$ W.K.T $b \land c \le c$			
	\therefore c is an UB of a & b \land c			
	$\mathbf{a} \lor (\mathbf{b} \land \mathbf{c}) \le \mathbf{c}$ (1)	Δ	4	K3
	w.k.t a $\leq a, b \land c \leq b$	-		
	$a \lor (b \land c) \le a \lor b$ (2)			
	From (1) & (2) $a \lor (b \land c) \le (a \lor b) \land c$ Hence proved.			
	Assume $a \lor (b \land c) \le (a \lor b) \land c$	4		
	$a \le a \lor (b \land c) \le (a \lor b) \land c \le c$			
4	Show that every chain is a distributive lattice	12		
	Let (L, \leq) be a chain.			
	i.e., (i) $a \le b \le c$			
	(ii) $a \ge b \ge c \forall a, b, c \in L$	2		
	To prove $a \lor (b \land c) = (a \lor b) \land (a \lor c)$			
	$a \wedge (b \lor c) = (a \wedge b) \lor (a \wedge c)$			
	Case (i) $a \le b \le c$			
	LHS= $a \lor (b \land c) = a \lor b = b$		4	К3
	$RHS=(a\lor b)\land(a\lor c)=b\land c=b$	4		112
	$\Rightarrow a \lor (b \land c) = (a \lor b) \land (a \lor c) \text{ Similarly } a \land (b \lor c) = $ (a \land b) $\lor (a \land c)$			
	Case (ii) $a \ge b \ge c$		1	
	LHS= $a \wedge (b \vee c) = a \wedge b = b$			
	$RHS=(a \land b) \lor (a \land c)=b \lor c=b$	4		
	$\Rightarrow a \land (b \lor c) = (a \land b) \lor (a \land c) \text{ Similarly } a \lor (b \land c) = (a \lor b) \land (a \lor c) \qquad \sim \checkmark$			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

5	In a Boolean algebra B, prove the De Morgan's laws.	12		
	Let $(L, \bigoplus, *)$ be Boolean lattice.			
	(i.e.,) L is complemented and distributive lattice.	2		
	The De-Morgan's laws are $\overline{a \oplus b} = \overline{a} * \overline{b}$; $\overline{a * b} = \overline{a} \oplus \overline{b}$, $\forall \overline{a}, a, b \in L$	2		
	Assume that $a, b \in L$, There exists $\overline{a}, \overline{b} \in L$ such that $a \oplus \overline{a} = 1$; $a * \overline{a} = 0$; $b \oplus \overline{b}$; $b * \overline{b} = 0$			
	Claim: $\overline{a \oplus b} = \overline{a} * \overline{b}$			
	Now $(a \oplus b) \oplus (\bar{a} * \bar{b}) = [(a \oplus b) \oplus \bar{a}] * [(a \oplus b) \oplus \bar{b}]$			
	$=[a \oplus \overline{a} \oplus b] * [a \oplus b \oplus \overline{b}] = [1 \oplus b] * [a \oplus 1]$			
	= 1 * 1 = 1			
	$(a \oplus b) * (\bar{a} * \bar{b}) = [(a \oplus b) * \bar{a}] * [(a \oplus b) * \bar{b}]$	5		
	$= \left[(a * \overline{a}) \oplus (b * \overline{a}) \right] * \left[(a * \overline{b}) \oplus (b * \overline{b}) \right]$			
	$= \left[0 \oplus (b * \overline{a}) \right] * \left[(a * \overline{b}) \oplus 0 \right] = (b * \overline{a}) * (a * \overline{b})$			
	$= b * (\overline{a} * a) * \overline{b} = 0$		4	K3
	Hence claim (i) is proved.			
	Claim: $\overline{a * b} = \overline{a} \oplus \overline{b}$			
	Now $(a * b) \oplus (\bar{a} \oplus \bar{b}) = [(a * b) \oplus \bar{a}] \oplus [(a * b) \oplus \bar{b}]$			
	= $[a \oplus \overline{a}) * (b \oplus \overline{a})] \oplus [(a \oplus \overline{b}) * (b \oplus \overline{b})]$			
	$= [1*(b \oplus \overline{a})] \oplus [(a \oplus \overline{b})*1] = (b \oplus \overline{a})] \oplus [(a \oplus \overline{b})]$			
	$= b \oplus (\overline{a} \oplus a) \oplus \overline{b} = = b \oplus 1 \oplus \overline{b} = b \oplus \overline{b} = 1$			
		5		
	$(a * b) * (\overline{a} \oplus \overline{b}) = [(a * b) * \overline{a}] \oplus [(a * b) * \overline{b}]$			
	$=(a * \overline{a} * b) \oplus (a * b * \overline{b})$			
	$= (0 * b) \oplus (a * 0) = 0 * 0 = 0$			
	Hence claim (ii) is proved.			
	Hence the De-Morgan's laws are proved.			
6	Let (L, \leq) be a lattice in which * and denotes the operations of meet and join respectively. For any $a, b \in L$	12		
	$a \leq b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b$	12		
	Let us assume that $a \le b$ and also we know that $a \le a$		4	К3
	$\therefore a \le a \ast b \tag{1}$			
	But, from definition of $a * b$, we have	4		
	$a * b \le a \qquad (2)$			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

			г	
	Hence $a \le b \Rightarrow a * b = a$ From (1)& (2)		-	
	Next, assume that $a * b = a$, but it is only possible if $a \le b$			
	That is $a * b = a \Rightarrow a \le b$	3		
	Compaining these two results, we get	5		
	$a \le b \iff a * b = a$		-	
	To show that $a \le b \iff a \oplus b = b$ in a similar way.	2		
	From			
	a * b = a, we have			
	$b \oplus (a+b) = b \oplus a = a \oplus b$			
	But $b \oplus (a * b) = b$			
	Hence $a \oplus b = b$ follow that $a * b = a$	3		
UNIT	– IV LINEAR ALGEBRA			
1	R X R is a vector space over R under addition and scalar multiplication defined by $(x_1,x_2)+(y_1,y_2)=(x_1+y_1,x_2)$	10		
	x_2+y_2) and $\alpha(x_1,x_2) = (\alpha x_1,\alpha x_2)$	12		
	Clearly the binary operation $+$ is commutative and associative ad $(0,0)$ is the zero element			
	The inverse of (x_1, x_2) is $(-x_1, -x_2)$			
	Hence $(R X R, +)$ is an abelian group.	2		
	Now, let $u = (x_1, x_2)$ and $v = (y_1, y_2)$ and let $\alpha, \beta \in \mathbb{R}$		5	V2
	Then $\alpha(u+v) = \alpha[(x_1,x_2) + (y_1,y_2)] = \alpha(x_1+y_1, x_2+y_2) = (\alpha x_1 + \alpha y_1, \alpha x_2 + \alpha y_2) = \alpha(x_1,x_2) + \alpha(y_1,y_2) = \alpha u + \alpha v$	3	3	КЭ
	Now, $(\alpha + \beta)u = (\alpha + \beta)(x_1, x_2) = ((\alpha + \beta)x_1, (\alpha + \beta)x_2) = (\alpha x_1 + \beta x_1, \alpha x_2 + \beta x_2) = (\alpha x_1, \alpha x_2) + (\beta x_1, \beta x_2)$	2		
	$= \alpha(\mathbf{x}_1, \mathbf{x}_2) + \beta(\mathbf{x}_1, \mathbf{x}_2) = \alpha \mathbf{u} + \beta \mathbf{u}$	5		
	Also, $\alpha(\beta u) = \alpha(\beta(x_1, x_2)) = \alpha(\beta x_1, \beta x_2) = \alpha\beta x_1, \alpha\beta x_2 = (\alpha\beta)(x_1, x_2) = (\alpha\beta)u$	2		
	Obviously $1u = u$	3		
	Therefore R X R is a vector space over R.	1		
2	To prove that $V_3(R)$ the vectors (1,4,-2), (2,-1,3) and (-4,11,5) are linearly dependent	12		K3
	Let $\alpha_1(1,4,-2) + \alpha_2(-2,1,3) + \alpha_3(-4,11,5) = (0,0,0)$		5	
	$\therefore \alpha_1 - 2\alpha_2 - 4 \alpha_3 = 0 (1)$	6		
	$4\alpha_1 + \alpha_2 + 11 \alpha_3 = 0 (2)$	0		
	$-2\alpha_1 + 3\alpha_2 + 5\alpha_3 = 0 (3)$			
	From (1) & (2), $\frac{\alpha_1}{-18} = \frac{\alpha_2}{-27} = \frac{\alpha_3}{9} = k (say)$			
	$\therefore \alpha_1 = -18k, \alpha_2 = -27k, \alpha_3 = 9k$	6		
	These values of α_1 , α_2 , α_3 , for any k satisfy (3) also.			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	Taken k=1 we get α_1 = - 18, α_2 = - 27, α_3 = 9 as a non-trivial solution.			
	Hence the three vectors are linearly dependent.			
3	Let V be a vector space over F. A non-empty subset W of V is a subspace of V iff W is closed with respect	12		
	to vector addition and scalar multiplication in V.			
	Let W be a subspace of V.	2		
	Then Witself is a vector space and hence Wis closed with respect to vector addition and scalar multiplication	2		
	Conversely, let W be a non-empty subset of V such that $u, v \in W \Rightarrow u + v \in W$		_	
	And $u \in W$ and $\alpha \in F \Rightarrow \alpha u \in W$	3		
	We prove that W is a subspace of V			
	Since W is non-empty, there exists an element $u \in W$.		5	K3
	$\therefore 0\mathbf{u} = 0 \in \mathbf{W}$			
	Also $v \in W \Rightarrow (-1)v = -v \in W$	4		
	Thus W contains 0 and the additive inverse of each of its element			
	Hence W is an additive subgroup of V.		_	
	Also $u \in W$ and $\alpha \in F \Rightarrow \alpha u \in W$			
	Since the elements of W are the elements of V the other axioms of a vector space are true in W.	3		
	Hence W is a subspace of V.			
4	Let V be a vector space over a field F. Let S, $T \subseteq V$. then $S \subseteq T \Rightarrow L(S) \subseteq L(T)$			
	L(SUT) = L(S) + L(T)	12		
	L(S) = S iff S is a subspace of V.		-	
	Let $S \subseteq T$. Let $s \in L(S)$			
	Then $s = \alpha_1 s_1 + \alpha_2 s_2 + \alpha_3 s_3 + \dots + \alpha_n s_n$ where $s_i \in S$ and $\alpha_i \in F$			
	Now, since $S \subseteq T$, $s_i \in T$	3	_	
	Hence $\alpha_1 s_1 + \alpha_2 s_2 + \alpha_3 s_3 + \dots + \alpha_n s_n \in L(T)$		5	K3
	Thus $L(S) \subseteq L(T)$			
	Let $s \in L(S \cup T)$			
	Then $s = \alpha_1 s_1 + \alpha_2 s_2 + \alpha_3 s_3 + \dots + \alpha_n s_n$ where $s_i \in S \cup T$ and $\alpha_i \in F$	3		
	Without loss of generality we can assume that $s_1, s_2, \dots, s_m \in S$ and $s_{m+1}, \dots, s_n \in T$	5		
	Hence $\alpha_1 s_1 + \alpha_2 s_2 + \alpha_3 s_3 + \dots + \alpha_m s_m \in L(S)$			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	And $\alpha_{m+1}s_{m+1} + \alpha_{m+2}s_{m+2} + + \alpha_n s_n \in L(T)$			
	$:= (\alpha_1 s_1 + \alpha_2 s_2 + \alpha_3 s_3 + \dots + \alpha_m s_m) + (\alpha_{m+1} s_{m+1} + \alpha_{m+2} s_{m+2} + \dots + \alpha_n s_n) \in L(S) + L(T)$			
	Hence $L(S\cup T) \subseteq L(S)+L(T)$. Also by (a) $L(S) \subseteq L(S\cup T)$ and $L(T) \subseteq L(S\cup T)$			
	Hence $L(S)+L(T) \subseteq L(S \cup T)$	3		
	Hence $L(SUT) = L(S)+L(T)$			
	Let L(S)=S. W.K.T L(S)=S is a subspace of V.			
	Conversely, let S be a subspace V. Then the smallest subspace containing S is S itself.	3		
	Hence $L(S)=S$			
	Check whether the following $V_3(R)$ vectors $(1,2,1)$, $(2,1,0)$ and $(1,-1,2)$ are linearly independent or not	6		
5	Let $\alpha_1(1,2,1) + \alpha_2(2,1,0) + \alpha_3(1,-1,2) = (0,0,0)$	2		
	$(\alpha_1+2 \alpha_2+\alpha_3, 2 \alpha_1+\alpha_2-\alpha_3, \alpha_1+2\alpha_3) = (0,0,0)$	2		
	$\alpha_1 + 2 \alpha_2 + \alpha_3 = 0 \qquad (1)$			
	$2 \alpha_1 + \alpha_2 - \alpha_3 = 0 \qquad (2)$	2		
	$\alpha_1 + 2\alpha_3 = 0 \tag{3}$			
	Solving equations (1), (2) and (3) we get $\alpha_1 = \alpha_2 = \alpha_3 = 0$	2		
	The given vectors are linearly independent	2		
	Determine whether the following sets of vectors are linearly independent or not	6	5	K3
	(1,1,0,0),(0,0,1,1),(1,0,0,4),(0,0,0,2) in V ₄ (R)	0	5	K5
	Let $\alpha_1(1,1,0,0) + \alpha_2(0,0,1,1) + \alpha_3(1,0,0,4) + \alpha_4(0,0,0,2) = (0,0,0,0)$	2		
	$(\alpha_1 + \alpha_3, \alpha_1, \alpha_2, \alpha_2 + 4\alpha_3 + 2\alpha_4) = (0,0,0,0)$	2		
	$\alpha_1 + \alpha_3 = 0 \tag{1}$			
	$\alpha_1 = 0 \tag{2}$	2		
	$\alpha_2 = 0 \tag{3}$	2		
	$\alpha_2 + 4\alpha_3 + 2 \alpha_4 = 0 \qquad (4)$			
	Solving equations (1), (2),(3) and (4) we get $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$	2		
	The given vectors are linearly independent	2		
6	$T:V_3(R) \rightarrow V_3(R)$ given by $T(a,b,c) = (3a+c, -2a+b, a+2b+4c)w.r.t$			
	The standard basis	12		
	The basis $\{(1,0,1),(-1,2,1),(2,1,1)\}$ for both domain and range		5	К3
	$T(e_1) = T(1,0,0) = (3,-2,1) = 3e_1 - 2e_2 + e_3$		-	
	$T(e_2) = T(0,1,0)=(0,1,2)= e_2+2e_3$	3		
	$T(e_3) = T(0,0,1) = (1,0,4) = e_1 + 4e_3$			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	1		
The matrix T is $\begin{pmatrix} 3 & 2 & -1 \\ 0 & 1 & 2 \\ 1 & 0 & 4 \end{pmatrix}$	3		
$T(1,0,1) = e_1 + e_3$			
$T(-1,2,1) = -e_1 + e_2 + e_3$			
$T(2, 1, 1) = 2e_1 + e_2 + e_3$	3		
The matrix T is $\begin{pmatrix} \frac{17}{4} & -\frac{3}{4} & \frac{1}{2} \\ \frac{35}{4} & \frac{15}{4} & -\frac{7}{2} \\ \frac{17}{2} & \frac{-3}{2} & 0 \end{pmatrix}$	3		
V FINITE STATE MACHINE AUTOMATA AND GRAMMARS			
Let M = ($\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_1\}$) where δ is given by $\delta(q_0, a) = q_1, \delta(q_0, b) = q_2, \delta(q_1, a) = q_3, \delta(q_1, b) = q_3$			
Q_0			
$\delta(q_2,b)=q_2, \delta(q_3,a)=q_2, \delta(q_3,b)=q_2, \delta(q_2,a)=q_2$ (i) Represent M by its state table (ii) Represent M by its state	12		
diagram (iii) which of the following strings are accepted by M.			
ababa (2) aaaab (3) bbbaa			
To find state value			
_ Input			
State a b			
$\frac{\mathbf{q}_0}{\mathbf{q}_1}$ $\frac{\mathbf{q}_1}{\mathbf{q}_2}$			
\mathbf{q}_1 \mathbf{q}_3 \mathbf{q}_0		6	K3
\mathbf{q}_2 \mathbf{q}_2 \mathbf{q}_2			
$q_3 q_2 q_2$			
$ \begin{array}{c} $			
	The matrix T is $\begin{pmatrix} 3 & 2 & -1 \\ 0 & 1 & 2 \\ 1 & 0 & 4 \end{pmatrix}$ T(1,0,1) = e ₁ +e ₃ T(-1,2,1) = -e ₁ +e ₂ +e ₃ The matrix T is $\begin{pmatrix} \frac{17}{4} & -\frac{3}{4} & \frac{1}{2} \\ \frac{35}{4} & \frac{15}{4} & -\frac{7}{2} \\ \frac{17}{2} & -\frac{3}{2} & 0 \end{pmatrix}$ V FINITE STATE MACHINE AUTOMATA AND GRAMMARS Let M = ({q ₀ ,q ₁ ,q ₂ ,q ₃ }, {a,b}, \delta, q ₀ ,{q ₁ }) where δ is given by $\delta(q_{0},a) = q_{1}, \delta(q_{0},b)=q_{2}, \delta(q_{1},a) = q_{3}, \delta(q_{1},b) = q_{0}$ $\delta(q_{2},b)=q_{2}, \delta(q_{3},a)=q_{2}, \delta(q_{3},b)=q_{2}, \delta(q_{2},a)=q_{2}$ (i) Represent M by its state table (ii) Represent M by its state diagram (ii) which of the following strings are accepted by M. ababa (2) aaaab (3) bbbaa To find state value Transition diagram $\Im = \frac{1}{q_{2}} = \frac{1}{q_{2}} = \frac{1}{q_{2}} = \frac{1}{q_{3}} = $	The matrix T is $\begin{pmatrix} 3 & 2 & -1 \\ 1 & 0 & 4 \end{pmatrix}$ T(1,0,1) = e_1+e_3 T(-1,2,1) = $-e_1+e_2+e_3$ The matrix T is $\begin{pmatrix} \frac{17}{4} & -\frac{3}{4} & \frac{1}{2} \\ \frac{35}{12} & \frac{15}{4} & -\frac{7}{2} \\ \frac{17}{2} & -\frac{3}{2} & 0 \end{pmatrix}$ V FINITE STATE MACHINE AUTOMATA AND GRAMMARS Let M = ({q_0,q_1,q_2,q_3}, {a,b}, \delta, q_0,{q_1}) where δ is given by $\delta(q_0,a) = q_1, \delta(q_0,b) = q_2, \delta(q_1,a) = q_3, \delta(q_1,b) = q_0$ $\delta(q_2,b) = q_2, \delta(q_3,a) = q_2, \delta(q_2,a) = q_2$ (i) Represent M by its state table (ii) Represent M by its state tableaba (2) aaab (3) bbbaa To find state value Transition diagram $\frac{1}{\sqrt{q_2} + q_2}$ Transition diagram $\frac{1}{\sqrt{q_2} + q_2}$	The matrix T is $\begin{pmatrix} 3 & 2 & -1 \\ 1 & 0 & 4 \end{pmatrix}$ T(1,0,1) = e_1+e_3 T(1,0,1) = e_1+e_3 T(2,1,1) = 2e_1+e_2+e_3 T(2,1,1) = 2e_1+e_2+e_3 The matrix T is $\begin{pmatrix} \frac{17}{4} & -\frac{3}{4} & \frac{1}{2} \\ \frac{17}{2} & -\frac{3}{2} & 0 \end{pmatrix}$ V FINITE STATE MACHINE AUTOMATA AND GRAMMARS Let M = ({q_0,q_1,q_2,q_3}, {a,b}, \delta, q_0, {q_1})) where δ is given by $\delta(q_0,a) = q_1, \delta(q_0,b) = q_2, \delta(q_1,a) = q_3, \delta(q_1,b) = q_0$ $\delta(q_2,b) = q_2, \delta(q_3,a) = q_2, \delta(q_2,a) = q_2$ (i) Represent M by its state table (ii) Represent M by its state table (ii) which of the following strings are accepted by M. ababa (2) aaaab (3) bbbaa To find state value $\frac{State \frac{Input}{q_2}}{q_3 & q_2} = q_2$ Transition diagram $\frac{T + \frac{1}{q_3} + \frac{1}{q_2}}{q_3 & q_2} = q_2$ $\frac{T}{Tansition diagram}$

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

				,
	(1) $\delta(q_0, ababa) \Rightarrow \delta(q_1, baba)$			
	$\Rightarrow \delta(q_0, aba) \Rightarrow \delta(q_1, ba) \Rightarrow \delta(q_0, a) \Rightarrow \delta(q_1) \Rightarrow q_1 \in F \Rightarrow Final state$			
	The string ababa is accepted by M.			
	$\delta(q_0, aaaab) \Rightarrow \delta(q_1, aaab)$			
	$\Rightarrow \delta(q_3, aab) \Rightarrow \delta(q_2, ab) \Rightarrow \delta(q_2, b) \Rightarrow q_2 \notin F \Rightarrow Final state$			
	The string aaaab is not accepted by M.			
	$\delta(q_0, bbbaa) \Rightarrow \delta(q_2, bbaa)$			
	$\Rightarrow \delta(q_2, baa) \Rightarrow \delta(q_2, aa) \Rightarrow \delta(q_2, a) \Rightarrow q_2 \notin F \Rightarrow Final state$			
	The string bbbaa is not accepted by M.			
2	Construct the state diagram for the automation $M = (\{q_0,q_1,q_2\}, \{a,b\}, \delta, q_0,\{q_2\})$ where δ is given by $\delta(q_0,a)$			
	$= q_1, \delta(q_1, a) = q_1, \delta(q_2, a) = q_1, \delta(q_0, b) = q_2$	12	6	K3
	$\delta(q_1,b)=q_2, \delta(q_2,b)=q_0$ (i) Find its state table (ii) Find its state transition diagram (iii) find (a) $\delta(q_0,abab)$ (b)	12	0	K5
	$\delta(q_2, bbab)$ (c) $\delta(q_1, \in)$ which string is accepted by M.			
	State table			
	State Input			
	$\begin{array}{ccc} \mathbf{q}_0 & \mathbf{q}_1 & \mathbf{q}_2 \\ \hline \mathbf{q}_0 & \mathbf{q}_1 & \mathbf{q}_2 \end{array}$			
	$\begin{array}{ccc} \mathbf{q}_1 & \mathbf{q}_1 & \mathbf{q}_2 \\ \mathbf{q}_2 & \mathbf{q}_3 & \mathbf{q}_4 & \mathbf{q}_6 \end{array}$			
	I mit state			
	> 22 (2) Pa			
	1 and 1			
	b			
	(22) state			
	Transition diagram			
	(iii)(1) $\delta(q_0, abab) \Rightarrow \delta(q_1, bab)$			
	$\Rightarrow \delta(q_2, ab) \Rightarrow \delta(q_1, b) \Rightarrow q_2 \in F \Rightarrow Final state$			
	The string abab is accepted by M.			
	(2) $\delta(q_2, bbab) \Rightarrow \delta(q_0, bab)$			
	$\Rightarrow \delta(q_2, ab) \Rightarrow \delta(q_1, b) \Rightarrow q_2 \in F \Rightarrow Final state$			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	The string blab is accepted by M			
	$\delta(a, f) = a_{i} f f \Rightarrow Final state$			
	The string \mathbf{F} is not accented by M			
3	The sting c is not decepted by M. Draw the state diagram of FSM with I = {a,b,c}, O={0,1,2} S = {s_0,s_1,s_2,s_3} and table is $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12		
	Input State I = $\{a,b,c\}$ Output state O = $\{0,1,2\}$ State set S = $\{s_0,s_1,s_2,s_3\}$ Initial state M = S ₀	2		
	Transition diagram $b/1$ $b/2$	5	6	К3
	$(5) \stackrel{\leftarrow}{} (3) \stackrel{\leftarrow}{} (5) \stackrel{\leftarrow}{} (5) \stackrel{\leftarrow}{} (2) \stackrel{\leftarrow}{} (3) \stackrel{\leftarrow}{$	5		
4	The state table of a FSM M is given in the table:	12	6	K3

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	$\begin{array}{ c c c c c }\hline & a & b \\ \hline S_0 & S_0, S_1 & \emptyset \\ \hline S_1 & \emptyset & S_2 \\ \hline S_2 & \emptyset & S_2 \\ \hline \end{array}$			
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	4		
	Transition diagram for DFA	3		
6	Find the DFA accepts the strings generated by the regular grammar G. $P = \{S \rightarrow bs/aA/a; A \rightarrow aS/bB; B \rightarrow bA/aS/b\}$ and S is the starting symbol Let the grammar L(G) = $\{V_N, V_T, S, P\}$ $V_N = \{S, A, B\}$ $V_T = \{a, b\}$ S=starting (i)Transition diagram for NFA		6	K3

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

a b a b b a b b a b			
(ii)State table for NFA			
	InputStateInputabSAFSAFASBSA,FF-		
(iii)State table for DFA			
	State Input		
	State a B		
	$\{S\}$ $\{AF\}$ $\{S\}$		
	$\{A,F\}$ $\{S\}$ $\{B\}$		
	$\{B\} \{S\} \{A,F\}$		
(iv)Transition diagram for DFA			
$\rightarrow \overbrace{\{s\}}^{b} \xrightarrow{a} \overbrace{\{a, r\}}^{b}$			

PART – C (20 Mark Questions with Key)									
S.N	Questions	Mark	CO	BT					
0			S	L					
UNIT	UNIT I – MATRIX THEORY								
1	Investigate for what values of a,b the simultaneous equations x+y+2z=2, 2x-y+3z=2, 5x-y+ax=b have	20	1	K4					

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

(i) no solution (ii) a unique solution (iii) an infinite number of solutions			
$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 2 & -1 & 3 & 2 \end{bmatrix} \xrightarrow{P \cdot P} \xrightarrow{P \cdot P} \xrightarrow{P \cdot P} \xrightarrow{P \cdot P}$	3		
$\begin{bmatrix} A, B \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & 5 & 2 \\ 5 & -1 & a & b \end{bmatrix} \xrightarrow{K_2: K_2 - 2K_1, K_3: K_3 - 5K_1}$	5		
$\sim \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & -3 & -1 & -2 \\ 0 & -3 & -1 & -2 \end{bmatrix} R_3: R_3 - 2R_2$	3		
$[0 -6 \ a - 10 \ b - 10]$			
$[A,B] \sim \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & -3 & -1 & -2 \\ 0 & 0 & a - 8 & b - 6 \end{bmatrix}$	3		
<u>[0 0 û 0 0 0]</u>			
$4 \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & -3 & -1 \end{bmatrix}$			
$\begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & a - 8 \end{bmatrix}$			
The last equivalent matrix is triangular	2		
Case(i) $a \neq 8$ Rank of [A,B] = No. of non-zero rows=3			
Rank of $A = No.$ of non-zero rows=3; No. of unknowns = 3			
The system is consistent and has a unique solution			
Case (ii) $a = 8 \& b \neq 6$	3		
Then Rank of $[A,B] = 3$, Rank of $A = 2$			
Rank of $[A,B] \neq$ Rank of A			
The system is inconsistent and has no solution			
Case (iii) $a = 8 \& b = 6$			
Then Rank of $[A,B] = 2$, Rank of $A = 2$, No. of unknowns=3	3		
: The system is consistent and has infinite number of solutions			
2 Eind the characteristic equation of the matrix $\mathbf{A} = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \end{pmatrix}$ Hence find \mathbf{A}^{-1} and \mathbf{A}^{4}	20		
$\frac{1}{1} - \frac{1}{2} = \frac{1}{2}$	20		
The characteristic equation is $\lambda^3 - 6\lambda^2 + 8\lambda - 3 = 0$	5	1	K3
By C-H theorem, $A^3 - 6A^2 + 8A - 3I = 0$	2		
Premultiplying by A^{-1} we get $A^2 - 6A + 8I - 3A^{-1} = 0 \Leftrightarrow A^{-1} = \frac{1}{3}(A^2 - 6A + 8I)$	6		

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	Prei	mult	iplyi	ing by	A on C-H	I theore	m w	$A^{-1} = \frac{1}{3} \left(\frac{1}{3} \right)^{-1}$	$\begin{pmatrix} 3 & 0 & -3 \\ 1 & 2 & 0 \\ -1 & 1 & 3 \end{pmatrix}$	4		
	$A^4 =$	= 6A	³ -84	$A^2 + 3A$	$A = 6(6A^2 - 6A^2 - 6$	8A+3I)-	$8A^2$	$+3A = 28A^{2}-4$	5A+18I	4		
								$A^4 = \begin{pmatrix} 124 \\ -95 \\ 95 \end{pmatrix}$	$ \begin{array}{ccc} -123 & 162 \\ 96 & -123 \\ -95 & 124 \end{array} \right) $	3		
UNIT	II –L	LOG	IC									
1	Wit	h an	d wi	thout	constructi	ng the t	ruth	table obtain t	he product of sums canonical form of the formula	20		
	(F	P→]	<u>R)</u> (Q↔P). Hence f	ind the s	sum	of products c	anonical form.	20		
	Let	S⇔	(I	P→R)∧(Q↔P)							
	Tr	uth '	Tabl	e Met	hod		1					
	Р	Q	R	7	$\neg P \rightarrow$	$Q \leftrightarrow$	S	Minterm	Maxterm			
	T	T	T	Р	R	Р	T	DICID				
	T	Т	T	F	Т	Т	T					
			Г Т	F E				P/Q/ R				
	1	Г	1	Г	1	Г	Г		R			
	Т	F	F	F	Т	F	F		$\exists PVQVR$			
	F	Т	Т	Т	Т	F	F		PV] QV]		23	К4
									R		2,5	11.1
	F	Т	F	Т	F	F	F		$PV \neg QVR$			
	F	F	Т	Т	Т	Т	Т	PA QA				
	F	F	F	Т	F	Т	F	к 	PVQVR			
	S⇔	(PA	QΛI	R)V(F	$P \wedge Q \wedge \neg R)$	$V(\neg P \Lambda)$	٦Q	AR) (PDN	F)	5		
	$S \Leftrightarrow (\exists PVQV \exists R) \land (PV \exists QV \exists R) \land (\exists PVQVR) \land (PV \exists QVR) \land (PVQVR) (PCNF)$							5				
	Without Truth Table Method:											
	Let	S⇔	(I	P→R)∧(Q↔P)							
	⇔(I	PVR)Λ()→P	$\Lambda(P \rightarrow Q)$							
	⇔(I	PVR)Λ(⁻	OVI	$P)\Lambda(\exists PVC)$))						
	(-	/ `		/ . · · ·	0					1	

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	$ \begin{array}{l} \Leftrightarrow (PVR)V(QA \neg Q)A(((\neg QVP)V(\neg RAR))) \\ \Leftrightarrow (PVRVQ)A (PVRV \neg Q)A (\neg QVPV \neg R)A (\neg QVPVR)A (\neg PVRVQ)A (\neg PVQV \neg R) \\ \Leftrightarrow (PVRVQ)A (PVRV \neg Q)A (\neg QVPV \neg R)A (\neg PVRVQ)A (\neg PVQV \neg R) (PCNF) \\ \neg S \Leftrightarrow (PVQ \neg R)A(\neg PV \neg QVR)A (\neg PV \neg QV \neg R) \\ S \Leftrightarrow \neg (\neg S) \Leftrightarrow \neg [(PVQ \neg R)A(\neg PV \neg QVR)A (\neg PV \neg QV \neg R)] \\ \Leftrightarrow (\neg PA \neg QAR)V(PAQA \neg R)V(PAQAR) (PDNF) \end{array} $							
2	Show that $P \rightarrow (Q \rightarrow P) \Leftrightarrow \exists P \rightarrow (P \rightarrow Q)$	20						
	(i) $P \rightarrow (Q \rightarrow P)$ $\Leftrightarrow P \rightarrow (\neg Q \lor P)$ Reasons) $\Leftrightarrow P \rightarrow (\neg Q \lor P)$ Since $Q \rightarrow P$ $\Leftrightarrow \neg Q \lor P$ $\Leftrightarrow \neg P \lor (\neg Q \lor P)$ Since $P \rightarrow Q$ $\Rightarrow \neg P \lor Q$ $\Leftrightarrow \neg P \lor (P \lor \neg Q)$ Commutative $)$ $\Leftrightarrow (\neg P \lor P) \lor \neg Q$ Commutative $(\neg P \lor P) \lor \neg Q$ $\Leftrightarrow T \lor \neg Q$ Negation $\Leftrightarrow T$ $\Leftrightarrow T$ Since $T \lor \neg Q \Leftrightarrow T$	10	2,3	K1				
	(ii P - P - Q) Reasons $(ii P - P - Q) Reasons$ $(ii P - P - Q) Since P - Q$ $(ii P - P - P - Q) Since P - Q$ $(ii P - P - Q) Since P - Q$ $(ii P - P - Q) Since P - Q$ $(ii P - P - Q) Since P - Q$ $(ii P - P - Q) Since P - Q$ $(ii P - P - Q) Since P - Q$ $(ii P - P - Q) Since P - Q$ $(ii P - P - Q) Since P - Q$ $(ii P - P - Q) Since P - Q$ $(ii P - P - Q) Since P - Q$ $(ii P - P - Q) Since P - Q$ $(ii P - P - Q) Since P - Q$ $(ii P - P - P - Q) Since P - Q$ $(ii P - P - P - P - P - Q)$ $(ii P - P - P - P - P - P - P - P - P - P$	10						

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	From (i) ad (ii) we get $P \rightarrow (Q \rightarrow P) \Leftrightarrow P \rightarrow P \rightarrow Q$			
UNI	T-III LATTICES			
1	Prove that the direct product of two distributive lattice is a distributive lattice	20		
	Let $(I, \oplus *)\& (S \lor \land)$ be two distributive lattice w r t relations < and <' respectively		-	
	Then + & in L X S is defined by: $(a b)+(c d)-(a \oplus c b)/d$			
	(a b) $(c d)=(a*c b \wedge d)$	2		
	A relation α on L X S is defined by (x y) α (z u) \Leftrightarrow x <z td="" y<'u<=""><td>-</td><td></td><td></td></z>	-		
	To prove that LXS is a distributive lattice			
	Case(i) LXS is a poset		-	
	Let $(a,b) \in L \times S$			
	$\Rightarrow a \in L, b \in S$			
	$\Rightarrow a \leq a, b \leq b$	3		
	$\therefore (a, b)\alpha(a, b)$			
	$\therefore \alpha \text{ is reflexive in } L \times S$			
	Let $(a,b),(c,d) \in L \times S$ such that			
	$(a,b)\alpha(c,d)\&(c,d)\alpha(a,b)$			
	$\Rightarrow a \leq c, b \leq d and c \leq a, d \leq b$		4	K3
	$\therefore Now \ a \le c, c \le a \ \Rightarrow a = c$	3		
	$b \leq d, d \leq b \Rightarrow b = d$			
	$\therefore (a,b) = (c,d)$			
	Hence α is anti symmetric.		_	
	c) Let $(a_1, b_1), (a_2, b_2), (a_3, b_3) \in L \times S$			
	such that $(a_1,b_1) \alpha (a_2,b_2), (a_2,b_2) \alpha (a_3,b_3)$			
	$\therefore a_1 \leq a_2; b_1 \leq b_2$			
	$a_2 \le a_3; b_2 \le b_3$	2		
	Now, $u_1 \ge u_2, u_2 \ge u_3 \Rightarrow u_1 \ge u_3$	3		
	$\begin{array}{c} D_1 \leq D_2, D_2 \leq D_3 \rightarrow D_1 \leq D_3 \\ \vdots (a - a) = a(b - b) \end{array}$			
	$(a_1, a_3) a(b_1, b_3)$			
	$\therefore \alpha$ is transtative Hence α is a most on $L \times S$			
	$\begin{array}{c} \text{Telled } u \text{ is } u \text{ poset} & \text{Oll } L \times S \\ \hline \text{Case (ii) To Prove } L \times S \text{ is a Lattice} \end{array}$	3	-	
	$Case (11) TO Prove L \times S Is a Lattice$	3	1	

ai)

(An Autonomous I	nstitution, A	Affiliated to	o Anna	University,	Chenna
Nagore Po	ost, Nagapa [.]	ttinam – 61	1 002,	Tamilnadu	

		_	
(<i>a</i>)	$b), (c, d) \in L \times S$		
\Rightarrow	$a, c \in L; b, d \in S$		
Since L is a lattice, a & c have lub $u_1 \in L$, also	a & c have glb $l_1 \in L$. b,d $\in S$; S is a lattice		
b&d have lub $u_2 \in L$			
b&d have glb $l_2 \in S$			
Then $(a,b)\&(c,d)$ have lub (u_1,u_2) and $(a,b)\&$	(c,d) have glb (l_1,l_2) by def		
$\therefore L \times S$ is a Lattice			
Case (iii) To Prove LXS is distributive lattice			
Let $x = (a_1, b_1), y = (a_2, b_2), z = (a_3, b_3) \in \mathcal{L} \times \mathcal{S}$			
$\Rightarrow a_1, a_2$	$a_{3} \in L \& b_{1}, b_{2}, b_{3} \in S$		
To Prove $x.(y + z) = x.y + x.z$			
$L.H.S = x.(y + z) = (a_1, b_1).[(a_2, b_2)]$	$+(a_{3},b_{3})]$		
$=(a_1, b_1).[(a_2 \oplus a_3) + (b_2 \vee b_3)] = (a_1, b_2)$	$= \left(a_2 \oplus a_3, b_1 \land (b_2 \lor b_3) \right)$		
$=((a_1 * a_2) \oplus (a_1 * a_3), (b_1 \wedge b_2) \vee (b_1 \wedge b_3))$	<i>b</i> ₃))		
$=(a_1 * a_2, b_1 \wedge b_2) + (a_1 * a_3, b_1 \wedge b_3)$			
$=(a_1, b_1).(a_2, b_2) + (a_1, b_1).(a_3, b_3) = x$	$x \cdot y + x \cdot z = R \cdot H \cdot S$		
To Prove $x+(y, z) = (x+y) \cdot (x+z)$			
$L.H.S = x + (y.z) = (a_1, b_1) + [(a_2, b_1)]$	(a_3, b_3)]		
$=(a_1, b_1) + [(a_2 * a_3), (b_2 \land b_3)] = (a_1 \oplus$	$\left(a_2 * a_3, b_1 \vee (b_2 \wedge b_3)\right) $		
$= ((a_1 \oplus a_2) * (a_1 \oplus a_3), (b_1 \vee b_2) \land (b_1 \vee b_3)) $	$(b_3))=(a_1 \oplus a_2, b_1 \lor b_2).(a_1 \oplus a_3, b_1 \lor b_3)$		
$=(a_1, b_1) + (a_2, b_2) \cdot (a_1, b_1) + (a_3, b_3) =$	(x + y).(x + z) = R.H.S		
2 State and Prove distributive inequality of Latt	ce 20	4	K1
Statement: Let $<$ L, \land , \lor > be a given Lattice. Fo	r any a,b,c \in L the following inequality holds (1)		
$a \lor (b \land c) \leq (a \lor b) \land (a \lor c)$			
(2) $a \land (b \lor c) \ge (a \land b) \lor (a \land c)$			
Case(i)			
From defn of LUB			
$a \le a \lor b$ (1) and $b \land c \le b \le a \lor b$			
$\Rightarrow b$	$\wedge c \leq a \lor b \qquad (2)$		
From (1) and (2) $a \lor b$ is an UB of (a, $b \land c$)			
Hence $a \lor b \ge a \lor (b \land c)$ (A)	2		

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

		r	1	
	From defn of LUB			
	$a \le a \lor c$ (3) and $b \land c \le c \le a \lor c$	2		
	$\Rightarrow b \land c \le a \lor c \qquad (4)$			
	From (3) and (4) $a \lor c$ is an UB of (a, $b \land c$)	2		
	Hence $a \lor c \ge a \lor (b \land c)$ (B)	2		
	From (A) and (B) $a \lor (b \land c) \le (a \lor b) \land (a \lor c)$	2		
	Case(ii)			
	$a \ge a \land b$ (1) and $b \lor c \ge b \ge a \land b$	2		
	$\Rightarrow b \lor c \leq a \land b \qquad (2)$			
	From (1) and (2) $a \wedge b$ is an LB of (a, $b \vee c$)	2		
	Hence $a \land b \le a \land (b \lor c)$ (C)	-		
	$a \ge a \land c$ (3) and $b \lor c \ge c \ge a \land c$	2		
Form (3) and (4) avc is an UB of (a, b^c)Hence avc $\geq a \vee (b^c)$ (B)From (A) and (B) $a^{\vee}(b^c) \leq (a^{\vee}b) \wedge (a^{\vee}c)$ Case(ii) $a \geq a^{\wedge}b$ (1) and $b^{\vee}c \geq b \geq a^{\wedge}b$ $\Rightarrow b^{\vee}v c \leq a \wedge b$ (2)From (1) and (2) $a^{\wedge}b$ is an LB of (a, b^{\vee}c)Hence $a^{\wedge}b \leq a^{\wedge}(b^{\vee}c)$ (C) $a \geq a^{\wedge}b$ (2)From (3) and b^{\vee}c \geq b \geq a^{\wedge}c $\Rightarrow b^{\vee}v c \leq a \wedge c$ (4)From (3) and (4) a^{\wedge}c is an LB of (a, b^{\vee}c)Hence $a^{\wedge}c \leq a^{\wedge}(c^{\vee})$ (D)From (3) and (4) a^{\wedge}c is an LB of (a, b^{\vee}c)Hence $a^{\wedge}c \leq a^{\wedge}(b^{\vee}c)$ (D)From (3) and (4) a^{\wedge}c is an LB of (a, b^{\vee}c)UNIT-IV LINEAR ALGEBRALet V be a vector space over F and W a subspace of V. Let $V/W = \{W+v/v \in V\}$. then V/W is a vector space1over F under the following operations $(W+v_1) = (W+v_2) = W + v_1 + v_2$ $A(W+v_1) = W + av_1$ Since W is a subspace of V it is a subgroup of (V, +)Since W is a subspace of V it is a subgroup of (V, +) so that (i) is well defined operation.Now, $W + v_1 = W + v_2 \Rightarrow v_1 - v_2 \in W$ $\Rightarrow a(v_1 - v_2) \in W \Rightarrow av_1 \in W \Rightarrow av_1 \in W + av_2 \Rightarrow W + av_1 = W + av_2$ Hence (ii) is a well defined operation.Now, let $W + v_1, W + v_2, W + v_3 \in V/W$ Then $(W + v_1) + [(W + v_2) + (W + v_3)] = (W + v_1) + (W + v_2) + (W + v_3) = [(W + v_1) + (W + v_2)] + (W + v_3)$		-		
	From (3) and (4) $a c$ is an LB of (a, $b c$)	2		
	Hence $a \land c \le a \land (b \lor c)$ (D)	2		
	From (C) and (D) $a \land (b \lor c) \ge (a \land b) \lor (a \land c)$	2		
UNIT	-IV LINEAR ALGEBRA			
	Let V be a vector space over F and W a subspace of V. Let $V/W = \{W+v/v \in V\}$. then V/W is a vector space			
1	over F under the following operations	20		
	$(W+v_1) + (W+v_2) = W + v_1 + v_2$	20		
	$A(W+v_1) = W + \alpha v_1$			
	Since W is a subspace of V it is a subgroup of $(V, +)$			
	Since $(V, +)$ is abelian, W is a normal subgroup of $(V, +)$ so that (i) is well defined operation.			
	Now, $W + v_1 = W + v_2 \Rightarrow v_1 - v_2 \in W$	4		
	$\Rightarrow \alpha(v_1 - v_2) \in W \Rightarrow \alpha v_1 - \alpha v_2 \in W \Rightarrow \alpha v_1 \in W + \alpha v_2 \Rightarrow W + \alpha v_1 = W + \alpha v_2$		5	<i>V</i> 2
	Hence (ii) is a well defined operation.		5	КJ
	Now, let $W + v_1$, $W + v_2$, $W + v_3 \in V/W$			
	Then $(W + v_1) + [(W + v_2) + (W + v_3)] = (W + v_1) + (W + v_2 + v_3) = W + v_1 + v_2 + v_3$	2		
	$= (W+v_1+v_2)+(W+v_3) = [(W+v_1) + (W+v_2)] + (W+v_3)$	3		
	Hence + is associative.			
	$W + 0 = W \in V/W$ is the additive identity element.			
	For $(W+v_1)+(W+0) = W+v_1 = (W+0) + (W+v_1)$ for all $v_1 \in V$	3		
	Also W- v_1 is the additive inverse of W + v_1			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

			1	
	Hence V/W is a group under +			
	Further $(W+v_1)+(W+v_2) = W + v_1+v_2 = W + v_2 + v_1 = (W+v_2) + (W+v_1)$	2		
	Hence V/W is an abelian group.	_		
	Now let α , $\beta \in F$			
	$\alpha[(W+v_1)+(W+v_2)] = \alpha(W+v_1+v_2) = W + \alpha(v_1+v_2) = W + \alpha v_1 + \alpha v_2 = (W+\alpha v_1) + (W+\alpha v_2) = \alpha (W+v_1) + \alpha v_2 = (W+\alpha v_1) + \alpha v_2 = (W+\alpha v_$	3		
	$(W+v_2)$			
	$(\alpha + \beta) (W + v_1) = W + (\alpha + \beta)v_1 = W + \alpha v_1 + \beta v_1 = (W + \alpha v_1) + (W + \beta v_1) = \alpha (W + v_1) + \beta (W + v_1)$	3		
	$\alpha[\beta(W+v_1)] = \alpha(W+\beta v_1) = W + \alpha\beta v_1 = (\alpha\beta) (W+v_1)$			
	$1(W+v_1) = W+1v_1 = W+v_1$			
	Hence V/W is a vector space.	2		
	The vector space V/W is called the quotient space of V by W			
2	Let V be a finite-dimensional vector space over a field F. Let A and B be subspace of V			
-	Then $\dim(A+B) = \dim A + \dim B$ - $\dim (A \cap B)$	20		
	W K T A + B is a subspace of V containing A		-	
	A+B.			
	Hence $\frac{1}{A}$ is also a vector space over F			
	An element of $\frac{A+B}{A+A}$ is of the form A + (a+b) where a \in A and b \in B. But A + a = A			
	A Hence on element of $A+B$ is of the form $A + b$	6		
	Hence an element of $\frac{1}{A}$ is of the form $A + b$			
	Now, consider $f: B \rightarrow \frac{A+B}{4}$ defined by $f(b) = A + b$			
	Clearly f is onto			
	$Also f(b_1+b_2) = A + (b_1+b_2) = (A + b_1) + (A + b_2) = f(b_1) + f(b_2)$		_	
	And $f(\alpha b_1) = A + \alpha b_1 = \alpha (A + b_1) = \alpha f(b_1)$	4	5	K3
	Hence f is a linear transformation			
	Let K be the kernel of f		-	
	Then $K = \{b/b \in B A + b = A\}$			
	Now $A + b = A$ iff $b \in A$ Hence $K = A \cap B$			
	$V \sim W$			
	$(W.K.t \frac{V_1}{V_1} \neq W)$	10		
	$\Rightarrow \xrightarrow{B} \cong \xrightarrow{A+B}$	10		
	$A \cap B = A$ $(A + B) = (B)$			
	Hence $\dim\left(\frac{A+B}{A}\right) = \dim\left(\frac{B}{A\cap B}\right)$			
	$\dim(A+B) - \dim A = \dim B - \dim(A \cap B)$			

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	$\dim(A+B) = \dim A + \dim B - \dim(A \cap B)$			
UNIT	-V FINITE STATE MACHINE AUTOMÁTA AND GRAMMARS		•	•
1	Explain deterministic and nondeterministic automation with example. How to convert an NFA to equivalent DFA Construct a finite state automation that accept all strings over {a b} in which every a is followed by b	20		
	In a finite state automation that transition function assigns a unique next state to every pair of state and input then the FSA is called a deterministic finite state automation If the transition function assigns several next states to every pair of state and input then FSA is called Non- deterministic finite state automation(Any example)	8		
	Let the given NFA be $M = \{S, I, f, s_0, A\}$ and let M' be the required equivalent DFA each state of M' will be a subset of S. accordingly the initial state of M' is $\{s_0\}$. The set of input symbols of M' is same as I. If $\{s_{i_1}, s_{i_2},, s_{i_k}\}$ is a state of M and a is t he input symbol fed into t he M is t he union of t he sets $f(s_{i_1}), f(s_{i_2}),, f(s_{i_k})$ where f is t he thransion Thus, the states of M' are some or all the subsets of S including the empty set ϕ . The final states of M' are those states that contain the final states of M.	. 4	6	K1
	The simplest word ab should be acceptable by the FSA so the FSA should move from s_0 to s_1 when the input symbol is a. when the input symbol is b at s_1 the FSA should move to the accepting state which may be taken as s_0 itself. When a is input at s_1 the FSA should move to the nonfinal trap state s_2 . When b is input at s_0 FSA should move to s_0 itself the input symbols a and b at s_2 should take FSA from s_2 to itself	4		
	$\rightarrow \bigcirc b \xrightarrow{a} \bigcirc a \xrightarrow{a} \bigcirc a \xrightarrow{b} b$	4		
2	Write a notes on (i) Generation tree of a grammar with example (ii) Derivation tree for a string (iii) Types of derivation (iv) In the grammar with productions $S \rightarrow 0B 1A$; $A \rightarrow 0 0S 1AA$; $B \rightarrow 1 1S 0BB$ for the sring 00110101, find (a) left most derivation (b) right most derivation and (c) derivation tree	20		
	Generation tree of a grammar The generation tree (also called the parse tree) for a grammar $G = \{V_N, V_T, P, S\}$ is a tree such that Every vertex has a label, which is an element of $V_N \cup V_T$, where T includes the null string λ also. The label of the root is S If a vertex is interior and has label A, then $A \in V_N$ If a vertex has label A and has n children with labels $X_1, X_2,, X_n$ respectively from left to right then $A \rightarrow$	4	6	K1

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

$X_1, X_2, \dots X_n$	must be	a production	in P				
If a vertex h	nas label	λ then it is a	a leaf an	d the only son	n of its parent		
Example: L	et G be	a grammar wi	ith produ	uction rules S-	→aAS a; A→SbA ba		
O A O B	S S S S S					2	
Derivation t	tree for a	a string					
Derivation t	tree for a	a string S of a	languag	ge L(G) is a ro	oted tree whose root is S(starting symbol in G) and	2	
whose leave	es from l	left to right by	concat	enation consti	tute S(the given string)		
Types of de	rivation	_					
Left most/R	ightmos	st derivation:	Leftmos	t/Rightmost d	erivation of an expression (or string) in L(G) starts		
with the syn	nbol S o	of G and using	g the pro	duction rules	of G. If we always replace the left most/rightmost non	4	
terminal syr	nbol by	a production	till the l	ast, then the re	esulting expression is said to have been got by		
leftmost/rig	htmost c	lerivation					
	Left n	nost	Rightn	nost			
	deriva	tion	derivat	tion			
	$S \rightarrow$	0B	$S \rightarrow$	0B			
	\rightarrow	00BB	\rightarrow	00BB			
	\rightarrow	001SB	\rightarrow	00B1S			
	\rightarrow	0011AB	\rightarrow	00B10B		4	
	\rightarrow	00110SB	\rightarrow	00B101S			
	\rightarrow 001101A \rightarrow 00B1010B						
		В					
	\rightarrow	0011010B	\rightarrow	00B10101			
	\rightarrow	00110101	\rightarrow	00110101			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	4	
Derivation tree for the string is		